Various Extensions for the Ambient OSGi framework

Stéphane Frénot Frédéric Le Mouél

Julien Ponge Guillaume Salagnac

Université de Lyon, INRIA
INSA-Lyon, F-69621, France

{firsthname}.{lastname}@insa-lyon.fr

ABSTRACT

OSGi is a pragmatic wrapper above the Java Virtual Machine
that embraces two concepts: the component approach and
service-oriented programming. The component approach en-
ables a Java run-time to host many concurrent applications,
while the service-oriented programming paradigm allows the
decomposition of applications into independent units that
are dynamically bound at runtime. Combining component
and service-oriented programming greatly simplifies the im-
plementation of highly-adaptive, constantly-evolving appli-
cations. OSGi particularly fits ambient requirements and
constraints by absorbing and adapting to changes associated
with context evolution.

This paper summarizes our INRIA Amazones' team work
on extending OSGi specifications and implementations to
cope with ambient concerns. This paper references our OSGi
extension publications divided by three main concerns: man-
agement, isolation and security.

1. INTRODUCTION

Using OSGi technology for ambient environments requires
focusing on specific problems such as run-time framework
size, remote management, remote monitoring and deployment
processes.

The reason for this is that ambient intelligence is, and
will be, based on hardware which we will refer to in this
paper as “gateway devices”, that is, middle-sized comput-
ing equipments that have much more computing resources
that embedded systems like micro-controllers, but much less
than tradidional PCs or servers. Examples of these gateways
include set-top boxes, mobile phones, automotive embed-
ded systems, or similar equipments. As an illustration, the
platforms we used in our experimentations were ARM-based
devices as the Linksys NSLU2 (266Mhz CPU, 32MB RAM,
8MB flash) or Sheeva PC plugs (1.2 Ghz CPU, 512MB RAM,
512MB flash). A direct consequence is that deploying and

"http://amazones.gforge.inria.fr/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Adamus Workshop in conjunction with ICPS 2010, July 13-15,
2010, Berlin, Germany

Copyright 2010 ACM 978-1-4503-0249-4 ...$10.00.

managing OSGi-oriented ambient applications may not be
straightforward on those devices, yielding further issues com-
pared to managing “bigger” OSGi-based software stacks like
a Java EE server such as GlassFish?.

In this paper, we compiled most of our current OSGi-
related proposals in order to have a synthetic view of the
various extensions we investigated. The paper is divided
in three sections. Section 2] summarizes the OSGi frame-
work and focuses on the specific concerns of our extensions.
Section [3| presents each extension that we provided as a
walkthrough our various publications. Finally, section
synthesizes our extensions.

2. OSGI CONTEXT

OSGi? is a container framework built on top of the Java
platform. It hosts deployment units called bundles, which
contain Java resources such as compiled classes, properties
files or dynamically linked native libraries. Each bundle
features an Activator class which is the entry point to be
notified when the bundle is started or stopped. A descriptor,
expressed as a regular Java manifest, details dependencies
between bundles and other meta-data such as the Activator
qualified name.

The OSGi platform automatically checks dependencies
between bundles and controls the lifecycle of each bundle.
One key feature of the OSGi framework is the seamless
support of application deployment: new applications can
be installed, updated and uninstalled at runtime without
requiring a restart of the Java virtual machine itself, unlike
the large majority of non-OSGi Java applications. This
streamlines administration work and improves stability.

Bundles are typically materialized as JAR archives that
are fetched by the OSGi framework from a remote HTTP
server. Each bundle is associated with a dedicated Java
class loader that provides a fine-grained isolation unit with
respect to the other bundles. Unlike the typical tree-based
classloader hierarchies found in standard Java applications,
OSGi provides a directed acyclic graph where each classloader
controls which classes and resources should be exposed or
not, depending on the bundle manifest meta-data. Bundle
dependencies drive the shape of the classloaders graph.

The OSGi underlying programming model focuses on
Service-Oriented Programming, or SOP*. The driving mo-
tivation for SOP is to minimize coupling among software

?http ://glassfish.org/
Shttp://www.osgi.org/
“http://openwings.org/

http://amazones.gforge.inria.fr/
http://glassfish.org/
http://www.osgi.org/
http://openwings.org/

elements of the application. A service is an interface that
describes what a software entity provides in terms of API
binding requirements. In turn, many implementations can
be provided for the same interface and their details remain
hidden to the service requesters. Combining dynamic bun-
dle management and SOP awareness enables a continuous
application evolution at run-time.

