
corrected version - 24 Feb 2005

Fast Escape Analysis for Region-based Memory
Management

G. Salagnac 1,3 S. Yovine 1,3 D. Garbervetsky 2,4

Abstract

We present an algorithm for escape analysis inspired by, but more precise than,
the one proposed by Gay and Steensgaard [11]. The primary purpose of our al-
gorithm is to produce useful information to allocate memory using a region-based
memory manager. The algorithm combines intraprocedural variable-based and in-
terprocedural points-to analyses. This is a work in progress towards achieving an
application-oriented trade-off between precision and scalability. We illustrate the
algorithm on several typical programming patterns, and show experimental results
of a first prototype on a few benchmarks.

Key words: Escape analysis. Dynamic memory management.

1 Introduction

Garbage collection (GC) [14] is not used in real-time embedded systems. The
reason is that temporal behavior of dynamic memory reclaiming is extremely
difficult to predict. Several GC algorithms have been proposed for real-time
embedded applications (e.g., [12,17,16,13]). However, these approaches are
not portable (as they impose restrictive conditions on the underlying execu-
tion platform), do require additional memory, and/or do not really ensure
predictable execution times.

An appealing solution to overcome the drawbacks of GC algorithms, is to
allocate objects in regions (e.g., [18]) which are associated with the lifetime of
a computation unit (typically a thread or a method). Regions are freed when
the corresponding unit finishes its execution. This approach is adopted, for

1 VERIMAG, Centre Equation, 2 Ave. Vignate, 38610 Gières, France. E-mail:
firstname.lastname@imag.fr.
2 School of Computer Science, Universidad de Buenos Aires, Argentina. E-mail:
diegog@dc.uba.ar.
3 Partially supported by projects DYNAMO (Min. Research, France) and MADEJA
(Rhône-Alpes, France).
4 Partially supported by projects ANCyT grant PICT 11738 and IBM Eclipse Innovation
Grants.

there are typographic errors in the AIOOL’05 version



Salagnac,Yovine,Garbervetsky

instance, by the Real-Time Specification for Java (RTSJ) [2], where regions
can be associated to runnables, and by [10], which implements a library and
a compiler for C. These region-based approaches define APIs which can be
used to explicitly and manually handle allocation and deallocation of objects
within a program. However, care must be taken when objects are mapped to
regions in order to avoid dangling references. Thus, programming using such
APIs is error-prone, mostly because determining objects’ lifetime is difficult.

An alternative to programming memory management directly using an
API consists in automatically transforming a program so as (a) to replace
(whenever possible) “new” statements by calls to the region-based memory
allocator, and (b) to place appropriate calls (i.e., guaranteeing absence of
dangling references) to the deallocator. Such an approach requires to analyze
the program behavior to determine the lifetime of dynamically allocated ob-
jects. In [8], analysis is based on profiling, while [9,4] rely on static (points-to
and escape) analysis.

Escape analysis aims at conservatively determining if an object escapes

from or is captured by a method. Intuitively, an object escapes a method when
its lifetime is longer than the method’s lifetime, so it can not be collected when
the method finishes its execution. An object is captured by the method when
it can be safely collected at the end of its execution.

Several approaches to escape analysis for Java have been proposed, most
of which aim at allocating objects on the stack, and removing unnecessary
synchronizations. [1] works on the bytecode, which brings in an additionnal
complexity due to the stack-based model. [5,19] use points-to analysis to
determine if an object escapes a method through a path in the points-to
graph. [11] proposes a fast but very conservative escape analysis, based on
solving a simple system of linear constraints obtained from a Static Single

Assignment (SSA) form [7] of the program.

For region-based allocation in Java, we are aware of two works. [9] exploits
method-call chains and escape analysis to dynamically map allocation sites to
regions associated with methods. [4] defines a points-to analysis to determine
regions of objects with similar lifetimes (with instruction-level resolution, as
opposed to method-level).

In this paper, we present an algorithm for escape analysis inspired by, but
more precise than, the one proposed in [11]. The primary purpose of our algo-
rithm is to produce useful information to allocate memory using a region-based
memory manager. The algorithm combines intraprocedural variable-based
and interprocedural points-to analyses. This is a work in progress towards
achieving an application-oriented trade-off between precision and scalability.
We illustrate the algorithm on several typical programming patterns, and show
experimental results of a first prototype on a few benchmarks.

