
Semi-Automatic Region-Based Memory Management for Real-Time Java
Embedded Systems

Guillaume Salagnac Christophe Rippert Sergio Yovine
Verimag

2 av de Vignate, 38610 Gieres France
salagnac@imag.fr rippert@imag.fr yovine@imag.fr

Abstract

In this paper we address the problem of dynamic mem-
ory management in real-time Java embedded systems. Our
work aims at suppressing the need for garbage collection in
order to avoid unpredictable pause times. For that we use a
simple static analysis algorithm coupled with region-based
memory management as presented in [15]. To overcome
the well-known limitations of region inference, we propose
in this paper to involve the developer in the analysis process
by providing feedback on programming constructs likely to
produce memory leaks. Experiments show that for most
programming patterns, our system behaves as efficiently as
a garbage collector in terms of memory consumption. Our
analysis tool is furthermore able to provide useful feedback
to the programmer to pinpoint problematic constructs.

1. Introduction

Dynamic memory management is a serious challenge for
real-time embedded systems based on Java technology. Un-
like the standard Java paradigm, garbage collection is rarely
used in such real-time environments, since the temporal be-
havior of dynamic memory collection (e.g. pause times)
is usually difficult to predict and thus significantly compli-
cates the implementation of real-time scheduling policies.
On resource-limited platforms, such as smart cards, the im-
plementation of efficient garbage collectors (GC) is further-
more hindered by hardware limitations, and embedded sys-
tems manufacturers frequently omit them completely (see
the JavaCard1 platform for instance).

This paper investigates this problem by proposing a
semi-automatic approach : by making the programmer co-
operate with a static analysis tool, we provide an environ-
ment where all memory operations run in predictable time,

1http://java.sun.com/products/javacard/

while not forcing the programmer to manage memory man-
ually.

2. Related work

Many researchers have addressed the problem of real-
time memory management in different manners. In this sec-
tion, we give an overview of such work. The most obvious
approach consists in letting the programmer manage mem-
ory with explicit malloc/free calls, but it can be consid-
ered a step back in terms of safety and programming com-
fort compared to automatic dynamic memory management.
Using garbage collection indeed relieves the programmer of
the memory management work, but is often not compatible
with real-time constraints. On the other hand, the regions
memory model changes the granularity of memory opera-
tions to trade space overhead for time predictability, but is
known to be still too difficult to use by hand. Thus, it seems
interesting to use static analysis to transfer as much work as
possible to the compiler.

2.1. Static memory management

Manual memory management (i.e. explicit use of mem-
ory operations like malloc and free) is very error-prone,
and is typically not present in modern programming lan-
guages like Java. In the context of resource-constrained
embedded systems, the de facto standard is the JavaCard en-
vironment, which does not offer a way to deallocate mem-
ory. The language and runtime environment of JavaCard are
very restricted compared to standard Java (no floats, no
threads...) but the keyword new is still available. Thus the
programmer is allowed to allocate objects dynamically, but
as there is no way to deallocate them, the standard advocates
the allocation of all objects needed by the application once
for all in the install() method called when the applet is
deployed on the JavaCard.

Using only static memory is thus a solution to the prob-
lem of the temporal behavior of the memory manager, but



is very uncomfortable for the typical Java programmer. To
favor the use of Java by the real-time embedded commu-
nity, we believe that it is essential to retain the key features
of the language, and in particular automatic management of
dynamic memory.

2.2. Real-time garbage collection

Modern languages such as Java do not require the pro-
grammer to worry about memory management: the runtime
system automatically reclaims unused (garbage) memory.
Many different garbage collection algorithms have been de-
veloped and they achieve very good performance, but they
all have a very high worst-case complexity. As the GC can
stop the application program at any time, and for an unpre-
dictable amount of time, it seems impossible to use it in a
real-time context.

Still, several projects like Metronome [1], and Ja-
maicaVM [17] address the problem of building a real-time
GC. In addition to an optimized design, the key idea of
these algorithms is to use a statistical model of the appli-
cation program behavior: the GC is then scheduled accord-
ing to application-dependent parameters, such as the allo-
cation rate, and more importantly, the garbage generation
rate. Thanks to this model, the execution of the user pro-
gram and of the GC are interleaved often enough to ensure
that memory does not get exhausted, while the pause times
remain small.