3. OSGI EXTENSIONS

Since 2004, we provided many extensions to the OSGi
framework. Most of them focus on the bundle management
layer and aim at providing sound answers to the next three
questions :

e How can we improve bundle management and deployment?
e How can we optimize the run-time environment for bundles?
e How can we enforce security for the deployed bundles?

3.1 Bundle Management and Deployment

When dealing with ambient environments we imagine that
the gateway is remotely managed. Service providers must
be able to install new applications on remote gateways and
be able to both manage their behaviors and monitor their
execution [21]. In this purpose we provided two extensions:
the first is a full implementation of OSGi remote management
and the second focuses on an efficient bundle deployment
layer.

3.1.1 MOSGi

Management is one of the OSGi specification concerns
that was not implemented at the first time. We developed
and donated to the Apache Felix® community, the MOSGi
framework which mainly consists in a wrapper around the
JMX management protocol [5]. We provided an end-to-end
management layer that covers both the gateway and the
client-side part of the architecture. One can find both a run-
time for the gateway handling local probes and a run-time
manager for the client.

It is worth noting that the manager was also developed
as an OSGi bundle and thus provides a really interesting
dynamic use-case. When a probe is started on the gateway
side, it provides two facets: (i) the MBean facets that provides
the management API compliant with JMX protocol, (ii) a
specific MOSGi facet that is used by the client side to get a
graphical user interface interacting with the remote probe.
The client is dynamic: when it connects to the gateway, it
requests for the list of installed probes that correspond to
the JMX facet integration. Then, for each probe it checks
whether it complies with the specific MOSGi facet. If so, it
asks the probe for an URL that provides a bundle that brings
the graphical user interface. This dynamically discovered
graphical bundle is plugged into the manager and starts
interacting with the gateway. As an example, the running
use-case of the MUSE project [3]| was that of a user buying a
fridge. When the fridge is installed at the home environment,
the set-top box gateway downloads a fridge management
probe. When the fridge vendor has to remotely access the
fridge, its local manager downloads a graphical user interface
that can communicate with the fridge probe and provides a
dedicated management user interface.

When we developed the MOSGi framework in a multi-
provider environment one issue was to understand the man-

Shttp://felix.apache.org/

agement limits. If any provider can ask for probing informa-
tion, the gateway can be overloaded by the management layer.
If the remote manager asks for the fridge temperature every
tenth of a second the gateway can be in some kind of Denial
of Service and not be able to do other things. We developed a
monitoring scheduling process for gateway [8| through which,
we wondered if we could anticipate the increase in CPU load
when a new probe is inserted into the gateway. The provided
approach is a specific bench generator that measures every
installed JMX probe and stores its response time. We show,
that the targeted gateway CPU loading curve was regular
and that the combination of the various curves leads to good
CPU load schedules. If the equipment provider indicates the
probe and the pace he wants to query, we can anticipate the
CPU load increment. By way of consequences, we can make
a distinction between normal behavior and a probe failure
since we can observe and anticipate an homogeneous load
activity.

3.1.2 POSGi

Peer-to-Peer (P2P) OSGi extension focuses on the efficient
and resilient deployment of OSGi bundles. The goal of this
system is to substitute the traditional bundle repositories
with a P2P architecture. Traditionally, OSGi bundles are
installed from a remote web server using an HT'TP URL such
as start http://www.somehost.com/abundle.jar. The
server behind www.somehost.com may host many bundles
and can be overwhelmed by a peak in installation requests.
By using a P2P approach, we can avoid this since every
gateway can be part of the global, distributed repository. We
used Freepastry® as a Distributed Hash Table (DHT) overlay
network where every gateway and every bundle obtains a
specific Freepastry id. DHT yields an efficient routing al-
gorithm between two ids. When sending a new bundle to
the network of gateways, it is routed towards the gateway
that has the nearest Freepastry id from its own id. When
one gateway needs to install a bundle, its request is routed
hop-by-hop towards the root gateway that handles the initial
archive. On the way back, each gateway on the route can
locally store the initial archive. If later, another gateway
needs the same bundle, it can be provided either by the root
gateway or by any gateway that handles the bundle on the
route. POSGi [7] enables URL installation schemes such as
p2p://abundle. jar. The implementation impacts the OSGi
URL scheme handler, adds an alternate local cache where
bundles are stored from the Freepastry overlay and a bundle
that offers the P2P management.