2



Salagnac,Yovine,Garbervetsky

2 The algorithm

In this section we describe our escape analysis algorithm in detail. We assume
the program is in static single assignment form (SSA) [7], that is, every variable
is assigned only once in the program. The transformation of the program into
SSA comes at a cost, but gives to a flow-insensitive analysis the power of a
flow-sensitive one. Our algorithm is mainly based on local variables, instead
of on a complex points-to graph, which would be much more expensive to
build and to work with. The analysis is based on abstract interpretation [6]
and computes several properties for local variables and methods.

2.1 Properties

2.1.1 escape

For each local variable v of a method, escape(v)∈Escape, where Escape is the
lattice in figure 1(a), says whether v may escape from its method, that is, if
an object pointed to by v is referenced in a way such that its lifetime may
exceed the method.

A variable v escapes because it is returned (escape(v)=RETURNED) or it is
copied into a global variable (escape(v)=STATIC). When a variable is stored
into an object field (escape(v)=FIELD), v may escape through a chain of refer-
ences. Determining whether v escapes in this case, requires further analysis
that will be explained later. The > value stands for variables that escape
by several ways, or when the analysis cannot compute a tighter information
(e.g., when v is used as a parameter in a non-analyzed method). For ex-
ample, in the program shown on figure 1(b) escape(a)=STATIC, escape(b)=⊥,
escape(c)=RETURNED, escape(d)=>.

Notice that escape(v) = ⊥ is not sufficient to say that the object pointed
to by v is local to the method. It only means that the method does not create
any new reference path from the outside of the method to the object, but the
object may already be reachable from outside. This is the case for variable b

in figure 1(b) which is an alias of the static variable s.

>

↗ ↑ ↖

FIELD RETURNED STATIC

↖ ↑ ↗

⊥

(a) The escape lattice

class Test01 {

static Object s,t;

void m0() {

Object a=m1();

s=a;

Object b=m2();

}

Object m1() {

Object c=new Object();

return c;

}

Object m2() {

Object d=new Object();

s=d;

return d;

}

}

(b) the Test01 program

Fig. 1. The Escape lattice and the Test01 program

3



Salagnac,Yovine,Garbervetsky

2.1.2 mfresh

Let MFresh be the lattice: ⊥ ≤ RETURNED ≤ >. For each method m, mfresh(m)
∈ MFresh describes how objects returned by m escape: mfresh(m)=⊥ when m

does not return any object (it may be void, or return some primitive type
value); mfresh(m)=> when returned values are already known to escape from
m in a different way; mfresh(m)=RETURNED when m returns an object (or several
objects) which does (do) not escape otherwise. If there is no other path leading
to this object (see section 2.2.2), the caller of m can capture it.

2.1.3 sites

Let Sites be P(AllocationSites∪{UNKNOWN}), where AllocationSites is the set
of all allocation sites in the program. For each local variable v, sites(v)∈Sites

contains all allocation sites that can create an object referenced by v. sites(v)
can always be computed at the unique (thanks to SSA) statement where v is
defined. To be conservative, if we cannot determine all the sites that v can
point to (e.g., because of a not analyzed method call), a “fake” allocation site
UNKNOWN is added to sites(v). In the program of figure 1(b), sites(a) = sites(c)
= {[m1:c=new Object]}, and sites(b) = sites(d) = {[m2:d=new Object]}.

2.1.4 msites

For each method m, msites(m) is an element of Sites, saying where objects
returned by m come from. In the program of figure 1(b), msites(m0) = ∅,
msites(m1) = {[m1:c=new Object]}, and msites(m2) = {[m2:d=new Object]}.
Notice that, if mfresh(m) = RETURNED, then objects from msites(m) are possi-
bly captured by callers of m, but it is not certain. In some complex situations,
there can still be a path of references leading to these objects. For example
in the program shown on figure 6(a), the e variable is not captured by m0.