This is an interesting approach, however the necessary
behavior model of the application if very difficult to obtain.
Mann et al. [12] propose a technique to statically determine
the maximum allocation rate of an application, but to our
knowledge no one has addressed the much more difficult
problem of determining garbage generation rates.

A survey and a more thorough comparison of different
real-time garbage collectors can be found in [9]

2.3. Memory management using regions

To help reduce the complexity of the bookkeeping work,
an interesting approach is to change the memory organi-
zation model, and to group objects in regions [19]. The
idea behind region-based memory management is to group
objects of similar lifetimes: within a region, one can not
deallocate any individual object, but must wait until the re-
gion can be destroyed as a whole. There are several vari-
ants of this memory model: the regions may either have a
fixed size, or be allowed to extend when they become full;
inter-region pointers may either be allowed or not; etc. The
common point is to trade object deallocation, which is ac-
curate but time-unpredictable, for region destruction, which
presents a better temporal behavior, at the expense of some
space overhead.

Several approaches [10, 18] propose to add region con-
structs to an existing language, but the resulting program-
ming model is still very difficult to use, because the pro-
grammer must decide in which region to place each object,
and when to create and destroy regions.

For example, regions are advocated by the Real-time
Specification for Java [4], that proposes several extensions
to the syntax and semantics of Java that aim at making
the execution more predictable. To get rid of the garbage
collector for time-critical tasks, the RTSJ offers lexically-
scoped memory regions called ScopedMemory areas. This
environment is appealing, as it guarantees constant-time
memory operations, but it is very restrictive for the pro-
grammer: the size of the regions is fixed, and must be de-
cided at programming time. Moreover, RTSJ includes as-
signment rules that forbid an object in a short-lived region
to be referenced by an older object. This seems reasonable
in theory, but it makes it impossible to reuse any old code
(even the Standard Library has to be fully rewritten), and
force the programmer to adopt new coding habits. Program-
ming for the RTSJ is thus very difficult [13] because most
of the benefits of Java are lost: the RTSJ is too far from the
original Java for the programmer, and is so complex that it
can be considered as a new language.

2.4. Static analysis

The term static analysis refers to the analysis of some
properties of a program without actually running it. All
modern compilers perform some static analysis on the code
they are compiling, like type inference, dead code elimina-
tion, and so on. Static analysis techniques address many dif-
ferent purposes, like automatic verification, optimization, or
program understanding. As most of these questions raise
undecidable problems, static analysis often rely on con-
servative approximations. In this work, we are mostly in-
terested in memory-related analyses, because we want the
compiler to find objects lifetimes for the programmer.

For example, escape analysis techniques conservatively
determine at compile time whether the lifetime of an object
exceeds its allocating method. If not, the heap allocation
can be replaced by a stack allocation, and the object will
be destroyed together with the stack frame of the method.
Many escape analysis algorithms have been proposed for
Java [3, 7, 16], but they typically fail to produce results com-
plete enough to suppress the need for a GC.

To go further, it seems promising to propose some static
analysis that would automatically enable the program to run
with regions. Several approaches were proposed in that di-
rection, with encouraging results: Chin et al. [6] propose a
region inference algorithm based on an ad-hoc type system,
but they do not provide experimental results except for a
few toy examples. Cherem and Rugina [5] propose to aug-



ment Java syntax with new region constructs, and to add
automatically explicit region creation and destruction state-
ments. The main limitation of these approaches is that static
analysis is inevitably too conservative : for certain complex
programs, no memory is ever reclaimed because all objects
are placed into only one region that is alive throughout the
execution.

This can be seen as a kind of memory leak, that is caused
by the use of regions, and not by the application logic it-
self. As this phenomenon is rather frequent in region-based
memory management systems, we will refer to it here as the
region explosion syndrome. Not only automatic region in-
ference [5, 6] algorithms suffer from this problem, but it is
also present in systems where regions are managed by the
programmer [2, 12].

3. Approach

In order to take advantage of the regions memory model
without having having to suffer from the drawbacks pre-
sented before, we propose to split the memory management
work between the developer and a static analysis tool. By
implementing this tool within the compiler, we integrate
smoothly in the existing human-in-the-loop development
cycle.