After having been able to deploy and manage bundles, we
focused on the run-time activities of the OSGi framework,
so as to optimize bundle execution.

3.2 Run-time extensions

Improving OSGi runtime environments remains a largely
open issue. Although it is highly tied to the Java platform,
OSGi offered paradigms such as service-oriented program-
ming and bundles bring new modular perspectives on the
way Java classes units are to be handled. We separate
this section into two concerns. The first one deals with
OSGi sandboxing and the second is related to OSGi related
byte-code execution optimization.

Shttp://freepastry.rice.edu/

http://felix.apache.org/
http://www.somehost.com/abundle.jar
www.somehost.com
p2p://abundle.jar
http://freepastry.rice.edu/

3.2.1 OSGi sandboxing

OSGi sandboxing aims at isolating bundle execution and
management one from each others. The sandboxing issues
we initially investigated were related to the MUSE multi-
provider architecture. Indeed, if we host many bundles from
various providers on the same gateway, they should be iso-
lated one from each other as they could be in competition.
One bundle should not interfere with the one from the other
providers. Sandboxing has many levels of granularity on vir-
tual machines: (i) bundle naming isolation, (ii) coding design
for proper isolation, and (iii) low-level resources isolation
within a virtual machine. We investigated all these three
level of isolation.

Virtual OSGi.

VOSGi [22] is a rather naive implementation where we
provide OSGi itself as a service. It means that we can
assign a specific provider to an OSGi gateway that virtually
runs within another OSGi gateway. We provide a start/stop
gateway management shell command available from the main
gateway, which is in turn called the core gateway. In order
to interact with each virtual gateway, we developed a specific
MOSGi probe that enables to remotely manage the virtual
instances.

One issue addressed by the VOSGi architecture is the
communication between gateways. A virtual gateway may
use services provided by another gateway, either the core
gateway or another virtual gateway. Our current implemen-
tation only enables service exchanges from the core gateway
to virtual gateways. When starting a virtual gateway, it
declares the service interfaces it wishes to access from the
core gateway. At virtual gateway bootstrap time, it receives
references to the various corresponding implementations and
registers each transmitted implementation within its own
registry. Hence, each service exchanged between a core and
a virtual gateway is declared in both registries and points to
the same implementation.

Nevertheless, one remaining problem in the VOSGi ap-
proach is that the OSGi “standard” behavior does not en-
forces “true” bundle isolation: bundles can obtain as many
system resources as they want such as network connex-
ions, threads, and so on. There is no way to constrain
a bundle contract within the framework. Moreover, any
class can stop the entire virtual machine through a call to
java.lang.System.exit(0)!. This is a serious issue when
hosting multi-provider bundles that may not be “honest”.
We focused on two developments to improve bundle isolation.
The first one is based on a development contract conformance
enforcement, while the second one is based on a dedicated
virtual machine.

Suspend and Resume [4|].

It is an INRIA technical report that raises one simple prob-
lem linked to the bundle lifecycle. In the OSGi specification
bundles can be in the following states: Installed, Resolved and
Active. Although this life cycle seems complete, we believe
that it lacks the Suspended state. Considering that ambient
equipment may be paused and resume and not systematically
rebooted, the Suspended state is a real ambient concern. At
present, the only way of doing this is by managing an internal
state when stopping and starting the bundle. It is impossible
to distinguish between rebooting and suspending a bundle.

One problem raised by introducing the Suspended status is
that it impacts mostly the run-time model. The Suspended
status needs to suspend threads, network connexions and
all running activities. We can achieve this through two ap-
proaches. The next paragraph presents iJVM which is a Java
Virtual Machine that aims at constraining resources. The
other approach presented in the technical report relies on a
specific programming model.