2.1.5 isdereferenced

isdereferenced(v) is true iff v, or one of its aliases, is dereferenced in m. That
is, is v.f appears in the right-hand side of an assignment.

2.1.6 usedasparameter

usedasparameter(v) is true iff v, or one of its aliases, is used as a concrete
parameter in a method call.

2.1.7 def

For each variable v, def(v) says how v was defined.

2.1.8 fielduse

fielduse shows reference relations between local variables. For each v in m,
fielduse(v) is the set of variables u in m such that v may be an alias of u.f (for
some field f). fielduse is mainly useful when a variable v escapes by a FIELD:

4



Salagnac,Yovine,Garbervetsky

for example, if escape(v)=FIELD, but all variables of fielduse(v) are captured
by m, then so is v.

2.1.9 the mrefs graph

When objects are passed through several methods, knowledge about local
variables is often not sufficient to determine objects’ lifetimes, that’s why a
reference graph is needed. Our reference graph is very simple, in order to mini-
mize the algorithmic cost of the analysis. mrefs is a subset of AllocationSites×
Fields × AllocationSites, where (α, f, β) ∈ mrefs means: “an object created
in α, may point, with its f field, to an object created in β”.

2.1.10 side

The main goal of our analysis is to determine in which regions to allocate
objects. Each method m has an associated region, containing objects which do
not escape m. To determine the region, we compute for each variable v of m,
where objects pointed to by v live, namely, side(v):

• side(v)=INSIDE, when objects pointed to by v are captured by m. If they are
created by m, they can be allocated in m’s region. If they are created by
callees, m can ask for them to be allocated in its region, as is described in
[9];

• side(v)=OUTSIDE, when objects pointed to by v live longer than m. If they
are created by m, they must be allocated outside its stack frame. But such
an object may be captured by a caller n of m, in this case m can allocate the
object in n’s region.

An example is presented on figure 6(a): the RefObject allocated by m2 is cap-
tured by m1. Our analysis detects this situation by computing side(a)=OUTSIDE

and side(c)=INSIDE.

2.2 The rules

The algorithm works in two phases. First, it determines for each variable the
values of escape, sites, isdereferenced, usedasparameter, fielduse, def, it builds
the mrefsgraph and computes msites and mfresh values. To compute these
values, the algorithm solves the least fixpoint in Figures 2 and 3.

In a second phase, the algorithm uses these values to compute, for each
variable, its side value, as presented on figure 4. It is the combination of side

and sites that will enable us to instrument the bytecode in order to use a
region memory allocator for captured sites.

2.2.1 First phase

Most of these rules are simple. They are only intraprocedural information
propagation. The only complicated rule is the one on figure 3, which handles
method calls. This is not trivial, because we do not want to perform a full

5



Salagnac,Yovine,Garbervetsky

α: v := new

α ∈ sites(v)

v:= ϕ(v1..vn)
def(v) = PHI

∀i = 1..n
sites(v) ⊇ sites(vi)
escape(v) w escape(vi)
escape(vi) w escape(v)
isdereferenced(v) ≥ isdereferenced(vi)
isdereferenced(vi) ≥ isdereferenced(v)
usedasparameter(v) ≥ usedasparameter(vi)
usedasparameter(vi) ≥ usedasparameter(v)
fielduse(v) ⊇ fielduse(vi)
fielduse(vi) ⊇ fielduse(v)

v := v1

def(v) = COPY

other properties: similar to ϕ-expression

v1.f := v
escape(v) w FIELD

fielduse(v) 3 v1

mrefs ⊇ {s1

f
−→ s2,

s1 ∈ sites(v1), s2 ∈ sites(v2)}

s := v

escape(v) w STATIC

mrefs ⊇ {UNKNOWN −→ s, s ∈ sites(vi)}

v := s
def(v) = STATIC

sites(v) 3 UNKNOWN

v := p
def(v) = PARAM

sites(v) 3 UNKNOWN

other properties: similar to ϕ-expression

v := constant
def(v) = CONSTANT

sites(v) 3 UNKNOWN

v := v1.f
def(v) = FIELD

isdereferenced(v1) ≥ true

sites(v) ⊇ {s |∃ s′ ∈ sites(v1), s
′

f
−→ s }

If UNKNOWN ∈ sites(v1)
sites(v) 3 UNKNOWN

returnm v
escape(v) w RETURNED

mfresh(m) w escape(v)
msites(m) ⊇ sites(v)