Our idea is to use static analysis for region inference,
like in [5], but to give some feedback to the programmer at
analysis time, so that he can avoid the region explosion syn-
drome. The analysis algorithm and allocation policy must
then be simple enough, in order to be understood by the av-
erage programmer, and have a cheap algorithmic complex-
ity, in order to not hamper the development.

The generally admitted generational hypothesis states
that connected objects will tend to have a similar lifetime
[11]. Accordingly, we propose to put each data structure
(i.e. each maximal set of connected objects) in a distinct
region. The idea is that most objects are either short-lived,
and so they should be placed in a short-lived region, or long-
lived, because they are integrated in a large lasting structure,
and they should be placed together with the rest of the struc-
ture.

This is more simplistic than existing region inference
proposals, but our experimental results show that the mem-
ory behavior of the program when executed with regions is
essentially the same. Since no static analysis mechanism
can yield precise results for all types of programs, we be-
lieve that it is necessary to involve the programmer, who
has a better understanding of his code than any automatic
tool.

In this paper, we extend our previous work [15] by inves-
tigating this feedback to the developer. We also present the
implementation of a region memory manager that operates
in constant time, thus enabling the application code to use

dynamic memory in a real-time context.

3.1. Pointer interference analysis

This section presents our static analysis algorithm,
whose objective is to compute an approximation of the con-
nectivity of heap objects.

The algorithm represents the program as a set of meth-
ods. Each method has a set of local variables v1...vn, some
of which are its formal parameters p1...pn, and a control
flow graph of statements. As our analysis does not need
them, we abstract primitive variables and expressions (inte-
gers, booleans...), and each statement is either of the form
v=new C (object allocation), v1=v2 (pointer copy), v1=
v2.f (load), v1.f=v2 (store), or v.m(v1..vn) (method
call). To handle call statements, our algorithm uses a pre-
computed Call Graph, which maps each call statement with
a set of possible target methods.

Objective. For each method m, the objective of the anal-
ysis is to compute a static over-approximation (the equiv-
alence relation ≈m) of the dynamic interference relation
↔ between the local variables of m (v↔v’ iff the objects
pointed by v and v’ are transitively connected). However,
this information may depend on the calling context of the
method, and the analysis tries to avoid being overly conser-
vative (i.e. assuming p≈mp’ for all parameters of m would
be too imprecise). This is why the analysis algorithm as-
sumes that formal parameters are not connected, and com-
putes another, less conservative approximation∼m, that will
be updated at runtime with the parameters real interference
information↔.

Intuitively, x∼ymeans that we are sure, at compile-time,
that x and ywill point to connected objects. Sometimes, we
will refer to an equivalence class of ∼ as a family of local
variables.

Algorithm. During a first intra-procedural pass, the algo-
rithm looks for all variables which interfere syntactically:
in each method m, the statements v=u, v=u.f or v.f=u
imply v∼mu. Initially, the algorithm assumes no interfer-
ence between formal parameters, but for example a method
m that connects explicitly two parameters p and q with
p.f=q will get p∼mq.

During a second phase, the effect of method calls is mod-
elled as follows: wherever a method m may call a method
m′ with arguments ...p1←v1,..., p2←v2... the algorithm en-
sures that p1∼m′p2 in m’ implies v1∼mv2 in m. This means
that if for instance, a certain method connects two of its for-
mal parameters, the interference is forwarded to the caller
methods.

On the other hand, our analysis in context-insensitive:
each method is analyzed without knowing its caller, but the



algorithm computes a parameterized result that is valid for
all calling contexts.

Example. An example program is given on Fig. 1 to illus-
trate the analysis. The program first creates a list (allocation
and call to the constructor), and then allocates two objects
o1, which will be added to the list, and o2. The call to the
constructor is explicited, like in the .class bytecode, be-
cause it is important for us to distinguish it from the alloca-
tion itself. First, the intra-procedural phase of the algorithm
will compute this ∼<init> tmp and this ∼add o. Then,
the inter-procedural phase, mapping list to this and o1
to o, will deduce list∼main o1. The point here is that o1
and o2 will never be connected, and thus can be allocated
in different regions, while list and o1 will belong to the
same data structure.

main() {
ArrayList list

=new ArrayList;
list.<init>(10);