When dealing with the programming model, accessing re-
sources is restricted to some kind of dispatcher. It allocates
resources to requesters and maintains a whiteboard associat-
ing requesters to resources. When suspension time occurs,
the dispatcher knows exactly which resource is associated to
each requester, e.g. bundle. In this approach, every direct
call to a specific resource allocation should be transferred to a
dispatcher that manages identifications. Our implementation
adds a specific shell command that integrates the suspend
#bundleid action and a specific BundleSuspendableActiva-
tor interface that adds two methods for suspending and
resuming a bundle. Our architecture currently focuses on
the threading architecture and only provides a dispatcher to
allocate threads and suspend them automatically.

Although this architecture is rather simple to put under
operation, it is still dependent on the good will of bundle
developers. If they provide standard OSGi bundle they still
can be hosted on the gateway, but may present unmanageable
behavior. The only workaround for this issue is to constrain
bundle behavior at the virtual machine level.

iJVM project.

The iJVM [9] project aims at designing a virtual machine
for constrained environment that enforces resource control
mechanisms. Even though iJVM had security issues in mind,
its main goal is to provide an efficient isolation layer for
bundle requesting resources while preserving an efficient com-
munication layer between isolated bundles. iJVM provides
three main features for OSGi bundles: (i) memory isolation,
(ii) resource accounting and (iii) isolates termination.

VOSGi, Suspend and Resume, and iJVM target run-time
isolation for bundle code. The OSGi bundle paradigm offers
the appropriate granularity level to enforce isolation. De-
pending on the desired isolation constraints, each approach
offers some level of isolation ranging from a simple nam-
ing isolation, to a hard resource constrained environment.
But the harder constrains are enforced, the less generic the
architecture is.

While trying to enforce isolation and since used hardware
have limited resources, we also addressed run-time code
optimization.

3.2.2 Run-time code optimization

Most of the time bundle life-cycle is driven by the user.
In our run-time optimization investigations, we tried to find
more automated ways for handling those updates. Two
directions were developed for tackling them: the ROCS
architecture and the AxSel framework.

ROCS.

The Remotely Provisioned OSGi framework for Ambient
Systems [6] project leverages a very simple standard Java
principle which is that of remote classes loading. Before start-
ing the activator of a bundle, the OSGi framework performs
some activities. It downloads the bundle from a remote loca-

tion, extracts the jar file on a local cache, extracts the bundle
descriptor to control bundle coherence with the current run-
ning environment and, provided everything is right, it loads
the activator class and invokes its start method. ROCS
proposes to manage all these activities through a remote ap-
proach. The gateway relies on a remote server that hosts the
bundles and responds to gateway remote queries. Exploiting
the Java remote class loading is straightforward with the
OSGi framework. The usage scenario is the following.

When installing a new bundle, it is downloaded from the
repository to a remote server and the gateway obtains a local
proxy to interact with the remote server. It asks for the
bundle manifest, downloads the file from the remote Jar and
controls the meta-data to see if every dependency is satis-
fied. If so, it remotely loads into memory the corresponding
BundleActivator byte-code and starts the bundle. Then,
all subsequent required classes are downloaded on-demand
through the RemoteClassLoader.

This remote architecture has also been applied to the
standard Java runtime classes (e.g., java.* and javax.*
packages) such that it is considered as a plain bundle. We put
the necessary classes to bootstrap a minimal OSGi/Java stack
into a local classpath classloader. Once started, all remaining
standard classes are downloaded from the remote location.
Trough our approach, we build an entire OSGi/Java run-time
stack that can be hosted on small equipments, less than 8MB
of flash, since all loaded classes comes from remote location
and are directly brought into memory. ROCS demonstrates
that, provided we are connected, we have the same kind of
response time as if, we locally cache all bundle classes.

AxSel.

Whereas ROCS focuses on loading classes contained in
remote bundles, AxSel [2] aims at optimizing class loading at
the service granularity level. The Service-Oriented Program-
ming feature of OSGi specifications enable the description
of applications as a composition of services. One applica-
tion can have implementation variations, depending on the
environment. For instance, when using the standard OSGi
bundle repository, all dependent bundles are automatically
downloaded into the gateway, then started. It maintains a
dependency graph from the Package-Import and Package-
Ezport statements of the bundle manifest. We exploit the
ImportService manifest property to also maintain a depen-
dency graph between parts of the application. The Axsel
framework holds an internal representation of the run-time
and regularly polls remote repositories to find new or alter-
nate implementations. When the gateway is in idle mode, it
triggers a reconfiguration process, that calculates for every
dependent element, bundle or service, if it can find a better
implementation. If so, bundles are updated and services are
automatically reconfigured.

