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Towards Hardware IIR Filters
Computing Just Right:

Direct Form I Case Study
Anastasia Volkova, Matei Istoan, Florent de Dinechin, Thibault Hilaire

Abstract—Linear Time Invariant (LTI) filters are often specified and simulated using high-precision software, before being implemented
in low-precision fixed-point hardware. A problem is that the hardware does not behave exactly as the simulation due to quantization
and rounding issues. This article advocates the construction of LTI architectures that behave as if the computation was performed with
infinite accuracy, then converted to the low-precision output format with an error smaller than its least significant bit. This simple
specification guarantees the numerical quality of the hardware, even for critical LTI systems. Besides, it is possible to derive the optimal
values of all the internal data formats that ensure that the specification is met. This requires a detailed error analysis that captures not
only the quantization and rounding errors, but also their infinite accumulation in recursive filters. This generic methodology is detailed
for the case of low-precision LTI filters in the Direct Form I implemented in FPGA logic. It is demonstrated by a fully automated and
open-source architecture generator tool, and validated on a range of Infinite Impulse Response filters.

Index Terms—digital filters, computer arithmetic, fixed-point, error analysis, constant multiplication, FPGA
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1 INTRODUCTION

This article addresses the automatic implementation of Lin-
ear Time Invariant (LTI) digital filters. Such filters are ubiq-
uitous in signal processing and control, and are typically
defined in the frequency domain as a transfer functionH(z):

H(z) =

nb∑
i=0

biz
−i

1 +
na∑
i=1

aiz−i
, ∀z ∈ C. (1)

where na ≥ nb and na is the order of the filter.
In the time domain, a filter specified with H(z) may

be evaluated with various algorithms [1]. In this work we
consider the Direct Form I (DFI) [1] algorithm that relates
the output signal y(k) and the input signal u(k) in the
following way:

y(k) =
nb∑
i=0

biu(k − i)−
na∑
i=1

aiy(k − i). (2)

The DFI algorithm is the simplest algorithm for the
evaluation of Infinite Impulse Response (IIR) filters, since
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it directly uses the coefficients of the transfer function.
Small-order DFIs are often used as basic building blocks for
sections of second-order algorithms [1]. Due to its high nu-
merical sensitivity, DFI is rarely used for high order filters.
A contribution of this article is a methodology that protects
designers from such sensitivity issues. This methodology is
not restricted to DFI and could be applied to other filter
algorithms (cascade and/or parallel decomposition, state-
space, ρ-operator forms, etc). This article focuses on DFI
because of its simplicity.

Equation (1) or (2), along with a definition of each
coefficient ai and bi, constitute the mathematical specification
of the filter. This article deals with the implementation of such
a specification as fixed-point hardware operating on low- to
moderate-precision data (typically 8 to 24 bits).

To specify such an implementation, a designer needs to
define several parameters on top of the mathematical spec-
ification. Obviously, he needs to define the finite-precision
input and output formats. He also needs to make several ar-
chitectural choices, some of which will impact the accuracy
of the computation.

For instance, each real-valued coefficient must be
rounded to some internal machine format. A naive choice
is to round the coefficients to the input/output format,
but then, for sensitive filters, the result can become very
inaccurate. Design tools for filter synthesis such as Matlab’s
fdatool let the designer chose an extended internal precision.
The risk is then to obtain an architecture that internally
computes more accurately than it can output, thus wasting
area, time and power.

The goal of the present work is to relieve designers
from such low-level architectural decisions, allowing them
to focus on the relevant parameters shown in Figure 1: the
(real) coefficients, the fixed-point format of the input, and
the precision expected for the output. For this, the precision
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Fig. 1. Interface of the proposed tool.

of the output must also specify its accuracy. In this work, the
following specification is used: An implemented filter must
behave as if each result was computed with infinite accuracy
with respect to (2), then converted only once to the low-precision
output format, with an error smaller than the weight of its least
significant bit (LSB).

The main contribution of this article is to show that for
such last-bit accurate implementations, near-optimal values
of architectural parameters such as coefficient quantization
and datapath bit-widths can be automated.

This is achieved thanks to a complete and rigorous anal-
ysis of the rounding errors and their amplification through
the feedback loop, building upon recent work on reliably
bounding error propagation through filters [2], [3].

This methodology is demonstrated in an open source
tool that builds DFI implementations for a particular hard-
ware target: FPGAs based on Look-Up Tables (LUTs). Built
upon the FloPoCo project1, this tool has the interface shown
on Figure 1. It also incorporates several architectural nov-
elties. The constant multipliers are built using an evolution
of the KCM algorithm [4], [5] that manages the multipli-
cation by a real constant without needing to quantize it
first [6]. The summation is efficiently performed thanks to
the BitHeap framework recently introduced in FloPoCo [7],
[8]. These technical choices lead to logic-only architectures
suited even to low-end FPGAs. However, the same philoso-
phy could be used to build other architecture generators, for
instance exploiting embedded multipliers and DSP blocks.

After a survey of the state of the art in Section 2, Section 3
provides some prerequisites on the target arithmetic and
error models. A complete methodology on the rigorous
error analysis is presented in the Section 4. Section 5 gives
details on the architecture of the arithmetic units and their
rounding error analysis. Finally, Section 6 demonstrates
implementation results, and Section 7 discusses the perspec-
tives of this work.

2 PREVIOUS WORKS AND STATE OF THE ART

The problem addressed in this article is an instance of the
word-length optimization (WLO) problem [9] [10] [11] [12]
[13] [14]. The target here is hardware, where each signal
may use a different data format (in software, the available
formats are constrained by the processor’s capabilities).
WLO addresses two issues: 1/ range analysis consists in
studying the data ranges, and choosing the data formats of
each signal to avoid overflow. In fixed point, range analysis
constrains the most significant bit (MSB) of each signal. 2/
precision analysis consists in studying the impact of rounding
errors, and choosing the formats to avoid underflows and

1. http://flopoco.gforge.inria.fr/, version 4.1.3.

rounding errors. In fixed point, precision analysis constrains
the least significant bit (LSB).

WLO techniques can be based on simulations (in which
case it is difficult to provide guarantees beyond the datasets
used for the simulation), or analytical, as in the present
work. Analytical methods are faster and can provide guar-
antees, however these guarantees can be pessimistic.