Object o1=new Object;
Object o2=new Object;

list.add(o1);
}

class ArrayList {
Object[] data;
int size;
ArrayList(int capacity)
{

this.size = 0;
tmp = new

Object[capacity];
this.data = tmp;

}

void add(Object o) {
this.data[this.size]

= o;
this.size ++;

}
}

Figure 1. An Arraylist container

Discussion. The analysis presented here is flow-
insensitive, and does not compute a distinct result for every
control point of each method. However, we implemented
a variant of the algorithm that works on a Static Single
Assignment [8] version of the program. The transformation
of the program into SSA comes at a cost, but gives to
any flow-insensitive analysis most of the benefits of a
flow-sensitive one. The results we observed were almost
identical, because in Java most methods are rather short,
and the complexity of the program comes from the large
size of the call graph.

Another important feature of our analysis is the context-
insensitivity, that greatly simplifies the implementation.
First, the leaves of the call graph can be analyzed alone, and
then the results are propagated backward along call graph
edges up to the roots (the main() method, and class ini-
tializers).

These characteristics are essential for our approach, be-
cause we want the static analysis to be part of the com-

piler: the algorithm must then be very fast, in order to be
usable interactively. For all the examples and benchmarks
presented in this paper, the analysis takes a few seconds to
run (on both the application code and the Standard Library).

3.2. Allocation policy

Our approach is to automatically group each data struc-
ture into a region. For that, the memory manager uses anal-
ysis results at runtime to place each object when created.
The allocation policy that we propose is very simple: when
executing a x=new C statement in method m, the alloca-
tor looks for other local variables in the same family (that
is, some y of m that verifies x∼my). It then puts the object
x in the same region as the object y. If there is no such y
variable, it means that we’re allocating the first object of a
data structure, and the allocator can create a new region for
x and all subsequent objects.

The runtime system tracks local variables and the regions
they point into, and a region is destroyed when no local vari-
able points into it any more. This is safe because our anal-
ysis and allocation policy guarantee that there will never be
any pointer between regions.

In practice, this does not involve deep changes in an ex-
isting virtual machine, because it imposes few modifica-
tions to an existing memory allocator: there is no need for
new bytecodes, nor is there a need to rewrite or instrument
executed code , which can be problematic for the Standard
Library. All the allocator needs to know at runtime is in
which region is each object, which is a cheap operation in
our memory model (cf Section 3.3).

Feedback to the developer. This allocation policy is very
simple, in order to be understood by the programmer. We
propose to involve him in the memory management work,
since we believe a fully automatic approach can not yield
satisfying results. Indeed, our benchmarks show that there
are some programming patterns that lead to a very poor
memory behavior when executed with regions. However,
unlike other region inference approaches, we can still pro-
vide useful feedback to the programmer in these situations.
Since our analysis and allocation policy are very simple, we
are able to predict how the program will behave at runtime,
and to bring back this information to the developer.

The idea of this behavior analysis is again rather simple,
and is illustrated in Fig. 2. If some part of the program that
is executed repeatedly (here, the artificial while(true)
loop) allocates several objects at the same allocation site
(o=new Object), and links them to another long-lived
object (the object r), they will all end up in the same re-
gion, whereas only one of them will be alive at each point
in time. This example illustrates the main limitation of our
approach: if several objects of the same family do not have



similar lifetimes (i.e. if the program does not satisfy our
generational hypothesis), then several of them will become
garbage too early and will not be freed until the region is de-
stroyed, leading to the region explosion syndrome presented
before.

class RefObject {
Object f;

}

main() {
RefObject r=new RefObject();

while(true) (
Object o=new Object;
r.f=o;

}
}

Figure 2. A “region-unfriendly” program

To detect such situations at compile-time, our analyzer
looks for families that span across loop boundaries: here,
the o object is allocated in a loop, hence several times, and
is in interference with the long-lived r object. The gen-
eral case is more complex, because the problem often comes
from the interaction of several methods, but the idea is the
same. Our analyzer looks for these patterns, and reports
them to the user, in a format inspired by compiler warnings
:

example.java:9: Potential memory leak
calling context: none

Object o=new Object;
^

The developer is then aware of the potential memory
leaks that his program may encounter because of the re-
gions. He can either choose to let the program run “as is”,
because he is confident that the problematic loop will be
executed few times and thus will generate few garbage ob-
jects, or he can modify his code in order to avoid the leak.