Axsel and ROCS are complementary approaches: the
ROCS system enables a minimal run-time where everything
is downloaded on-demand within the main memory, and
Axsel brings automatic reconfiguration and optimization of
the running environment.

Most of the dynamic features of OSGi framework presented
so far, load byte-code into memory from remote locations
or from downloaded bundles. We point out many security
issues when dealing with isolation. All these concerns led to
consider security as specific and generic concern that needs
dedicated attention.

3.3 Security around OSGi

Security issues in the OSGi/Java stack are spanning across
many points. They arise both at low-level (e.g., bundle
code signing) and high-level parts of the OSGi stack (e.g.,
deployment). The overall OSGi picture reveals many points
where security needs enforcements. Our overall approach
identified the following elements.

The deployment point of view. Bundle are downloaded
from remote locations. Thus, we need some strong guaran-
tees from those locations regarding the bundle origins and
integrity. The OSGi specification proposes a signing process
that identifies bundle sources and providers, but when we
started our study, no implementation was available.

The bundle point of view. Downloaded bundles can lead
to two security breaches. Indeed, they can contain code that
harms the system, or they can contain code that weakens the
framework. We need to consider the two issues to know when
bundles are a threat to the framework, and when they open
security flaws that could be locally / remotely exploited.

The framework point of view. The OSGi specification does
not enforce security constraints as they are mainly implemen-
tation issues. Most of current framework implementations
are subject to instability if malevolent bundles are installed.

A preliminary work has been conducted to design a bundle
signing architecture. This work has been achieved in the
context of the MUSE project where we designed a tool-chain
to sign bundles and verify their validity at deployment time.
The architecture is detailed in [12] and summarized in [14].
An implementation is available with the SFelix” project.

After having designed this tool-chain, we worked on a
bundle threats catalog aimed at identifying OSGi security
weaknesses. The catalog elements are detailed in [13], [17]
while a summary is available in [15].

We applied those catalogs to design a hardened OSGi/-
Java framework. The [18] article stresses OSGi open-source
framework vulnerabilities and expresses guidelines to develop
hardened implementations. Yet, some vulnerabilities cannot
be controlled at the OSGi framework layer and had to be
addressed at the Java Virtual Machine layer. The iJVM 9]
virtual machine for isolating threads was mainly designed for
this purpose.

The last track we followed when dealing with security
concerns was to be able to statically analyze the code of bun-
dles. We developed an install-time analyzer that introspects
bundles compiled code to detect vulnerabilities. CBAC [16]
describes the proposal. The CBAC control is triggered at the
same time as the digital verification signature process, thus
only inducing an overhead at deployment time. Unlike the
standard Java permissions built-in framework, the CBAC
security model does not have any runtime overhead.

"http://sfelix.gforge.inria.fr/

http://sfelix.gforge.inria.fr/

4. SYNTHESIS

| Extension | Specification | Patch | Lifecycle | Tool |

The OSGi extensions that we presented address issues MOSGi X) O X
such as management, run-time optimization and security. POSGi) 0 [0) X
We summarized our contributions in Table [Tl VOSGi O X O O

Suspend
& O X X ¢}
| Extension | Domain | Refs | Resume
MOSGi Management | [21] [5] [§] iJVM €] @) [¢] [¢]
POSGi Management | |7 ROCS O X (@) (@)
VOSGi Run-time 22] AXS?I O O o X
Suspend&Resume Run-time 4 SFelix X ©) X X
1JVM Run-time | |9 Unsecured
ROCS Run-time 6 Bundle 0 O 0 X
AxSel Run-time 2 Hcagal()gd 5 5 5 5
SFelix Security 12] [14 pSainy
Unsecured Bundle Ca.talog Secur%ty 13] [17] [15] CBAC 0 X X o)
Hardened OSGi Security 18| |9
CBAC Security 16 Table 2: OSGi impacted elements

Table 1: Extensions to the OSGi space

All our extensions have been developed under the Apache
Felix project. Some of them, VOSGi, MOSGi, Unsecured
Bundle Catalog have also been validated on Concierge .
They all run on standard Intel-based architectures, but many
of them, MOSGi, VOSGi, ROCS, SFelix, have also been val-
idated on a NSLU2%® ARM board, with a dedicated JamVM
/ GNU Classpath execution stack. All the code that we
developed is available from the INRIA GForge project and
can be obtained by sending us an email. All code is provided
under either the Apache Software License version 2.0%, or
one of the CeCill licences'®.

