

Adaptive GPS Duty Cycling with Radio Ranging for Energy-Efficient Localization

Raja Jurdak Peter Corke Dhinesh Dharman Guillaume Salagnac

CSIRO ICT Centre Queensland University of Technology INSA Lyon

- Localization systems need absolute position references
 - GPS

- Localization systems need absolute position references
 - GPS
- GPS is energy-expensive

- Localization systems need absolute position references
 - GPS
- GPS is energy-expensive

• Key ideas of this work

- Duty cycle GPS
- Complement with energyinexpensive signals
 - Radio beacons
 - Accelerometers
 - Magnetometers

- Localization systems need absolute position references
 - GPS
- GPS is energy-expensive

Key ideas of this work

- Duty cycle GPS
- Complement with energyinexpensive signals
 - Radio beacons
 - Accelerometers
 - Magnetometers

Cattle sensor networks

• Domain problems:

- Herd behaviour
- Grazing patterns
- Social interaction

GPS + RF antennas

Virtual Fencing: Environmental protection

Virtual Fencing: Environmental protection

Design Considerations

Design Considerations

GPS Duty Cycling

1. GPS acquires lock

Assumed position

Real position

Uncertainty

GPS Duty Cycling 2. GPS powered off

Assumed position

Real position

Uncertainty

Wednesday, 24 November 2010

GPS Duty Cycling

Wednesday, 24 November 2010

GPS Duty Cycling

Wednesday, 24 November 2010

GPS Duty Cycling Strategy

$$T_{max} = \frac{AAU - U_{gps}(t_k)}{\bar{s}} - t_L$$

AAU: absolute acceptable uncertainty U_{gps} : GPS chip uncertainty s: assumed speed t_L : lock time

GPS Duty Cycling Strategy

$$T_{max} = \frac{AAU - U_{gps}(t_k)}{\overline{s}} - t_L$$

Varying the AAU according to the cow's distance from the fence

AAU: absolute acceptable uncertainty U_{gps}: GPS chip uncertainty s: assumed speed t_i : lock time

GPS Duty Cycling Strategy

$$T_{max} = \frac{AAU - U_{gps}(t_k)}{\overline{s}} - t_L$$

Varying the AAU according to the cow's distance from the fence

Speed models

$$c \quad Dynamic \quad Probabilistic \\ \bar{s} \quad \text{if } (s(t) > \bar{s}) \quad \text{i=t-lastlocktime} \\ S_c = s(t) \quad \text{if } (i = = 0) \\ else \quad S_c = s(t) \\ S_c = \bar{s} \quad \text{if } (S_c > \bar{s}) \\ P = t_{22} \\ else \\ P = t_{11} \\ else \\ S_c = P \times S_c + \bar{s}(1 - P) \end{cases}$$

GPS Duty Cycling Performance

- Simulations based on 2-day empirical cow position dataset
- 30 cows, 1-second granularity for GPS positions

Wednesday, 24 November 2010

GPS Duty Cycling Performance

- Simulations based on 2-day empirical cow position dataset
- 30 cows, 1-second granularity for GPS positions

Wednesday, 24 November 2010

Exploiting Radio Proximity Data

Exploiting Radio Proximity Data

Exploiting Radio Proximity Data

Cows naturally herd closely together

Combining GPS duty cycling with short range radio beaconing

A Visual Simulator

A Visual Simulator

A Visual Simulator

Contact Radius

• Static or dynamic?

Contact Radius

• Static or dynamic?

Contact Radius

• Static or dynamic?

Effect of contact radius on energy and error rate

Beacon Period

• Static or dynamic?

Beacon Period

Send radio beacons only when local uncertainty drops

Beacon Period

• Static or dynamic?

Effect of beacon scheduling on energy and error rate

Summary of results

Event-driven with 5m contact radius provides best balance for our application

Adaptive Duty Cycling

- Define error rate and energy targets
- Nodes keep track of their error rate and energy
- If error rate is high OR node has reserve energy, increase speed estimate
- If error rate is low, decrease speed estimate
- User preference to break ties

Adaptive Duty Cycling

- Define error rate and energy targets
- Nodes keep track of their error rate and energy
- If error rate is high OR node has reserve energy, increase speed estimate
- If error rate is low, decrease speed estimate
- User preference to break ties

CSIRO

Adaptive Duty Cycling

- Define error rate and energy targets
- Nodes keep track of their error rate and energy
- If error rate is high OR node has reserve energy, increase speed estimate
- If error rate is low, decrease speed estimate
- User preference to break ties

Wednesday, 24 November 2010

Conclusion

- Strategy for energy efficient localization
 - GPS duty cycling
 - Contact logging
- Use dynamic configuration
 - Dynamic AAU (depending on application)
 - Dynamic speed
 - Event-driven beacons
 - RSSI-based range bounding
- Future work
 - Estimating error rates with sparse sampling
 - Using inertial sensors as motion triggers
 - Leveraging group and mobility models
 - Exploring multi-hop contact logging

CSIRO ICT Centre

Raja Jurdak Principal Research Scientist

Phone: +61 (0)7 3327 4059 Email: raja.jurdak@csiro.au