Some analytical methods [9], [14] model output errors
as additive noise with statistical hypotheses. In this case,
the goal of WLO is to maximize the Signal Quantization to
Noise Ratio (SQNR), which is the ratio of the variance of
the output signal by the variance of the output error. SQNR
does not give any guarantee on the accuracy of the output
signal, it merely provides an idea on the typical number
of meaningful bits in the output. Other analytical methods,
including the one presented here, use worst-case bounds for
the rounding and approximation errors. This enables strict
guarantees on the function of an architecture, for instance
last-bit accuracy. Note that it is easy to evaluate a last-
bit accurate implementation in terms of SQNR: it behaves
as if the exact computation was rounded once; with the
usual statistical hypothesis that this rounding is uniformly
distributed, the output error variance can classically be
evaluated as 22`out/12.

Worst-case analytical WLO methods in the literature
have used interval arithmetic (IA), affine arithmetic (AA)
[10], [13], [14], its generalization to higher-order error poly-
nomials [15] and even SAT-modulo theory (SMT) [11]. IA
and AA are mostly used for precision analysis, and SMT
and IA for range analysis.

Previous worst-case analytical methods sometimes do
not support feedback loops [13]. Generic techniques such as
abstract interpretation [16] combined with IA or AA, may
provide guarantees on programs with loops [17], but these
guarantees will be very pessimistic for sensitive IIR filters.

This work presents a worst-case analytical WLO ap-
proach that provides tight (not uselessly pessimistic) and
strong (independent of the sensitivity) guarantees on the
results of LTI filters with feedback loop.

To the best of our knowledge, the state of the art here
is [14] which attempts to solve exactly this problem. The
present work improves on [14] in the following respects:

1/ We claim to provide a better problem formulation. In
particular, although [14] correctly compute the bitwidths of
the data on the feedback loops, they must output all these
bits. The output of their filters therefore includes bits that
only hold noise. As Section 6 will show, this easily doubles
the output size for low-precision, high-sensitivity filters.

2/ We are more rigorous in the implementation. In LTI
filters, both range and errors are infinite series, which in [14]
are truncated in a non-reliable way that may underestimate
the number of terms for sensitive filters. In particular, the
series is evaluated by a floating-point Matlab computation,
and the accumulation of rounding errors in this computa-
tion does not seem to be taken into account. The present
work is very rigorous in this respect.

3/ We merge the fine-tuning of constant multiplier
architectures with the WLO problem. For a real constant
coefficient C and an input X , [14] will classically quantize
C to some Cq , then quantize (round) the product CqX : this
involves two error terms. The present work uses an architec-



3

s

bit position -8-7-6-5-4-3-2-101234567

bit weight −2
m

2m−1

20 2`

Fig. 2. The bits of a two’s complement fixed-point format,
here (m, `) = (7,−8).

ture that directly quantizes the product CX , with only one
error term. With fewer error terms, the error analysis will be
less pessimistic. It also saves hardware (roughly speaking,
it avoids computing the lower bits of CqX that will be later
lost to the rounding).

4/ This work is supported by a complete VHDL genera-
tor integrated in a mature open-source project.

3 DEFINITIONS AND NOTATIONS

3.1 Fixed-point formats
There are many standards for representing fixed-point data.
The one we use in this work is inspired by the VHDL
sfixed standard. For simplicity we only deal with signed
fixed-point numbers, classically represented in two’s com-
plement. As illustrated by Figure 2, a fixed-point format is
then fully specified by two integers (m, `) that denote the
positions of the most and least significant bits (MSB and
LSB) respectively. Bothm and ` can be negative if the format
includes fractional bits. The weight of the bit at position i is
always 2i, except for the bit at position m, whose weight is
−2m (due to two’s complement representation). The LSB
position ` denotes the precision of the format. The MSB
position m denotes its range. The word-length of the fixed-
point number in the format (m, `) is m− `+1. Note that the
range of numbers that can be represented with the format
(m, `) is [−2m, 2m − 2`]. For instance, for a signed fixed-
point format representing numbers in (−1, 1) on 16 bits, we
have one “sign bit” to the left of the point and 15 bits to the
right, so (m, `) = (0,−15). Then, we can represent numbers
in [−1, 1− 2−15] with a step of 2−15.

3.2 Approximations and errors
Due to the finite precision issues, the exact filter H, with
exact output y, cannot usually be implemented. An actually
implemented filter will produce a finite precision output ỹout
(see Figure 3). The overall error of such an implementation,
denoted εout, is defined as the difference between the com-
puted value and its mathematical specification:

εout(k) = ỹout(k)− y(k). (3)

More generally, throughout the article, we denote ε (with
some subscript) an error, always defined as the difference
between a more accurate term and a less accurate one.

We also try to use tilded letters (e.g. ỹout above) for
approximate or rounded terms. This is but a convention,
and the choice is not always obvious. For instance, the u(k)
in (2) are fixed-point inputs, and most certainly the result of
some approximate measurement or computation. However,
from the point of view of the architecture, inputs are given,
so they are considered exact.

Hu(k) y(k)

H̃u(k) /
(0, `in)

ỹout(k)/
(mout, `out)

Fig. 3. The ideal filter (top) and its implementation (bottom)

In all the following, we also note ε a bound on ε(k), i.e.
the maximum value of |ε(k)| over time.

3.3 Perfect rounding vs. last-bit accuracy
The rounding of the ideal, real-valued output y to
the nearest fixed-point number of precision ` is de-
noted ◦`(y). In the worst case, it entails an error
| ◦` (y(k))− y(k)| ≤ 2`−1, ∀k. For instance, rounding a
real to the nearest integer (` = 0) may entail an error up to
0.5 = 2−1. This is a limitation of the format itself. Therefore,
the best we can do, when implementing (2) with a precision-
` output, is a perfectly rounded computation with an error
bound εout = 2`−1.

Unfortunately, reaching perfect rounding accuracy may
require arbitrary intermediate precision, for reasons that will
be detailed in Section 4.1. We therefore impose a slightly
relaxed constraint: εout < 2`. We call this last-bit accuracy,
because the error must be smaller than the value of the last
(LSB) bit of the result. It is sometimes called faithful rounding
in the literature.