The provided extensions impact various elements of the
OSGi specifications and implementations as summarized in
Table

Specification implementation. MOSGi and SFelix propose
implementation of OSGi specifications that are not included
in the open-source implementations.

Framework Patch. VOSGIi, Suspend & Resume, ROCS,
Hardened OSGi needs patching some specific version of
Apache Felix to operate. Most of the time, the patches
correspond to very few lines of code and some extended
classes.

Bundle lifecycle modifications. Some of our extensions
point out the necessity of extending the standard bundle
lifecycle (Resolved, Installed, Active) through new status.
Suspended for Suspend & Resume, Invalid for SFelix.

Tools. Tools are elements that do not interfere with the
standard OSGi/Java stack. They provide non-intrusive addi-
tional services to the framework.

Since iJVM impacts the underlying virtual machine it does
not directly concern OSGi framework.

S. CONCLUSION

OSGi is a very interesting environment. Its simplicity and
pragmatism are keys to build efficient run-time systems. The
INRIA Amazones team focuses on ambient environments and

8http://gentoo-wiki.com/Gentoo_on_NSLU2
%http://www.apache.org/licenses/
Ohttp://wuw.cecill.info/

provides extensions that cope with ambient constraints such
as limited memory size, remote access, dynamism, context
awareness and energy efficiency. Our extensions depend on
framework implementations, and as such, they are rather
difficult to keep up-to-date with upstream codebase changes.
Our current policy is to keep those extensions alive for specific
upstream project versions, and to provide upgrades when
needed. At present, and due to limited resources within our
team, only the MOSGi framework has been donated to the
main Apache Felix codebase, under the mosgi submodule in
the project Subversion repository.

We are still working on various extensions to the framework
in different directions. We integrate device mobility concerns
in some of our projects and log management features to
enhance fault management. However, those projects are
still under development and need further validations towards
publication.

6. ACKNOWLEDGMENTS

Most of this work would not have been made without
PhD students and research engineers. PhD works, mostly in
french, of Amira Ben-Hamida Noha Ibrahim , Pierre
Parrend and Yvan Royon [20] had direct impacts on our
extensions and we gratefully thank them all.

http://gentoo-wiki.com/Gentoo_on_NSLU2
http://www.apache.org/licenses/
http://www.cecill.info/

7.
1]

[10]

[11]

[12]

[13]

REFERENCES

A. Ben Hamida. AzSeL : un intergiciel pour le
déploiement contertuel et autonome de services dans les
environnements pervasifs. PhD thesis, INSA de Lyon,
02 2010. http://tel.archives-ouvertes.fr/
tel-00478169/PDF/these.pdf.

A. Ben Hamida, F. Le Mouél, S. Frénot, and M. Ben
Ahmed. A Graph-based Approach for Contextual
Service Loading in Pervasive Environments. In
DOA’2008, volume 5331 of LNCS, pages 589-606,
Monterrey Mexique, 2008. Springer Verlag.
http://hal.inria.fr/inria-00395390/en/.
D’Haeseleer Sam. Detailed requirement-based
functional specification of gateway. MUSE
IST-6thFP-026442, public deliverable, DB3.1, january
2008. http://www.ist-muse.eu/Deliverables/WPB3/
MUSE_DB3. 1p_V1.0.pdf.

R. Dunklau and S. Frénot. Proposal for a
suspend/resume extension to the OSGi specification.
Technical Report RR-7060, INRIA, 2009. http:
//hal.inria.fr/inria-00423866/PDF/RR-7060.pdf.
E. Fleury and S. Frénot. Building a JMX management
interface inside OSGi. Technical Report RR-5025,
INRIA, 2003. http://hal.archives-ouvertes.fr/
inria-00071559/PDF/RR-5025. pdf.