Fig. 2. Escape analysis rules

v := v0.m(v1..vn)
∀ m that may be invoked here
If istobeprocessed(m)
sites(v) ⊇ msites(m)
If mfresh(m) 6= RETURNED

escape(v) w mfresh(m)
∀i = 0..n
usedasparameter(vi) ≥ true

Let p
i
the i-th formal parameter of m

isdereferenced(vi) ≥ isdereferenced(p
i
)

If ¬escape(p
i
) ∈ {RETURNED,⊥}

escape(vi) w >
mrefs ⊇ {UNKNOWN −→ s, s ∈ sites(vi)}

If isdereferenced(p
i
) = true

mrefs ⊇ {UNKNOWN −→ s |∃ s′ ∈ sites(vi), s
′ −→ s)}

else
sites(v) 3 UNKNOWN

∀i = 0..n
usedasparameter(vi) ≥ true

isdereferenced(vi) ≥ true

escape(vi) w >
mrefs ⊇ {UNKNOWN −→ s, s ∈ sites(vi)}

Fig. 3. Escape analysis rules (cont)

6



Salagnac,Yovine,Garbervetsky

points-to analysis, neither to be too conservative about method calls.

Our analysis is designed to process arbitrary portions of an application.
That is why we have an istobeprocessed predicate, that tells if a method must
be analyzed or not. If not, for example because the method is native, or
unavailable, we must be conservative about it.

For a not analyzed method, we assume that all parameters escape, and are
referenced by the UNKNOWN site.

On the other hand, if the method is analyzed, then we can be more precise.
Obviously, we have sites(v) ⊇ msites(m), that is, v will point to any object
returned by m. If these objects have escaped (mfresh(m) 6= RETURNED), then
the return value is not capturable either. (escape(v) w mfresh(m))

To process the parameters of m, we match the formal parameters (p
i
) with

the concrete ones (vi): if p
i
escapes from m, vi is considered as escaping from

the current method, and we put an edge from UNKNOWN to all sites pointed to
by vi. If p

i
does not escape but isdereferenced in m, then we cannot be precise

about those references without performing a points-to analysis. In this case,
we conservatively consider that all children of vi escape.

2.2.2 Second phase

def(v)

escape(v) NEW RETVAL
PARAM
STATIC

COPY
PHI FIELD CONSTANT

⊥ (3) (3) OUTSIDE (1) (2) OUTSIDE

FIELD (2) (2) OUTSIDE (1) (2) OUTSIDE

RETURNED OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE

STATIC OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE

> OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE

(1)

v:= ϕ(v1..vn) or v := v1

∀i
side(v) w side(vi)
side(vi) w side(v)

(3)

If ∃s ∈ sites(v) s.t. UNKNOWN ; s

side(v) = OUTSIDE

else
side(v) = INSIDE

(2)

If ∃u ∈ fielduse(v) s.t. side(u) = OUTSIDE

or s.t.isdereferenced(u) ∧ usedasparameter(u)
side(v) = OUTSIDE

else
(3)

Fig. 4. Computation of side(v)

Once the fixed point is reached, the algorithm computes side(v) for each
variable using rules shown in figure 4. This is not a one-pass computation,
but a second least fixpoint, because of the (1) and (2) rules:

• The (1) rule says that, if a variable may alias another, then those two
variables cannot have different side values.

• Similarly, the (2) rules says that if a variable v is referenced by another

7



Salagnac,Yovine,Garbervetsky

variable’s field (e.g. by a u.f=v), v cannot be captured unless u is.