Considering that the output format implies for the error
bound εout that εout ≥ 2`−1, it is still a tight specification.
In particular, if the exact y happens to be a representable
precision-` number, then a last-bit accurate architecture will
return exactly this value. As will be shown in the sequel,
last-bit accuracy can be reached with very limited hardware
overhead.

The main conclusion of this discussion is the following:
specifying the LSB of the output format (`out in Figure 1) is
enough to also specify the accuracy of the implementation.

This is a clear interface improvement over classical ap-
proaches, such as the various Matlab toolboxes that generate
hardware filters. In such approaches, one must provide
`out and various other parameters that impact the accuracy,
then measure the resulting accuracy somehow. Not only is
the proposed interface simpler, it also enables architecture
optimization under a strict accuracy constraint: An optimal
architecture will be an architecture that is accurate enough,
but no more.

3.4 Worst-case peak gain of an LTI filter
To determine the MSB position of the output (mout) and
to perform the roundoff analysis, we need to capture the
amplification of a signal by an LTI filter. This amplification
can be computed using the so-called Worst-Case Peak-Gain
(WCPG) [18], [19] through the following theorem.

Theorem 1 (Worst-Case Peak Gain). LetH be a stable2 single-
input single-output LTI filter. If for all possible k ≥ 0 an input

2. i.e. poles of H(z) are strictly in the unit circle.



4

signal u(k) is bounded in magnitude by ū, then the output y(k)
is bounded:

∀k, |y(k)| ≤ ȳ = 〈〈H〉〉 ū (4)

where 〈〈H〉〉 is the Worst-Case Peak Gain [18], [19] of the system.
It can be computed as the `1-norm of the system’s impulse
response h(k):

〈〈H〉〉 = ||h||1 =
∞∑
k=0

|h(k)| (5)

The bound 〈〈H〉〉u on the output is quite conservative
in practice, but for any filter it is possible to construct a
finite input signal {u(k)}0≤k≤K that yields an output that
approaches the 〈〈H〉〉 ū up to any arbitrarily small distance.
Indeed, if the output is expressed through convolution,

|y(k)| =
∣∣∣∣∣
k∑
l=0

h(l)u(k − l)
∣∣∣∣∣ ≤ ū

∞∑
k=0

|h(k)| (6)

we obtain the equality if the input u(k) is such that

u(k) = ū · sign(h(K − k)), (7)

where sign(x) returns ±1 or 0 depending on the sign of x.
This work computes the WCPGs with arbitrary precision

using the reliable algorithm presented in [2] and its fast but
rigorous implementation3. It also builds worst-case signals
implementing (7) to test the resulting architectures.

4 ERROR ANALYSIS OF DIRECT-FORM LTI FILTER
IMPLEMENTATIONS

This section shows how to obtain a last-bit accurate fixed-
point implementation of the mathematical definition (2).

Since the considered filters are linear, we may assume
without loss of generality that the input MSB is 0. Based
on Theorem 1, the MSB of the output mout is defined by
mout = dlog2 〈〈H〉〉e. Technically, it may happen, rarely, that
rounding errors propagate all the way to the MSB. Since
these errors will be bounded by 2`out , the formula to be used
is actually

mout =
⌈
log2

(
〈〈H〉〉+ 2`out

)⌉
(8)

In addition, the algorithm from [3] guarantees that the
computed MSB position is never underestimated.

In fixed-point arithmetic, instead of computing output
y(k), we will compute an approximation ỹ(k) of the in-
volved Sum of Product by Constants (SOPC), using internal
fixed-point formats yet to be determined:

ỹ(k) ≈
nb∑
i=0

biu(k − i)−
na∑
i=1

aiỹ(k − i) (9)

and the final output ỹout(k) will be some rounding of this
intermediate value ỹ(k).

This computational scheme is summed up by the ab-
stract architecture of Figure 4, whose overall evaluation
error is defined as

εout(k) = ỹout(k)− y(k) (10)

3. https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

Our goal is to detect all sources of error and express
them in terms of the choices of LSB positions. Then, under
the constraint of last-bit accuracy, i.e. εout(k) < 2`out , we will
look for the optimal internal format.

Let us first decompose this error into its sources.

4.1 Internal format and final rounding
The architecture needs to internally use a fixed-point format
that offers extended precision with respect to the input/out-
put format. We note this extended format (mout, `ext).

Its MSB is the MSB of the result (mout). Indeed, over-
flows may occur during the internal computation, but this
computation is performed modulo 2mout , therefore the final
result will be correct.

This internal format also offers additional LSB bits
(sometimes called guard bits) in which rounding errors may
accumulate without touching the output bits – the sequel
will show more formally how to compute this extended
format.

Eventually, the intermediate result this extended format
(mout, `ext) needs to be rounded to the output format (by the
“final round” box on Figure 4). This entails an additional
error εf, formally defined as

εf(k) = ỹout(k)− ỹ(k) . (11)

This error may be bounded by εf = 2`out−1, and can be
attained as soon as the exact result is a midpoint, i.e. exactly
between two representable numbers. It is the reason why
perfect rounding, mentioned in Section 3.3 may require
arbitrary intermediate precision: perfect rounding imposes
an error budget of 2`out−1 which is entirely consumed by
the final rounding. To achieve perfect rounding, one must
1) build a computational datapath that is exact for the
input signals leading to a midpoint output, and 2) for
non-midpoint outputs, compute the error budget once final
rounding has been taken into account, and dimension the
datapath to remain within this budget. If an (infinite) input
stream can come arbitrarily close to a mid-point, then the
internal computation will require arbitrary precision. To
our knowledge, this question has not been studied, and
studying it is out of the scope of this article.

Fortunately, last-bit accuracy is much easier to achieve:
even with εf = 2`out−1, the overall error budget of 2`out leaves
an error budget of 2`out−1 for the internal computation.

Remark that we feed back the intermediate result ỹ(k)
(on the extended format), not the output result ỹout(k). This
prevents an amplification of εf(k) by the feedback loop that
could compromise the goal of last-bit accuracy.