This practice imposes a certain programming discipline,
but we argue that it fits rather well in the traditional write→
compile→ fix programming errors loop. Thereby, the pro-
grammer and the compiler share the labor, and the memory
management work is done semi-automatically at develop-
ment time.

3.3. Implementation of a constant-time re-
gion allocator

To ensure a predictable runtime behavior (suitable for
real-time), the region allocator must perform all its opera-
tions in predictable time: object allocation, region creation
and destruction, and so on. This section gives details about
these different operations, and their constant-time imple-
mentation.

The memory is organized as follows: the heap is di-
vided in pages of constant size which are aligned on ad-
dress boundaries. A region is implemented as a linked list
of pages, and is identified by its first page. At first, all pages
are linked in the free-list, a special region that encloses all
unused pages. In each page, a four-word header is reserved
for metadata: size holds the amount of allocated data in the
page; nextpage is a pointer to the next page in the region;
firstpage is a pointer to the first page of the region (the re-
gion identifier); and lastpage is a pointer to the last page in
the region (as is detailed below, this pointer is meaningful
only in the first page).

• To create a new region, the allocator simply pops the
first page p of the free-list (p.size is initialized to 0,
p.firstpage and p.lastpage to p, and p.nextpage to null).

• To allocate a new object in a region r, the allocator
first checks that there is enough room in the alloca-
tion page p=r.lastpage, and then increments p.size ac-
cordingly. Objects are therefore allocated side by side
without having to search for a free segment. If there is
not enough room, a new page must be appended to r.

• To add a new page to a region r, the allocator takes out
the first page p of the free-list, and initializes p.size to
0 and p.firstpage to r. But p must now be linked with
the other pages of r. For that, the allocator performs
r.lastpage.nextpage=p, and then r.lastpage=p. In this
way, new pages can be linked at the end without hav-
ing to traverse the list, and the lastpage of the region is
updated correctly, while keeping the invariant that for
every page q, q.firstpage.lastpage points to the alloca-
tion page of q’s region.

• To destroy a region, the allocator simply concatenates
the region in front of the free-list ; this can be accom-
plished in constant time thanks to the lastpage pointer.

• To find the region of a given object o, the allocator first
gets the object’s page p by rounding its address, and
then uses p.firstpage to reach the first page, identifying
o’s region.

This implementation can induce some space overhead
due to internal fragmentation: because the allocation is al-
ways performed in the last page of a region, there can exist
some free space at the end of other pages that we ignore for-
ever. However it ensures that all memory operations run in
constant time, and does not require any extra header word
in objects.

4. Experimentation

After having statically analyzed the program, the ob-
tained results must be used at runtime to carry out the pro-



posed allocation policy. In this section we study the behav-
ior of programs when running with our region allocator.

Experimental setup. We chose to conduct the experi-
ments presented here using the JITS architecture [14]. JITS
is a software framework dedicated to assist the customized
generation and deployment of low-footprint embedded Java
operating systems and applications. JITS provides a J2SE
compliant Java API and virtual machine, and tools designed
to help the developer build a fully-customized and low-
footprint embedded operating system.

We implemented the region allocator in the memory
management subsystem of JITS, replacing its stop-the-
world mark and sweep GC. The class loader was also modi-
fied to take into account the metadata computed by the static
analysis. This was done without changing the bytecode it-
self, so that other components of the JVM, like the byte-
code verifier, had not to be modified. Other approaches like
[5] that require to add new bytecodes are less portable, and
more difficult to implement in an existing virtual machine.

Qualitative evaluation. To evaluate our approach and
compare our results to [5] and [6], we analyzed and ran in
our modified virtual machine the programs of the JOlden2

benchmark suite. These programs are not real-time appli-
cations, but they are interesting because they contain typ-
ical Java programming patterns (polymorphism, recursion,
heavy use of dynamic memory) which must be supported in
a full-Java embedded real-time environment.