2.2.3 Examples

Let us consider the example presented in fig.5(a). First, m0 builds a small
chained structure, then it calls m1 which makes the last element (t3) escape.
As shown on fig.5(b), the analysis of m0 understands the behavior of m0, but
as we can only match x with t1, and not a with t2, we cannot keep track
of m1. Nevertheless, to stay conservative, we put an edge from UNKNOWN to
the site of t2 because x is dereferenced in m1. Notice that, t2 and t3 are
usedasparameter, because they are the this parameter of their constructor.
That is why the only captured site is [m0:t1 = new RefObject].

class RefObject {

Object f;

}

class Test25 {

void m0() {

RefObject t1=new RefObject();

RefObject t2=new RefObject();

Object t3=new Object();

t1.f=t2;

t2.f=t3;

m1(t1);

}

static Object s;

void m1(RefObject x)

{

RefObject a=(RefObject)x.f;

Object b=a.f;

s=b;

}

}

(a) The Test25 program

t2=new t3=new

t1=new

UNKNOWN

f

f

(b) mrefs graph

escape
mfresh def IsD uP fielduse

sites
msites side

m0 ⊥ ∅

t1 ⊥ NEW true true [] [m0:t1 = new RefObject] INSIDE

t2 FIELD NEW false true [t1] [m0:t2 = new RefObject] OUTSIDE

t3 FIELD NEW false true [t2] [m0:t3 = new java.lang.Object] OUTSIDE

m1 ⊥ ∅

x ⊥ PARAM true false [] [UNKNOWN] OUTSIDE

a ⊥ FIELD true false [] [UNKNOWN] OUTSIDE

b STATIC FIELD false false [] [UNKNOWN] OUTSIDE

(c) analysis results

Fig. 5. The Test25 program

The second example, shown in figure 6(a), illustrates the msites property.
The m2 method allocates two objects and makes one (a) point to the other (b),
which escapes. Then it returns a, which is captured by m1 (side(c)=INSIDE).
m1 dereferences c to get the Object and returns it, but m0 cannot capture it
because of the edge from UNKNOWN to [m2:b = new Object].

8



Salagnac,Yovine,Garbervetsky

class Test30 {

void m0() {

Object e=m1();

}

Object m1() {

RefObject c=m2();

Object d=c.f;

return d;

}

static Object s;

RefObject m2() {

RefObject a=new RefObject();

Object b=new Object();

s=b;

a.f=b;

return a;

}

}

(a) the Test30 program

b=new

a=new

UNKNOWN

f

(b) mrefs graph

escape
mfresh def IsD uP fielduse

sites
msites side

m0 ⊥ ∅

e ⊥ RETVAL false false ∅ [m2:b = new Object] OUTSIDE

m1 RETURNED [m2:b = new Object]

c ⊥ RETVAL true false ∅ [m2:a = new RefObject] INSIDE

d RETURNED FIELD false false ∅ [m2:b = new Object] OUTSIDE

m2 RETURNED [m2:a = new RefObject]

a RETURNED NEW false true ∅ [m2:a = new RefObject] OUTSIDE

b > NEW false true [a] [m2:b = new Object] OUTSIDE

(c) analysis results

Fig. 6. the Test30 program

Program Lines Allocation Analysis time INSIDE G&S’s analysis

sites escape side total variables sites stackable variables

bh 1128 41 9.430 23.51 32.481 34 21 23

bisort 340 10 7.876 11.509 19.385 7 7 7

em3d 462 26 8.551 15.706 24.257 13 11 11

health 562 28 8.454 19.414 27.868 18 13 10

mst 473 16 8.106 14.260 22.366 8 8 7

perimeter 745 13 11.357 23.944 35.301 7 7 7

power 765 21 3.628 1.159 4.787 9 9 5

treeadd 195 11 10.876 27.539 38.415 6 6 6

tsp 545 12 11.19 30.201 41.220 7 7 7

voronoi 1000 35 12.778 66.566 79.344 34 20 31

Table 1
Analysis results

3 Empirical results

We have implemented a prototype version of this algorithm using the Soot
framework [15] v.2.2.1. Table 1 presents the results of our algorithm on the
Jolden benchmarks [3]. The first two column are the size of the program in
lines, and the number of allocation sites. The next three columns present the
time spent by our escape analysis, in seconds, not including Soot’s phases:

9



Salagnac,Yovine,Garbervetsky

class loading, transformation from bytecode to Jimple (Soot’s three-address
stackless code), and transformation into SSA form.