4.2 Rounding and quantization errors in the sum of
products
As the coefficients ai and bi are real numbers, they must
be rounded to some finite value (quantization) before the
multiplication can take place. Then, the multiplication and
the summation may themselves involve rounding errors.
Managing all these rounding errors will be the subject of
section 5. For now, we may summarize all these errors in a
single term εr(k) mathematically defined as

εr(k) = ỹ(k)−
(
nb∑
i=0

biu(k − i)−
na∑
i=1

aiỹ(k − i)
)

(12)
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u(k − 1)

+
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+

u(k − 3)
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round

/
(mout, `ext )̃

y(k)
/

(mout, `out)
ỹout(k)

a1

+
-

ỹ(k − 1)

a2

+
-

ỹ(k − 2)

a3

+
-

ỹ(k − 3)

Fig. 4. Abstract architecture for the direct form realization of an LTI filter

This equation should be read as follows: εr(k) measures
how much a result ỹ(k) computed by the SOPC architecture
diverges from that computed by an ideal SOPC (that would
use the infinitely accurate coefficients ai and bi, and be free
of rounding errors), this ideal SOPC being applied on the
same (finite precision) inputs u(k − i) and ỹ(k − i) as the
architecture.

4.3 Error amplification in the feedback loop
The input signal u(k) can be considered exact, in the sense
that whatever error it may carry is not due to the filter
under consideration. However, the feedback signal ỹ(k) (see
Figure 4) differs from the ideal y(k). Let us define εt(k) as
the error of ỹ(k) with respect to y(k):

εt(k) = ỹ(k)− y(k). (13)

This error is potentially amplified by the architecture.
Let us rewrite ỹ(k − i) in the right-hand side of (12):

εr(k) = ỹ(k)−
nb∑
i=0

biu(k − i) +
na∑
i=1

aiy(k − i)

+
na∑
i=1

aiεt(k − i) (using (13))

= ỹ(k)− y(k) +
na∑
i=1

aiεt(k − i) (using (2))

= εt(k) +
na∑
i=1

aiεt(k − i) (using (13)). (14)

If we rewrite equation (14) as

εt(k) = εr(k)−
na∑
i=1

aiεt(k − i) (15)

we obtain the equation of an IIR filter inputting εr(k) and
outputting εt(k), whose transfer function is

Hε(z) =
1

1 +
∑na

i=1 aiz
−i . (16)

Figure 5 illustrates this relationship between the ideal
output y, the implemented output ỹout and the different
error terms.

We can now apply the Worst-Case Peak-Gain theorem to
Hε with input εr in order to bound εt by

εt = 〈〈Hε〉〉 εr . (17)

Therefore, we can also keep εt as low as needed by
increasing the internal precision `ext to reduce εr.

H
u(k) y(k)

Hε
εr(k) εt(k)

+
ỹ(k)

+
ỹout(k)

εf(k)

Fig. 5. A signal view of the error propagation with respect to the ideal
filter

4.4 Putting it all together

Using the above considerations, we can put all errors to-
gether and rewrite (10) as

εout(k) = ỹout(k)− ỹ(k) + ỹ(k)− y(k)

= εf(k) + εt(k). (18)

Hence,

εout = εf + 〈〈Hε〉〉 εr (19)

The objective of the last-bit accuracy of the architecture
translates into the constraint εout < 2`out . Taking into account
the final rounding (which implies the error εf = 2`out−1),
we obtain the constraint on the error εr of the SOPCs that
is required to satisfy the last-bit accuracy of the overall
architecture:

εr <
2`out−1

〈〈Hε〉〉
. (20)

This constraint finally translates to the LSB `ext of the
intermediate result as follows. We assume that we may build
an SOPC last-bit accurate to any value of `ext (this will be
the object of Section 5). Such an SOPC will ensure εr <
2`ext . Using (20), we obtain that the optimal value of `ext that
ensures this constraint is

`ext = `out − 1− dlog2 〈〈Hε〉〉e . (21)

In other words, the internal format adds 1 + dlog2 〈〈Hε〉〉e
LSB guard bits to the output format.

The implementation of this error analysis actually uses
a guaranteed overestimation of 〈〈Hε〉〉 [2]. This ensures that
rounding errors in the the computation of 〈〈Hε〉〉 itself do
not jeopardize the accuracy. Because of this overestimation,
very rarely, we might compute on one bit more than what
was required by (21). This rare one-bit overestimation of the
datapath size has no impact in practice.
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5 SUM OF PRODUCTS COMPUTING JUST RIGHT

5.1 Problem statement

In this section, we address the sub-problem of building a
last-bit accurate Sum of Product by Constants (SOPC), i.e.
an architecture computing

r =
N∑
i=1

cixi (22)

accurate to 2`r , for a set of real constants ci, and a set of
fixed-point inputs xi.

In a previous work [20], all the xi shared the same
format, as is the case for a FIR filter. In the context of an
IIR filter, this is no longer true: in Figure 4, we have a
single SOPC where the ci may be ai or bi, and the xi may
be either some delayed u(k), or some delayed ỹ(k). The
format of the ỹ(k), as determined in the previous section,
is in general different from that of the u(k). Therefore, the
present work uses a more generic interface to the SOPC
generator, where the format of each input may be specified
independently. This interface is shown in Figure 6. The input
LSBs are provided as `i. For the input MSBs, instead of
mi, the interface uses the maximum absolute value xi of
each xi, which provides a finer information that will be
exploited in the sequel. In the context of an IIR filter, the
output precision will be `r = `ext, this value being defined
by the error analysis of previous sections.

Another difference with [20] is that the output MSB mr

is input to the generator. An overestimation of mr could be
computed out of the ci and the input formats, as in [20].
However, the worst case peak gain of an IIR filter provides
a finer value of mr , and in this case we want to provide this
value to the SOPC generator.

Here again, the weight `r of the LSB of the SOPC output
also specifies the accuracy of this SOPC: the present section
shows how to build an SOPC accurate to 2`r . This is what
was assumed in the previous section with `r = `ext.

5.2 Error analysis for a last-bit accurate SOPC

The fixed-point summation of the various terms cixi is
depicted in Figure 7. For this figure, we take as an example
the 4-input SOPC of an IIR filter of order 2 with arbitrary
coefficients: it is a smaller version of the one depicted
in Figure 4, where x0 and x1 are, respectively, u(k) and
u(k − 1), while x2 and x3 are respectively ỹ(k − 1) and
ỹ(k − 2). The output r will become ỹ(k).

As shown in the figure, a real ci may have an infinite
number of bits. Therefore, even though the xi are finite, each
product cixi potentially has an infinite number of bits.