S. Frénot, N. Ibrahim, F. Le Mouél, A. Ben Hamida,
J. Ponge, M. Chantrel, and D. Beras. ROCS: a
Remotely Provisioned OSGi Framework for Ambient
Systems. In NOMS 2010, Osaka Japon, 04 2010.
IEEE/IFIP. http://hal.inria.fr/inria-00436041/
PDF/PID1073261.pdf.

S. Frénot and Y. Royon. Component Deployment Using
a Peer-To-Peer Overlay. In CD’2005, volume 3798 of
LNCS, pages 33-36, Grenoble, France, 28-29 November
2005. http://www.springerlink.com/content/
1530048h033r02p8/.

S. Frénot, Y. Royon, P. Parrend, and D. Beras.
Monitoring Scheduling for Home Gateways. In
NOMS’2008, pages 411-416, Salvador de Bahia Brésil,
april 2008. http://hal.inria.fr/inria-00270941/
PDF/sfr_noms_2008.pdf.

N. Geoffray, G. Thomas, G. Muller, P. Parrend,

S. Frénot, and B. Folliot. I-JVM: a Java Virtual
Machine for Component Isolation in OSGi. In
DSN’2009, pages 544-553, Estoril, Portugal, april 2009.
http://pagesperso-systeme.lip6.fr/Nicolas.
Geoffray/files/ijvm.pdf.

N. Ibrahim. Spontaneous Integration of Services in
Pervasive Environments. PhD thesis, September 2008.
http://docinsa.insa-lyon.fr/these/2008/
ibrahim_n/these.pdf.

P. Parrend. Modéles de Sécurité logicielle pour les
plates-formes a composants de service (SOP). PhD
thesis, INSA de Lyon, 12 2008.
http://tel.archives-ouvertes.fr/tel-00362486/
PDF/pparrend08phd . pdf.

P. Parrend and S. Frénot. Secure Component
Deployment in the OSGi(tm) Release 4 Platform.
Technical Report RT-0323, INRIA, 2006. http:
//hal.inria.fr/inria-00084795/PDF/RT-0323.pdf.
P. Parrend and S. Frénot. Java Components
Vulnerabilities - An Experimental Classification

(22]

Targeted at the OSGi Platform. Research Report
RR-6231, INRIA, 2007. http:
//hal.inria.fr/inria-00157341/PDF/RR-6231.pdf.
P. Parrend and S. Frénot. Supporting the Secure
Deployment of OSGi Bundles. In WoWMoM’2007,
pages 1-6, Helsinki Finlande, 2007. http://hal.inria,
fr/inria-00275186/PDF/parrend07adamus.pdf.

P. Parrend and S. Frénot. Classification of component
vulnerabilities in java service oriented programming
(sop) platforms. In CBSE’08, volume 5282 of LNCS,
pages 80-96, Berlin, Heidelberg, October 2008.
http://dx.doi.org/10.1007/978-3-540-87891-9_6l
P. Parrend and S. Frénot. Component-based Access
Control: Secure Software Composition through Static
Analysis. In Software Composition, volume 4954 /2008,
pages 68-83, Budapest Hongrie, 2008. http://hal.
inria.fr/inria-00270942/PDF/parrend08cbac.pdf.
P. Parrend and S. Frénot. More Vulnerabilities in the
Java/OSGi Platform: A Focus on Bundle Interactions.
Research Report RR-6649, INRIA, 2008. http:
//hal.inria.fr/inria-00322138/PDF/RR-6649.pdf.
P. Parrend and S. Frénot. Security Benchmarks of
OSGi Platforms: Towards Hardened OSGi. Journal of
Softw. Pract. Exper., 39(5):471-499, April 2009.
http://dx.doi.org/10.1002/spe.v39:5.

J. S. Rellermeyer and G. Alonso. Concierge: a service
platform for resource-constrained devices. In FuroSys
’07: Proceedings of the 2007 conference on EuroSys,
pages 245-258, New York, NY, USA, 2007. ACM Press.
http://portal.acm.org/citation.cfm?id=1272998.
1273022.

Y. Royon. Environnements d’exécution pour passerelles
domestiques. PhD thesis, INSA de Lyon, 12 2007.
http://tel.archives-ouvertes.fr/tel-00271481/
PDF/yroyon07phd.pdf.