The last three columns give the number of INSIDE variables and allocation
sites, as computed by our algorithm, and the number of stackable variables, as
computed by our implementation of G&S’s analysis [11]. Our analysis is more
precise than [11] as it subsumes all its rules. That is, all stackable variables
in the sense of [11] are INSIDE variables, but the converse is not true. In our
experiments, we did not use any inlining of analyzed code. It is interesting to
remark that without inlining, [11] does not find any stackable variable in the
programs of figures 5 and 6. As noted in [11], both analyses will benefit from
method inlining.

We did not have enough time to use the computed information to actually
instrument the benchmarks as described in [9]. We count on doing this soon.
Anyway, a preliminary implementation on another test program revealed a
gain of 20% of total utilized memory, when using GC together with region-
based manager, w.r.t. GC only, even if the actual region-allocated memory is
about 5%.

Besides, only a subgraph of the whole call graph has been analyzed for
each test case. The subgraph contains all application methods and a subset
of library methods transitively invoked by the program. This explains why
there are only a few allocation sites. Nevertheless, these results are interesting,
because an important fraction of analyzed allocation sites are indeed computed
to be captured. Our algorithm is parameterized by the set of classes to be
analyzed. This allows the user to fine-tune the analysis trading precision
against performance according to specific application behaviors.

Ackgnoledgements

We thank Chaker Nakhli and the anonymous referees for their helpful
remarks.

References

[1] B. Blanchet. Escape Analysis for Java(TM). Theory and Practice. ACM TOPLAS, 25(6):713-775,
2003.

[2] G. Bollella and J. Gosling. The Real-Time Specification for Java. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[3] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data structures in
java controller. In PACT’01, p. 280–291, Sep. 2001.

[4] S. Cherem and R. Rugina. Region analysis and transformation for Java programs. In ISMM’04, ACM
SIGPLAN Notices, Oct. 2004. ACM Press.

[5] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Stack Allocation and
Synchronization Optimizations for Java Using Escape Analysis. ACM TOPLAS, 25(6):876-910, 2003.

[6] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Journal of Logic

Programming, 13(2–3):103–179, 1992.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing static
single assignment form and the control dependence graph. ACM TOPLAS, 13(4):451–490, 1991.

10



Salagnac,Yovine,Garbervetsky

[8] M. Deters and R. Cytron. Automated discovery of scoped memory regions for real-time Java. In
ISMM’02, ACM SIGPLAN Notices, June 2002.

[9] D. Garbervetsky, C. Nakhli, S. Yovine, and H. Zorgati. Program instrumentation and run-time analysis
of scoped memory in java, 2004. RV’04. To appear in ENTCS.

[10] D. Gay and A. Aiken. Language support for regions. In SIGPLAN PLDI’01, pages 70–80, 2001.

[11] D. Gay and B. Steensgaard. Fast escape analysis and stack allocation for object-based programs. In
CC’00. Springer-Verlag, 2000.

[12] R. Henriksson. Scheduling garbage collection in embedded systems. PhD. Thesis, Lund Institute of
Technology, July 1998.

[13] T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J-Ph. Lesot, and F. Parain. Memory management for
real-time Java: an efficient solution using hardware support. Real-Time Systems Journal, 2002.

[14] R. Jones and R. Lins. Garbage collection. Algorithms for automatic dynamic memory management.
John Wiley and Sons, 1996.

[15] V. Sundaresan, P. Lam, E. Gagnon, R. Vallee-Rai, L. Hendren and P. Co. Soot - A java optimization
framework. In Proceedings of CASCON 1999, pages 125–135, 1999.

[16] T. Ritzau and P. Fritzon. Decreasing memory over-head in hard real-time garbage collection. In
EMSOFT’02, Grenoble, France. LNCS 2491, 2002.

[17] F. Siebert. Eliminating external fragmentation in a non-moving garbage collector for Java. CASES’00,
2000.

[18] M. Tofte and J-P. Talpin. Region-based memory management. Information and Computation, 1997.

[19] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs. in
OOPSLA’99, volume 34(10) of ACM SIGPLAN Notices. ACM Press.

11


	Introduction
	The algorithm
	Properties
	The rules

	Empirical results
	References