We compared the memory occupancy obtained during
two executions, the first one with the GC and the second
one with regions, in order to evaluate the impact of the re-
gions on the behavior of the programs. On several bench-
marks (e.g. Power, BiSort, etc.), most regions appear to
have very short lifetimes, enabling the application to run
in a nearly constant memory space. There are two kinds of
memory regions: very long-lived regions, that contain large
data structures which mutate throughout the execution, and
very short-lived regions, that receive temporary objects al-
located by the computation. This is illustrated in Fig. 3 for
Bisort: the GC-only version of the program (the dotted line)
frequently exhausts memory, and requires several collec-
tions of the heap. With regions (the solid line), the program
deallocates unused memory right away, and thus does not
require any collection which is what we want to achieve. In
this example, there are typically 15 to 18 active regions on
average, with a maximum of 21.

We do not provide a comparison with memory usage
statistics per se, as presented in [5], because our approach
does not aim primarily at reducing memory usage of the
program, but rather at avoiding the need for a GC. More-

2www-ali.cs.umass.edu/DaCapo/benchmarks.html

over, the figures given in [5] are high watermark memory
usage statistics, which in our opinion are not very relevant
when the program is executed with a GC, or with no mem-
ory management at all. The maximum memory usage is de-
pendent upon the parameters of the GC: a lower threshold
saves memory but triggers collections more often, increas-
ing the execution overhead: in our example, for a treshold
of 600k the overall execution time is increased by 20%; for
550k, it is multiplied by 3.

On some other benchmarks (e.g. Em3d, MST etc.)
the computation uses only the main data structures, alive
throughout most of the execution, and there is nearly no
garbage generated, so both versions of the program behave
in a similar way. Regions then do not lead to memory gains,
but they do not harm the program performances either.

There is another category of programs, including
Voronoi, on which our algorithm alone fails to reclaim mem-
ory as fast as it is allocated, thus generating a memory leak
which can lead to a memory shortage (cf Fig. 4). This is due
to a lack of precision in the pointer interference mechanism:
when a program does not satisfy our variant of the gener-
ational hypothesis, our approach wrongly places garbage
generated by long-lived objects in the same region, thus
preventing its early deallocation, and causing the region to
“explode”. In fact, the approach of Cherem and Rugina [5]
suffers of the same problem as revealed by their experimen-
tal results: the Voronoi program also causes a memory leak
when executed with regions.

This is for sure a limitation of the approach: on existing
programs, static analysis can not succeed every time. But
as we offer some feedback to the user at compile-time, this
problem can be addressed earlier in the development cycle,
leading to more region-friendly programs.

Usability validation. To evaluate the practical feasibility
of our approach, we conducted a case study focusing on a
real application, bigger and more realistic than the JOlden
programs. We chose the JLayer MP3 decoder3 for the fol-
lowing reasons:

• it is a quite big application (about 10000 loc) that
makes extensive use of the Standard Library;

• it could be used in an embedded context: hardware
MP3 players would benefit a lot from a Java-based
firmware;

• MP3 playing is somehow a real-time task: the decoder
must sustain a minimal decoding rate otherwise the
music will not be played smoothly.

We ran our analyzer on the code of JLayer, and the be-
havior analysis tool reported several warnings, meaning that

3www.javazoom.net/javalayer/javalayer.html



0 1x107 2x107 3x107 4x107 5x107

VMTime (cycles)

400000

500000

600000

700000

800000

900000

1x106
He

ap
 S

ize
 (b

yt
es

)

Garbage Collector
Static Analysis + Regions

Figure 3. Memory occupancy for the benchmark program BiSort

0 1x107 2x107 3x107 4x107 5x107

VMTime (cycles)

500000

1x106

1.5x106

2x106

2.5x106

3x106

3.5x106

He
ap

 S
ize

 (b
yt

es
)

Garbage Collector
Static Analysis + Regions

Figure 4. Memory occupancy for the benchmark program Voronoi

several sites in the code appeared to allocate many objects
in the same region. By looking carefully at the code, we
related these sites to the application logic, in order to deter-
mine whether there was actually a risk of region explosion
syndrome or not. We found only false positives, which we
can classify in two categories:

• there are several places in the code with an allocation
nested in a for loop, but the loop itself is easy to
bound, because it is only syntactic sugar used to fac-
torize repetitive code.

• inside the main decodeFrame while-loop, there are
several allocations, but actually the allocated objects
(like the LayerIIIDecoder object itself) are stored
into local variables and reused in subsequent iterations.

Such phenomena would be quite hard to characterize auto-
matically by static analysis, but are very simple for the pro-
grammer. This advocates the use of semi-automatic tools
that provide understandable feedback to the developer.

