
Towards Self-Hosting Software for Small Computers
Lionel Morel Guillaume Salagnac Nicolas Stouls

firstname.lastname@insa-lyon.fr
INSA Lyon, Inria, CITI, UR3720, 69621 Villeurbanne, France

Abstract
In this paper, we show by example that software development can be

carried out on much smaller platforms than is usually deemed nec-

essary, e.g. a PC. First, we identify requirements for a self-sufficient

software system, namely programmability, self-hosting, and porta-

bility. Then, we study the design and implementation of CollapseOS,

a bare-metal Forth system written by Virgil Dupras and show that

it satisfies these requirements. Finally, we evaluate its footprint in

terms of computing resources: CollapseOS needs about 6kB of flash

memory for machine code, about 180kB of storage for source code,

and it needs approximately 12kB of RAM to fully recompile itself.

1 The Need for Small Computers
The quest for endless growth is a key feature of modern societies

in general, and of the ICT industry in particular. But this trajectory

is not sustainable. For decades, computing hardware has been im-

proving exponentially: faster processors, more memory capacity,

better network bandwidth, etc. Recently however, this trend has

been slowing down, as we approach fundamental physical limits [5].

Even the current state of technology might not last forever because

we gradually deplete the planet’s reserve of mineral resources. Also,

the environmental impact of ICT has reached significant levels [7]

and we should not let it get any worse. In contrast, most climate

scientists advocate [9] for degrowth, in the hope of bringing human

activities under our planet’s sustainability limits.

With this in mind, one may ask whether the benefits brought

by digital technology are worth keeping the industry going at all.

In this work, we make the assumptions that it is indeed feasible to

produce computers in a sustainable way, and that these systems

would be much less powerful than today. From there, we explore the

issues involved in producing software for such machines. This looks

similar to the challenges of embedded computing, i.e. computers

integrated in so-called into “smart objects”. But current practice is

to perform all software engineering on an ordinary machine, and

transfer only the resulting executable to the target platform.

In this paper, on the other hand, we study what it means and

what it costs to produce software if there are only small computers

available. First, we identify three properties that are necessary for

a software system to be considered self-sufficient. Programmability,

i.e. what tools really are necessary to write and run programs ? Self-

hosting, i.e. can we use this toolset to maintain and further develop

the tools themselves? Portability, i.e. can the same source code tar-

get different hardware platforms? Second, we study the design and

implementation of CollapseOS [6] (abbreviated COS from here on)

a bare-metal Forth system developed by Virgil Dupras for 16-bit

machines. We show how it meets our three self-sufficiency require-

ments. Finally, we describe howwe ported the OS to a new platform,

and we evaluate its footprint in terms of computing resources.

2 Operating Systems for Small Computers
In this paper, we say that an operating system (OS) is programmable
when it lets users write and run new programs from within the plat-

form itself. For instance, GNU/Linux distributions usually include

all tools required for software development: text editor, compiler,

debugger, etc. However, not all OSes are programmable in this sense:

Embedded Operating Systems like FreeRTOS [8] only provide a

runtime platform for embedded programs, but all programming

tools run on a Linux machine. To be more specific, a programmable

OS must offer ways to: write programs as source code; transform
them into some executable form; and let users execute and debug
these programs how and when they please.

To be relevant for this study, an OS must also be self-hosted: the
programming tools are available on the platform, and the system

is able to fully recreate a new executable version of itself, without

depending on another machine. While this is the case for most

Linux systems, Android based systems don’t offer this possibility.

In a world where no computer is powerful enough to run Linux,

all OSes will probably have to be self-hosted. Moreover, we claim

that source code portability also remains an essential property, be-

cause writing specific programs for each platformwould require too

much effort to be practical. There are many small, self-hosted OSes

available today but they are typically not portable. For instance,

projects like SectorForth [3] and SectorLisp [11] are bare-metal

language interpreters distributed as tiny executable files, typically

512 bytes of x86 machine code each. Their main originality is meta-

circularity i.e. the interpreter comes with its own source code, and

as such is able to re-generate its own executable. But both projects

are tied to the x86 architecture: the source code is actually x86 as-

sembly with an ad-hoc syntax. Also, they rely heavily on BIOS/UEFI

services, so their actual bare-metal nature is questionable.

Many programming languages have small and/or bare-metal

and/or portable implementations [12] but they typically have, in

one form or the other, some dependency on other, much larger, soft-

ware systems. In a hypothetical world with only small computers,

we claim that a programmable, self-hosted, portable OS must be

available.