The MSB of each product cixi is easily determined out of
the value of ci itself and xi: |xi| ≤ xi, therefore |cixi| ≤ cixi,

SOPC
architecture
generator

(ci)1≤i<N

input formats (xi, `i)1≤i<N

output format (mr, `r)

.vhdl

Fig. 6. Interface to a sum-of-product-by-constant generator

x0 =
x1 =
x2 =
x3 =
c0 =
c1 =
c2 =
c3 =

11111010101011 01010101100
00111010011111110001 00111110011
010101101111001101 10101011100
0011101000011101 11110001111

p̃0 ≈ c0x0
+p̃1 ≈ c1x1
+p̃2 ≈ c2x2
+p̃3 ≈ c3x3
= r̃ext

r̃ = dr̃extc
2`r 2`r−g

Fig. 7. Alignment of the cixi for fixed-point xi and real ci

so the MSB of cixi will be dlog2(|cixi|)e. Here, using xi
instead of an MSB specification for xi can save one bit. As
done previously, in order to anticipate possible overflows
due to rounding, the implementation must add, before
taking the log2, an upper bound of its rounding error. This
bound will be detailed in the sequel.

Negative cixi must have their sign extended to the MSB
of the sum, so it could seem that Figure 7 only shows the
cases when all the cixi are positive. Here we must explain
another technicality. The sign extension ss...ssxxxxxxx of
a signed number sxxxx, where s is the sign bit, may be
performed as follows [21]:

00...0sxxxxxxx
+ 11...110000000
= ss...ssxxxxxxx

Here s is the boolean complement of s. The reader may
check this equation in the two cases, s = 0 and s = 1.
Now the variable part sxxxxxxx has the same MSB as in
the positive case, and this is what Figure 7 shows.

This transformation is not for free: we need to add the
constant 11...110000000. Fortunately, in the context of a
summation we may add in advance all these constants
together. Thus the overhead cost of two’s complement in a
summation is limited to the addition of one single constant.
In the following, we will use another trick to merge this
addition for free in the computations of one of the cixi.

Performing all the internal computations to the output
precision `r would in general not allow last-bit accuracy to
precision `r , due to the accumulation of rounding errors.
The solution is, as previously, to use a slightly extended
precision `r − g for the internal computation: g is a number
of “guard” bits. As this extended precision will require more
hardware, we now discuss how to compute the extended
precision that will minimize this hardware overhead.

We assume that we are able to build hardware constant
multipliers that compute some approximation

p̃i = cixi + εi(g) (23)

of the mathematical product cixi such that the LSB of each
p̃i is `r − g (see Figure 7), and we assume that the rounding
error εi of each of these multipliers is bounded by some
εi(g):

|εi(g)| < εi(g) . (24)
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The value of εi(g) depends on the constant: multiplica-
tion by zero will be exact, as will be, under some conditions,
multiplications by powers of two and by other constants
that can be written in binary on few bits. In the general case
where ci is real, the multiplier will entail a rounding error
which depends on the multiplier technique used (a detailed
example will be shown in the sequel). However, whatever
the technique, this error bound can be made as small as
needed by increasing g (in other words, by computing more
accurately).

The output value r̃ is computed in an architecture as the
sum of the p̃i. This summation, as long as it is performed
with adders of the proper size, will entail no error (Figure 7).
Indeed, fixed-point addition of numbers of the same format
may entail overflows (these have been taken care of), but no
rounding error. This enables us to write

r̃ext =
N−1∑
i=0

p̃i, (25)

therefore the total rounding error of the sum of product
is defined as

εSOPC =
N−1∑
i=0

p̃i −
N−1∑
i=0

cixi =
N−1∑
i=0

εi(g) (26)

and thanks to (24) can be bounded as follows:

εSOPC <
N−1∑
i=0

εi(g) . (27)

As each εi(g) can be made arbitrarily small by increasing
g, there exists some g such that

N−1∑
i=0

εi(g) < 2`r−1 . (28)

The intermediate result now has g more bits at its LSB
than we need (Figure 7). It therefore needs itself to be
rounded to the target format. This is easy, using the identity
bxe = bx + 1

2c, scaled by 2`r : rounding to precision `r is
obtained by first adding 2`r−1 (this is a single bit) then
discarding bits lower than 2`r . In the worst case, this will
entail an error εfinal rounding of at most 2`r−1.

To sum up, the overall error of a last-bit accurate SOPC
architecture is:

r̃ −
N−1∑
i=0

cixi = εfinal rounding + εSOPC (29)

< 2`r−1 + 2`r−1 = 2`r . (30)

All the previous is quite independent of the target tech-
nology. However, the actual computation of the optimal g
out of constraint (28) will depend on the multiplier tech-
nique chosen. This is the reason why we do not give a
generic formula providing g.

However, for illustration and completeteness, the re-
mainder of this section focusses on a particular technology:
LUT-based SOPC architectures for FPGAs. It explores ar-
chitectural means to reach last-bit accuracy at the smallest
possible cost on this technology.

5.3 Tabulated perfectly rounded constant multipliers
On most FPGAs, the basic logic element is the look-up-table
(LUT), a small memory addressed by α bits. For the current
generation of FPGAs, α = 6.

As we have a finite number of possible values for xi, it is
possible to build a perfectly rounded multiplier by simply
tabulating all the possible products. The precomputation
of the table values must be performed with large enough
accuracy (using multiple-precision software) to ensure the
correct rounding of each entry. This even makes perfect
sense for small input precisions on recent FPGAs: if xi is a 6-
bit number, each output bit of the perfectly rounded product
cixi will cost exactly one 6-input LUT. For 8-bit inputs, each
bit costs only 4 LUTs. In general, for (6 + k)-bit inputs, each
output bit costs 2k 6-LUTs: this approach scales poorly to
larger inputs.

Perfect rounding to precision `r − g means a maximum
error smaller than a half-LSB: εi = 2`r−g−1. Note that
for real-valued ci, this is more accurate than rounding the
result of a multiplier inputting ◦`r (ci): the latter would
accumulate two successive rounding errors.

5.4 Table-based constant multipliers for FPGAs
For larger precisions, we may use a variation of the KCM
technique, due to Chapman [4] and further studied by
Wirthlin [5]. The original KCM method addresses the multi-
plication by an integer constant. We here present a variation
called FixRealKCM that performs the multiplication by a
real constant.