5. Conclusion and perspectives

In this paper, we have presented a scheme for dynamic
memory allocation in real-time embedded systems dedi-

cated to run on resource-limited platforms. The static anal-
ysis algorithm we proposed is efficient enough to be inte-
grated in an interactive assisted-development environment,
and the memory manager is very simple, in order to be im-
plementable in a small virtual machine.

However, for certain programs, region allocation leads to
memory leaks. Our algorithm detects automatically these
situations at compile time, using the analysis results. By in-
teracting with the application programmer, the analysis tool
helps building a satisfying memory management system for
the application, while imposing few constraints on the pro-
gramming style.

We are currently working on hybrid solutions combin-
ing our approach with complementary techniques. The
first idea would be to support escape analysis in order to
catch objects peripheral to a long-lived data structure, which
would otherwise pile up in the corresponding region. In-
stead of altogether suppressing the GC, it could also be in-
teresting to combine a predictable GC (e.g. a reference-
counting GC) with our mechanism to eliminate the region
explosion syndrome.



References

[1] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. ACM
SIGPLAN Notices, 38(1):285–298, Jan. 2003.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsid-
ering custom memory allocation. ACM SIGPLAN Notices,
37(11):1–12, Nov. 2002.

[3] B. Blanchet. Escape analysis for JavaT M : Theory and prac-
tice. ACM Transactions on Programming Languages and
Systems, 25(6):713–775, Nov. 2003.

[4] G. Bollella. The real-time specification for Java. Java series.
Addison-Wesley, Reading, MA, USA, 2000.

[5] S. Cherem and R. Rugina. Region analysis and transforma-
tion for Java programs. In A. Diwan, editor, ISMM’04 Pro-
ceedings of the Fourth International Symposium on Memory
Management, Vancouver, Oct. 2004. ACM Press.

[6] W.-N. Chin, F. Craciun, S. Qin, and M. Rinard. Region in-
ference for an object-oriented language. ACM SIGPLAN No-
tices, 39(6):243–254, May 2004.

[7] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and
S. P. Midkiff. Stack allocation and synchronization opti-
mizations for Java using escape analysis. ACM Transactions
on Programming Languages and Systems, 25(6):876–910,
Nov. 2003.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451–490,
Oct. 1991.

[9] D. Detlefs. A hard look at hard real-time garbage collection.
In Proceedings of the Seventh IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC’04), pages 23–32, Vienna, May 2004. Invited paper.

[10] D. Gay and A. Aiken. Language support for regions. ACM
SIGPLAN Notices, 36(5):70–80, May 2001.

[11] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understand-
ing the connectivity of heap objects. ACM SIGPLAN No-
tices, 38(2s):143–156, Feb. 2003.

[12] T. Mann, M. Deters, R. LeGrand, and R. K. Cytron.
Static determination of allocation rates to support real-time
garbage collection. ACM SIGPLAN Notices, 40(7):193–202,
July 2005.

[13] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek. Real-time
java scoped memory: Design patterns and semantics. In 7th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2004). IEEE Com-
puter Society, 2004.

[14] C. Rippert and D. Deville. On-The-Fly Metadata Strip-
ping For Embedded Java Operating Systems. In Pro-
ceedings of the 6th IFIP Smart Card Research and Ad-
vanced Application Conference (Cardis’04), August 2004.
http://www.cardis.org/.

[15] G. Salagnac, C. Nakhli, C. Rippert, and S. Yovine. Efficient
region-based memory management for resource-limited
real-time embedded systems. In O. Zendra, editor, Imple-
mentation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS’2006),
page 8, Nantes, France, July 2006.

[16] A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. ACM SIGPLAN Notices, 36(7):12–
23, July 2001.

[17] F. Siebert. Hard real-time garbage collection in the Jamaica
Virtual Machine. In Sixth International Conference on Real-
Time Computing Systems and Applications (RTCSA’99),
Hong Kong, 1999.

[18] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, and
T. Jim. Safe manual memory management in Cyclone. Sci.
Comput. Programming, 62:122–144, Oct. 2006.

[19] M. Tofte and J.-P. Talpin. Region-based memory manage-
ment. Information and Computation, Feb. 1997.