3 Technical Background: Forth and CollapseOS
Forth was created in the 1970s to write portable bare-metal control

software for scientific equipment [4]. A Forth program is a sequence

of whitespace-separated words, to be interpreted in Polish postfix

notation, e.g. “6 4 3 + *” produces 42 on the operand stack.
Absence of syntax makes for efficient implementation: words are

simply executed one after the other. To do this, the interpreter

looks up each word in the dictionary, a global data structure that
associates names with their implementations. The dictionary starts

pre-populated with core words which implement arithmetic e.g. “+”,
basic stack operations e.g. “DUP”, memory accesses, etc. Of course,

the user can also write new definitions. The main user interface



Lionel Morel, Guillaume Salagnac, Nicolas Stouls

to a Forth system is an interactive read-eval-print loop (REPL).

Most systems also offer persistent storage in the form of a Block File
System (BFS), a flat array of 1024-bytes blocks. On bare-metal, blocks

will typically be mapped directly onto the underlying medium.

CollapseOS [6] is a small Forth OS developed by Virgil Dupras

since 2021. Its implementation is minimalistic: the dictionary is a

simply linked list, and core words are implemented as raw machine

code. Executing a word consists in only two simple steps: search for

its name in the list, then have the CPU jump to its body. Every word

body must end with a jump back to the interpreter loop. But not all

words are core words. The body of a compiled word consists not in

machine code but in a list of pointers to other words. The interpreter

executes such words as direct-threaded code [2]: every pointer is

invoked as a subroutine, so that control can return back afterwards.

All these mechanisms are fully exposed to the programmer, who can

freely manipulate the internal state of the interpreter. This makes

it possible to implement higher level constructs like IF...THEN.
The main strength of COS is that everything is implemented in

Forth, from machine code generation, to word compilation, name

lookup and the REPL itself. Core words, assemblers, and device

drivers are provided for several platforms: Z80, 8086, 6502, 6809,

and AVR.

4 Contribution: A Study of CollapseOS
We now discuss how COS satisfies all the properties described in

section 2. To gain a solid understanding of the issues of portability

and self-hosting, we carried out a complete port of the code to a

new architecture (MSP430).

COS offers crude but self-sufficient programming tools, all writ-
ten in Forth. There are two text editors: ED is a line editor and VE
works on a whole BFS block. The system provides facilities to LOAD
and COMPILE source code from the BFS. Programs are launched

from the REPL prompt. The user can thus read and modify the

whole source code from within a running system. COS however of-

fers very limited debugging capabilities: beyond rudimentary stack

overflow/underflow checks, the system (including the compiler)

has no error checking whatsoever. As a result, even simple mis-

takes like forgetting the final semicolon in a definition result in

crashes or weird behaviors, mostly abrupt reboots. For comfort, we

thus relied heavily on traditional unix tools: emacs, bash, make, etc.

We validated everything against real hardware, but in practice we

spent a lot of time within the mspdebug [1] MSP430 emulator to

take advantage of step-by-step execution, memory inspection, etc.

Self-hosting, one of the main COS design goals, is achieved by

having almost no abstractions in the implementation. For instance,

a dictionary entry is stored in memory as just: its name in ASCII,

one byte for name length, a linked list pointer, and then bare ma-

chine code. That way, Forth programs interact at low level with the

dictionary, without any runtime support. The compiler is literally

five lines of code, of which four are a while-loop: read a word name,

look it up in the list, write the pointer to memory, and repeat. Sim-

ilarly, the assembler is just a set of routines generating machine

code in binary. The interpreter engine is implemented in terms of

this assembly language. Core words are written as a series of Forth

routines which, when executed, each generate a new dictionary

entry. By supplying the right BFS blocks to the compiler in the right

order, one can build a complete new binary image (interpreter+dict-

ionary) in memory. This executable can then be stored e.g. in flash,

so that rebooting will pick up on the update. Loading the compiler,

and feeding it blocks, is itself all programmed in Forth.

Portability comes for free, as all the facilities described previ-

ously work just as well for a different target architecture. One just

needs to load the proper assembler, then use it to generate the

interpreter engine and core words. Porting COS simply consists in

writing these platform-dependent parts. Our assembler implements

about 50 MSP430 instructions in 70 lines of Forth. The interpreter
engine is less than 10 lines of assembly. The 35 core words (+, DUP,
etc) represent about 200 lines of assembly. As for the drivers, we
implemented the bare minimum: reading and writing flash memory

blocks, and a serial port for user input, for a total of about 100 lines

of assembly. The rest of COS (about 180 compiled words) consists

in about 350 lines of platform-independent Forth.