Y. Royon and S. Frénot. Multiservice home gateways:
Business model, execution environment, management
infrastructure. IEEE Communications Magazine,
45(10):122-128, October 2007.
http://hal.inria.fr/inria-00270938_v1/.

Y. Royon, S. Frénot, and F. L. Mouél. Virtualization of
Service Gateways in Multi-provider Environments. In
CBSE’2006, volume 4063 of LNCS, pages 385-392,
Vasteras, Stockholm, Sweden, June 2006. http://wuw.
springerlink.com/content/bm003v2666650143/.

http://tel.archives-ouvertes.fr/tel-00478169/PDF/these.pdf
http://tel.archives-ouvertes.fr/tel-00478169/PDF/these.pdf
http://hal.inria.fr/inria-00395390/en/
http://www.ist-muse.eu/Deliverables/WPB3/MUSE_DB3.1p_V1.0.pdf
http://www.ist-muse.eu/Deliverables/WPB3/MUSE_DB3.1p_V1.0.pdf
http://hal.inria.fr/inria-00423866/PDF/RR-7060.pdf
http://hal.inria.fr/inria-00423866/PDF/RR-7060.pdf
http://hal.archives-ouvertes.fr/inria-00071559/PDF/RR-5025.pdf
http://hal.archives-ouvertes.fr/inria-00071559/PDF/RR-5025.pdf
http://hal.inria.fr/inria-00436041/PDF/PID1073261.pdf
http://hal.inria.fr/inria-00436041/PDF/PID1073261.pdf
http://www.springerlink.com/content/l530048h033r02p8/
http://www.springerlink.com/content/l530048h033r02p8/
http://hal.inria.fr/inria-00270941/PDF/sfr_noms_2008.pdf
http://hal.inria.fr/inria-00270941/PDF/sfr_noms_2008.pdf
http://pagesperso-systeme.lip6.fr/Nicolas.Geoffray/files/ijvm.pdf
http://pagesperso-systeme.lip6.fr/Nicolas.Geoffray/files/ijvm.pdf
http://docinsa.insa-lyon.fr/these/2008/ibrahim_n/these.pdf
http://docinsa.insa-lyon.fr/these/2008/ibrahim_n/these.pdf
http://tel.archives-ouvertes.fr/tel-00362486/PDF/pparrend08phd.pdf
http://tel.archives-ouvertes.fr/tel-00362486/PDF/pparrend08phd.pdf
http://hal.inria.fr/inria-00084795/PDF/RT-0323.pdf
http://hal.inria.fr/inria-00084795/PDF/RT-0323.pdf
http://hal.inria.fr/inria-00157341/PDF/RR-6231.pdf
http://hal.inria.fr/inria-00157341/PDF/RR-6231.pdf
http://hal.inria.fr/inria-00275186/PDF/parrend07adamus.pdf
http://hal.inria.fr/inria-00275186/PDF/parrend07adamus.pdf
http://dx.doi.org/10.1007/978-3-540-87891-9_6
http://hal.inria.fr/inria-00270942/PDF/parrend08cbac.pdf
http://hal.inria.fr/inria-00270942/PDF/parrend08cbac.pdf
http://hal.inria.fr/inria-00322138/PDF/RR-6649.pdf
http://hal.inria.fr/inria-00322138/PDF/RR-6649.pdf
http://dx.doi.org/10.1002/spe.v39:5
http://portal.acm.org/citation.cfm?id=1272998.1273022
http://portal.acm.org/citation.cfm?id=1272998.1273022
http://tel.archives-ouvertes.fr/tel-00271481/PDF/yroyon07phd.pdf
http://tel.archives-ouvertes.fr/tel-00271481/PDF/yroyon07phd.pdf
http://hal.inria.fr/inria-00270938_v1/
http://www.springerlink.com/content/bm003v2666650143/
http://www.springerlink.com/content/bm003v2666650143/

	Introduction
	OSGi Context
	OSGi Extensions
	Bundle Management and Deployment
	MOSGi
	POSGi

	Run-time extensions
	OSGi sandboxing
	Run-time code optimization

	Security around OSGi

	Synthesis
	Conclusion
	Acknowledgments
	References