This method consists in breaking down the binary rep-
resentation of an input xi into Di chunks dik of α bits. With
the input size being mi − `i + 1, we have

Di = d(mi − `i + 1)/αe (31)

(see Figure 8). Mathematically, this is written

xi =
Di∑
k=1

2−kαdik where dik ∈ {0, ..., 2α − 1} . (32)

Another point of view is that the input xi is considered as a
radix-2α number, the diks being its digits. For instance with
α = 4 we obtain the classical hexadecimal writing of xi.

The product becomes

cixi =
Di∑
k=1

2−kαcidik . (33)

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

Ti1 : ◦`r (ci × di1)

di1

Ti2

di2

Ti3

di3

+

/qi + g

t̃i1

/qi − α+ g

t̃i2

/qi − 2α+ g

t̃i3

/qi + g

p̃i ≈ cixi

Fig. 8. FixRealKCM with xi split in Di = 3 chunks of α = 6 bits
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t̃i1 ≈ cidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

t̃i2 ≈ cidi2 xxxxxxxxxxxxxxxxxxxx...

t̃i3 ≈ cidi3 xxxxxxxxxxxxxx...

2`r−g
α bitsα bits

Fig. 9. Alignment of the terms in the KCM method

Since each chunk dik consists of α bits, where α is the LUT
input size, we may tabulate each product cidik in a look-up
table that will consume exactly one α-bit LUT per output bit.
This is depicted in Figure 8. Of course, cidik has an infinite
number of bits in the general case: as previously, we will
round it to precision `r − g. In all the following, we define
t̃ik = ◦`r−g(cidik) this rounded value (see Figure 9).

Contrary to classical (integer) KCM, the tables do not
consume the same amount of resources. The factor 2−kα in
(33) shifts the MSB of the table output t̃ik, as illustrated by
Figure 9.

Here also, the fixed-point addition is errorless. The error
of such a multiplier is, therefore, the sum of the errors of the
Di tables, each perfectly rounded:

εi < Di × 2`r−g−1 . (34)

This error is proportional to 2−g , so can made as small
as needed by increasing g.

5.5 Accumulating the products
Instead of considering each KCM in isolation, it is better
to consider the summation at the SOPC level. Indeed, our
SOPC result is now obtained by computing a double sum:

ỹ = ◦p

(
N−1∑
i=0

Di∑
k=1

2−kαt̃ik

)
(35)

Here, the errors of each t̃ik add up into an overall SOPC
error, out of which the value of g can be computed.

Before that, let us also observe that it is often possible to
use a finer bound than (34). Indeed, some constant multipli-
ers entail no error: it is for instance the case for multiplica-
tion by 0 and by 1. Such trivial cases will happen quite often
if the proposed SOPC generator is used as a backend for
a larger architecture generator, as is the case in the present
article. Besides, such trivial cases deserve specific treatment
since their implementation is much simpler than the generic
case.

Therefore, the implementation first invokes, for each
constant, a method that returns the maximum error that
will be entailed by a multiplier by this constant. This error
is expressed in units in the last place (ulp), and therefore
does not depend on the (yet unknown) value of g. The
implementation sums these errors, then uses this sum to
compute the value of g that will enable last-bit accuracy.
Once this g has been determined, the generator may proceed
with the actual construction of the multipliers.

Here is the list of cases currently managed by the imple-
mentation:

• if ci = 0, then εi = 0.
• if |ci| = 1 or more generally if |ci| = 2k, then εi = 0

if k + `i ≥ `r (shift of xi such that all the bits will be

kept), otherwise εi = 1 (shift to the right, losing some
bits due to truncation). Here we may overestimate
the error, because the test should be if k+`i ≥ `r − g,
but we don’t know g yet.

• In the general case when we use the generic KCM
architecture, εi = Di/2 (we have Di tables, each
entailing one half-ulp of error).

One final technicality: we have so far assumed that the
number of tables Di is computed out of the input size,
using (31). However, for small constants, it may happen
that the contribution of the lower tables can be neglected.
To understand this, consider Figure 9: each table output is
shifted right if ci is small. Therefore, the implementation
will not generate a table if its MSB is smaller than `r−g−1.
The error analysis remains valid in this case, although the
source of the error is no longer the rounding of the table,
but it’s being neglected altogether. If more than one table is
fully neglected, this error analysis was slightly pessimistic
(we could have a single half-ulp for all the neglected tables),
but it remains safe.

5.6 Computing the sum

In FPGAs, each bit of an adder also consumes one LUT.
Therefore, in a KCM architecture, the LUT cost of the
summation is expected to be roughly proportional to that
of the tables. However, using the associativity of exact
fixed-point addition, this summation can be implemented
very efficiently using compression techniques developed
for multipliers [21] and more recently applied to sums of
products [22], [23]. This work uses the bit heap framework
introduced in [7]. Each table throws its t̃ik to a bit heap that
is in charge of performing the final summation. The bit heap
framework is naturally suited to adding terms with various
MSBs, as is the case here. It also manages two’s complement
numbers efficiently – the interested reader is referred to [7]
for details.

Figure 10 shows an example of bit heap obtained by the
proposed method. In this figure (generated by the tool),
we have binary weights on the horizontal axis, and the
various terms to add on the vertical axis. Roughly speaking,
the height of a bit heap is proportional to the number of
non-zero coefficients. The width shows the needed internal

12 bits 5 bits

Fig. 10. The bit heap of a narrowband 12-bit filter (example 1 of section 6
with ωp = 0.5). In this case the tool has computed − log2 〈〈Hε〉〉 − 1 =
12 and g = 5, so the internal datapth must be 29-bit wide for last-bit
accuracy.
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Bit-heap based
summation architecture

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

y

Fig. 11. KCM-based SOPC architecture for N = 4, each input being
split into 3 chunks

precision computed by the tool to ensure both filter stability
and last-bit accuracy. Vertical lines mark the bit weights `out
and `ext: they illustrate the 1+dlog2 〈〈Hε〉〉e extra bits needed
to manage the error amplification in the feedback loop (see
equation (21)), as well as the g extra bits needed to absorb
the rounding errors in each KCM table.

Figure 10 only shows the initial bit heap. FloPoCo also
generates an architecture that computes the sum of all these
bits. The current version still uses the greedy heuristic of [7].
The state of the art is to compute an optimal architecture
using Integer Linear Programming techniques [8], and will
be used soon.