We now evaluate the computing resources required by COS to

recompile (or cross-compile) itself. The executable image is around

6kB, including the interpreter engine, core words, etc. On a micro-

controller like the MSP430, code is stored in flash and executed

in-place by the CPU. We implemented the BFS in a separate region

of flash memory. COS’s platform-independent source code is about

2kloc, or 5kloc total if we add code for all supported platforms. This

represents less than 180kB of data, even though in practice it is

spread into about 300 BFS blocks of 1kB each. In terms of RAM, the

high watermark during self-recompilation is just under 12kB, de-

composed as follows. Newly loaded code (cross-compiler, assembler,

etc) occupies about 4.5kB of dictionary space. The runtime state of

the system itself is about 1.5kB: execution stacks, global variables,

BFS buffer. The newly created image itself occupies about 6kB. The

whole process takes about 2×109 MSP430 CPU cycles and less than

a minute of simulation time. With the default 1MHz clock speed of

a real MSP430, this would amount to approximately 35 minutes.

5 Conclusion
In this paper, we describe requirements for building self-sufficient

software systems: programmability, self-hosting and portability.

With these properties, it becomes possible to program small ma-

chines without depending on bigger ones. More specifically, we

show that a self-sufficient programming environment can fit on a

machine with as little as 12kB of RAM. We note that such a small

size brings additional benefits: the entire code base fits in a single

human brain, empowering users to adapt the system to their needs,

to port it to other platforms, etc.

The perspectives of this work are numerous. Obviously, we still

have to answer the question of whether digital devices can be pro-

duced sustainably at all [10]. If yes, then we will investigate what

the most powerful sustainable hardware would be. If that computer

happens to be smaller than our target, then the current paper is ir-

relevant and the question becomes “can we still programwithin less

than 12kB?”. On the other hand, if that “sustainability limit” turns

out to be higher, then a variety of interesting questions open up for

research. For instance, many features of modern languages are lack-

ing from Forth, e.g. typing, error handling, concurrency, debugging.

We want to explore the cost/benefit ratio of these features.



Towards Self-Hosting Software for Small Computers

References
[1] Daniel Beer. 2017. MSPDebug, a free debugger for use with MSP430 MCUs.

https://dlbeer.co.nz/mspdebug/. (2017).
[2] James R. Bell. 1973. Threaded code. Communications of the ACM, 16, 6, (June

1973), 370–372.

[3] Cesar Blum. 2020. SectorForth, a 16-bit x86 Forth that fits in a 512-byte boot

sector. https://github.com/cesarblum/sectorforth. (2020).
[4] Leo Brodie. 2004. Thinking forth. Punchy Publishing.

[5] Ralph K Cavin, Paolo Lugli, and Victor V Zhirnov. 2012. Science and engineer-

ing beyond moore’s law. Proceedings of the IEEE, 100, Special Centennial Issue,
1720–1749.

[6] Virgil Dupras. 2021. Collapse OS, Bootstrap post-collapse technology. http:
//collapseos.org/. Accessed: 2024-09-12. (2021).

[7] Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon S

Blair, and Adrian Friday. 2021. The real climate and transformative impact of

ICT: A critique of estimates, trends, and regulations. Patterns, 2, 9.

[8] Fei Guan, Long Peng, Luc Perneel, and Martin Timmerman. 2016. Open source

FreeRTOS as a case study in real-time operating system evolution. Journal of
Systems and Software, 118, 19–35.

[9] Intergovernmental Panel on Climate Change (IPCC). 2022. Climate Change
2022: Mitigation of Climate Change. Contribution of Working Group III to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
Technical Summary. Cambridge University Press.

[10] Nicolas Moreau, Thibault Pirson, Grégoire Le Brun, Thibault Delhaye, Geor-

giana Sandu, Antoine Paris, David Bol, and Jean-Pierre Raskin. 2021. Could

Unsustainable Electronics Support Sustainability? Sustainability, 13, 12.
[11] Justine Tunney. 2021. SectorLisp, a 512-byte implementation of LISP that’s

able to bootstrap John McCarthy’s meta-circular evaluator on bare metal.

https://github.com/jart/sectorlisp. (2021).
[12] Samuel Yvon and Marc Feeley. 2021. A small scheme VM, compiler, and REPL

in 4k. In Proceedings of the 13th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL 2021). Association for

Computing Machinery, Chicago, IL, USA, 14–24. isbn: 9781450391092. doi:

10.1145/3486606.3486783.

https://dlbeer.co.nz/mspdebug/
https://github.com/cesarblum/sectorforth
http://collapseos.org/
http://collapseos.org/
https://github.com/jart/sectorlisp
https://doi.org/10.1145/3486606.3486783

	Abstract
	1 The Need for Small Computers
	2 Operating Systems for Small Computers
	3 Technical Background: Forth and CollapseOS
	4 Contribution: A Study of CollapseOS
	5 Conclusion