5.7 Final rounding by truncation
There is one more term to add to the summation of (35):
the rounding bit 2`r−1, necessary for the final rounding by
truncation. Its value is added (for free) to one of the tables.

Finally, the typical architecture generated by our tool is
depicted by Figure 11.

6 IMPLEMENTATION AND RESULTS

This section demonstrates on several examples the versatil-
ity of the tool and how it can be used for filter design-space
exploration. It also analyzes the cost of last-bit accuracy, and
evaluates how much the methodology potentially overesti-
mates the word-lengths.

6.1 Experimental setup
The method described in this paper is implemented as
the FixIIR operator of FloPoCo (version 4.1.3 or above).
FixIIR offers the interface shown on Figure 1, and inputs
the coefficients ai and bi as arbitrary-precision numbers or
mathematical expressions. FixIIR, like most FloPoCo oper-
ators, was designed with a testbench generator [24]. Opera-
tors reported here have been checked for last-bit accuracy by
extensive simulations using worst-case signals constructed
thanks to (7). The results below were obtained after place
and route for Kintex-7 (7k70tfbv484-3) using Vivado 2016.4.
The reported timings don’t include the IBUF/OBUF delay.

6.2 Example 1: sliding passband
This example shows how the proposed tool may quantify
the difficulty of implementing narrow band filters. Such
filters are frequently used in Software Defined Radio [25],

0.1 0.4
Normalized Frequency

-20
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itu
de

0.7 1

0

Fig. 12. Example 1, three transfer functions of the family of narrow-
passband filters with sliding ωp.
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Fig. 13. Example 1, area and delay of implementations as a function of
the parameter ωp.

biomedical circuit design [26], digital television, etc. Classi-
cally, the implementation of such bandpass filters is more
complicated when the passband is near the bounds of the
frequency domain [1]. To illustrate this effect, we fix the
widths of the passband and transition band to 0.01 and
“slide” the passband through the normalized frequency
interval [0, 1]. Formally, we set

• passband [ωp, ωp + 0.01] with passband ripple 1dB
• stopbands in [0, ωp − 0.01] and [ωp + 0.02, 1] with

minimum attenuation 20dB

where ωp = 0.05 + 0.01k, k = 0, 1, . . . , 94. Each filter in this
family is an elliptic filter designed with Python Scipy. All
filters are of the order 4, except for k ∈ [92, 94] where the
order increases to 6.

Figure 13 gives the area and delay with respect to the
position of ωp ∈ [0.05, 0.97]. It can be clearly observed that
narrow bandpass filters have lower complexity when the
normalized passband frequency ωp approaches 0.5. The bit
heap corresponding to the implementation with ωp = 0.5 is
given in Figure 10.

Interestingly, the last three filters (k ∈ [92, 94]) are
considerably more sensitive to rounding errors (i.e. 〈〈Hε〉〉
increases for them), thus require more area to ensure the
output is accurate to 12 fractional bits.

Such phenomena for the narrow-band bandpass filters
is well known. However, in the general case, overcoming
difficulties in the implementation of the recursive filters
is usually not straightforward and might require specific
knowledge from the designer. The proposed tool automati-
cally provides accurate implementations of even the most
sensitive filters at the minimal cost, and the designer is
informed of the cost of this accuracy.



10

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1000  10000  100000  1x106  1x107  1x108

a
re

a
 (

LU
T
)

Worst Case Peak Gain of the error amplification filter (log scale)

Fig. 14. Example 1, dependency of area on 〈〈Hε〉〉.

TABLE 1
Coefficients of the IIR4 filter

i bi ai

0 0.01 -
1 −0.00736448 −3.24671
2 0.016119471 4.3113278648
3 −0.007364485 −2.731124776
4 −0.01 0.6968113152

6.3 Example 2: filters from the WLO literature

We also attempted to reproduce the following filters.
IIR4 is a 4th order filter mentioned in [9], [27], whose

coefficients (Table 1) were manually extracted from software
code in [27]. For this filter, [27] reports SQNR between
49.3dB and 78.5dB, which corresponds to approximately
8 to 13 meaningful output bits. For this, they use 16-bit
multipliers, with intermediate additions on 16 to 32 bits.
For the same transfer function and 8 (resp. 13) correct
output bits, our tool generates an implementation where
the internal feedback signal (which is the input to our
multipliers) is 18 (resp. 23) bits. These results illustrate
that last-bit accurate implementations are competitive with
implementations offering only statistical confidence.

In [13], authors fix the filter order to 8 but do not give the
specifications. Obviously, for a given order, depending on
the frequency specifications, the filter might be more or less
sensitive to the finite wordlength effects. We therefore chose
two IIR8 specifications, both designed with Matlab: IIR8a
is an 8thorder butterworth filter with sampling frequency
Fs = 48 kHz, cutoff frequency Fc = 10.8 kHz and 3 dB
attenuation. Minimum distance from its poles to the unit
circle is 1.77e − 01. IIR8b is an 8th order elliptic lowpass
filter with normalized cutoff frequency 0.3, passband ripple
1 dB and minimum 50 dB attenuation in the stopband. This
filter if more sensitive to quantization, distance form poles
to the unit circle is 7.56e− 03.

Figure 15 illustrates the evolution of the architectural
cost with input/output precision for IIR4, IIR8a and IIR8b.
The cost of each multiplier is expected to grow quadratically
with input precision, which explains the trend for the area
curves. The delay is always that of the feedback loop.

Finally, IIR2 is the most sensitive filter from [14]. Its
coefficients are (b0, b1, b2) = (101.8,−203.4, 101.6) and
(a1, a2) = (−1.967, 0.968). Results in [14] are reported

TABLE 2
Using the proposed tool on some IIR filters (all with `in = `out)

filter specification guard bits synthesis results

name −`out dlog2 〈〈Hε〉〉e g Area delay

IIR2 [14] 10 11 5 832 LUT 9.1ns

IIR4 [9], [27] 8 8 5 710 LUT 6.8ns
12 5 958 LUT 7.5ns

IIR8a [13] 8 4 6 831 LUT 6.8ns
32 7 4974 LUT 10.3ns

IIR8b [13] 8 14 6 2262 LUT 8.3ns
32 7 8265 LUT 11.6ns

for an input in [−100, 100] and an output error bound of
0.1. By linearity, for inputs in [−1, 1] this corresponds to
εout = 10−3, which in our tool is ensured by `out = −10.
The feedback WCPG is found to be 〈〈Hε〉〉 ≈ 1368, therefore
our tool computes that dlog2 〈〈Hε〉〉e + 1 = 12 bits must be
added to the datapath to manage the amplification of errors:
it finds that `ext = −22 is needed on the feedback loop.
Comparatively, [14] reports 18 fractional bits when inputs
are in [−100, 100] which would translate to `ext = −25 by
linearity. This is, in [14], the precision of the feedback loop,
but also of the output: note that 15 of these output bits hold
useless noise. Also, the coefficients are rounded in [14] to
an LSB of weight −26. An architecture multiplying such a
feedback signal by such a constant will compute product
bits extending down to weight −26−25 = −51, then round
them out. Comparatively, our approach computes that it
needs to add g = 5 guard bits inside the SOPC: it will
compute no bit with weight smaller than −27.

6.4 The cost of last-bit accuracy

The previous example shows that the proposed methodol-
ogy leads to more efficient architectures than the state of the
art. Table 2 gives the cost of last-bit accuracy in terms of
guard bits for other examples.

In Table 2, 〈〈Hε〉〉 does not depend on the input/output
formats. One can observe that g has a moderate dependency
input precision (only +1 bit from 8 to 32 bits for instance).
Indeed, g is essentially the log2 of the number of KCM
tables, which is itself proportional to −`out− log2 〈〈Hε〉〉−1,
not just −`out.

6.5 Evaluating the pessimism of the method

As the proposed methodology combines worst-case error
bounds, it is necessary pessimistic. To quantitatively eval-
uate this, we attempted to reduce the internal datapath
(from the values computed by the tool) and exercised the
obtained filter on a signal built to trigger the worst-case
error amplification (see (7) in Section 3.4). This remains a
heuristic, as this test signal does not guarantee the occurence
of worst-case rounding errors. Still, we find that most filters
fail this test as soon as more than 2 bits are removed from
their internal datapath. This shows that the internal sizes
computed by the methodology are quite tight.
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7 CONCLUSION AND PERSPECTIVES

This article advocates a very simple specification for low-
precision architectures of digital filters: whatever the inputs,
the difference between the results computed by the archi-
tecture and the results computed by an infinite precision
machine should be less than the weight of the least signif-
icant bit of the output. This specification brings safety to
designers who can trust that the architecture behaves as,
e.g., a double-precision Matlab simulation. It also defines a
universal rule of the game by which different architectures
can be fairly compared.

This work demonstrates this approach through an end-
to-end open-source tool that generates the VHDL code
of a Direct Form I implementation from its mathematical
coefficients. It explores architectural choices in the family of
Direct Form I filters, and selects the architecture that has
minimal-size internal formats for which we can guarantee
the above specification.

An important observation is that even for simple, low-
order filters, the intermediate format needs to be signifi-
cantly larger than the input/output format: in our experi-
ments, we never need less than 4 extra bits for the internal
format to achieve the specification. For higher-order or un-
stable filters, several tens of extra bits may be needed, even
if the output format is only 8, 12 or 16 bits. This overhead
depends on the worst-case peak gain of the error filter: it is
mostly independent of the output format.

This work, however, does not claim to close the subject
of digital filter architecture generation.

Future work first includes several technical improve-
ments to the current implementation, such as the exploita-
tion of symmetries in the coefficients, or a better bit heap
compression algorithm. Also, we chose in this work to have
a single SOPC for both the ai and the bi multipliers. This
ensures a global optimization of the bit-heap compression,
hence better area. However, frequency could be improved
by using two SOPCs, one for

∑
biu(k − i) (taken out of the

loop), the other for
∑
aiy(k − i). This would in principle

come at the expense of larger area. However the exact
impact is unclear, since we will now have two different
values of g.

Beyond these refinements, this work is a solid foun-
dation on which to build future research. Here are some
directions.

In this work we have assumed real coefficients. We
may now address the issue of coefficient quantization from
a new point of view. If a designer manages to quantize
coefficients on very few bits and still obtain a stable filter
with acceptable transfer function, the proposed technique

will work without change: quantized coefficients are also
real coefficients. Therefore, the proposed approach enables
a clear decoupling of the issue of coefficient quantization
from the issue of intermediate rounding in the architecture.

However, quantized coefficients will also enable further
optimizations. Indeed, the product of a quantized coefficient
by an input (or by a subword of the input in the case of
KCM multipliers) will have a finite number of bits. This
potentially improves both error analysis and architecture
generation: if these bits are all within the internal bit range
determined by the tool, the product becomes exact, while
the corresponding table output becomes smaller than in the
case of a real coefficient, also leading to smaller bit heaps.
In addition, with quantized coefficients, it also becomes
relevant to compare with shift-and-add implementations of
constant multipliers [28].

The next step is to explore filter structures that are more
interesting than the DFI, for instance the decomposition into
second-order sections [1]. In this structure a filter is decom-
posed into a cascade of biquad filters, each of which can be
implemented with a DFI algorithm. An advantage of such
a decomposition is smaller sensitivity towards rounding
errors. Quantitatively, each section of the cascaded system
may be analyzed independently using the worst-case peak
gain and requires a different number of additional bits `ext.
However, it is not completely straightforward how to choose
the rounding strategy: on the one hand, rounding the output
of each section to some ỹouti increases the overall output
error; on the other hand, direct propagation of ỹ(k) without
rounding will increase the size of subsequent SOPCs. A
trade-off might be achieved by a clever choice of section
ordering [29].

It would also be interesting to consider other filter
structures, such as Direct Form II (transposed or not), state-
spaces, cascade and/or parallel decomposition, ρ-operator
based structures, Lattice Wave Digital filters [30], etc. These
algorithms are less sensitive to finite precision effects [30]
(coefficient quantization and roundoff errors) and, even if
some of them require more computations than the DFI,
the total area (LUT) to achieve just right computing may
be reduced. This work will allow one to quantify this,
although it will not be completely straightforward: these
structures have many intermediate formats, whose sizes
also have to be determined and minimized. A unifying filter
representation called SIF [31] could be the key to generalize
the approach of the present article.
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