
Arithmetic Core Generator

FloPoCo sin
e x+

y

πx √
xe

x

√ x2+
y2+

z2

y
=

n
∑

i=
0

x i

log x

FloPoCo 2.3.0 developer manual

Florent de Dinechin, Bogdan Pasca

December 15, 2011

Welcome to new developers!
The purpose of this document is to help you use FloPoCo in your own project (section 2), and to show

you how to design your own pipelined operator using the FloPoCo framework (section 3).

1 Getting started with FloPoCo

1.1 Getting the source and compiling using CMake

It is strongly advised that you work with the svn version of the source, which can be obtained by following
the instructions on https://gforge.inria.fr/scm/?group_id=1030. If you wish to distribute your
work with FloPoCo, contact us.

If you are unfamiliar with the CMake system, there is little to learn, really. When adding .hpp and .cpp
files to the project, you will need to edit CMakeLists.txt. It is probably going to be straightforward,
just do some imitation of what is already there. Anyway cmake is well documented. The web page of the
CMake project is http://www.cmake.org/.

1.2 Overview of FloPoCo

In FloPoCo, everything is an Operator. Operator is a virtual class, all FloPoCo operators inherit this class.
A good way to design a new operator is to imitate a simple one. We suggest Shifter for simple integer
operators, and FPAdderSinglePath for a complex operator with several sub-components. An example
of assembling several FP operators in a larger pipeline is Collision.

Meanwhile, browse through Operator.hpp. It has become quite bloated, showing the history of the
project. Try not to use methods flagged as deprecated, as they will be removed in the future. Instead, use
the automatic pipeline framework is described in Section 3 below.

Another important class hierarchy in FloPoCo is Target, which defines the architecture of the target
FPGA. It currently has several sub-classes including, VirtexIV, 5, 6 and StratixII, IV. You may
want to add a new target, the best way to do so is by imitation. Please consider contributing it to the project.

To understand the command line, go read main.cpp. It is not the part we are the most proud of, but it
does the job.

The rest is arithmetic!

1

And do not hesitate to contact us: Florent.de.Dinechin or Bogdan.Pasca, at ens-lyon.fr

2 Linking against FloPoCo

All the operators provided by the FloPoCo command line are availaible programmatically in libFloPoCo.
A minimal example of using this library is provided in src/main minimal.cpp.

The file src/main.cpp is the source of the FloPoCo command line, and as such uses most operators:
looking at it is the quickest way to look for the interface of a given operator.

The other way is, of course, to look at the corresponding hpp file – they are all included by
src/Operator.hpp. Some operators offer more constructors (richer interface options) than what is used
in src/main.cpp.

There should be a Doxygen documentation of FloPoCo.

3 Pipelining made easy: a tutorial

If you want to experiment with a dummy operator and try the notions used in this section, consider
reading and modifying the file UserDefinedOperator.hpp and .cpp. They contain an operator class
UserDefinedOperator that you may freely modify without disturbing the rest of FloPoCo.

Let us consider a toy MAC unit, which in VHDL would be written

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library work;

entity MAC is
port (X : in std_logic_vector(63 downto 0);

Y,Z : in std_logic_vector(31 downto 0);
R : out std_logic_vector(63 downto 0));

end entity;

architecture arch of MAC is
signal T: std_logic_vector(63 downto 0);

begin
T <= Y * Z;
R <= X + T;

end architecture;

We chose for simplicity a fixed-size operator, but all the following works as well for parameterized
operators.

We have above the description of a combinatorial circuit. We now show how to turn it into a pipelined
one.

3.1 First steps in FloPoCo operator writing

FloPoCo mostly requires you to copy the part of the VHDL that is between the begin and the end of the
architecture into the constructor of a class that inherits from Operator. The following is minimal FloPoCo
code for MAC.cpp:

#include "Operator.hpp"

class MAC : public Operator
{
public:
// The constructor
MAC(Target* target): Operator(target)
{
setName("MAC");
setCopyrightString("ACME MAC Co, 2009");

// Set up the IO signals
addInput ("X" , 64);
addInput ("Y" , 32);
addInput ("Z" , 32);
addOutput("R" , 64);

vhdl << declare("T", 64) << " <= Y * Z;" << endl;
vhdl << "R <= X + T;" << endl;

}

// the destructor
˜MAC() {}

And that’s it. MAC inherits from Operator the method outputVHDL() that will assemble the informa-
tion defined in the constructor into synthesizable VHDL. Note that R is declared by addOutput.

So far we have gained little, except that is is more convenient to have the declaration of Twhere its value
is defined. Let us now turn this design into a pipelined one.

3.2 Basic pipeline

Let us first insert a synchronization barrier between the result of the multiplication and the adder input.
The code becomes:

(...)
vhdl << declare("T", 64) << " <= Y * Z;" << endl;
nextCycle();
vhdl << "R <= X + T ;" << endl;

(...)

With the command-line option -pipeline=yes, this code will insert a synchronisation barrier before
the adder, delaying X so that the operator is properly synchronized. It will produce a combinatorial operator
(the same as previously) with -pipeline=no.

How does it work?

• Operator has a currentCycle attribute, initially equal to zero. The main function of
nextCycle() is to increment currentCycle.

• Every signal declared through addInput or declare has a cycle attribute, which represents the
cycle at which this signal is active. It is 0 for the inputs, and for signals declared through declare()
it is currentCycle at the time declare was invoked.

• Every signal also possesses an attribute lifeSpan which indicates how many cycles it will need to
be delayed. This attribute is initialized to 0, then possibly increased by each time the signal is used.
When the lifeSpan of a signal X is greater than zero, outputVHDL() will create lifeSpan new
signals X_d1, X_d2 and so on, and insert registers between them. In other words, X_d2 will hold the
value of X delayed by 2 cycles.

• FloPoCo scans the VHDL and looks for right-hand side occurrences of declared signals. For instance,
in the line after the nextCycle, it finds X and T. For such signals, it does the following. First, it
compares currentCycle and the cycle declared for X, which we note X.cycle.

– If they are equal, or if -pipeline=no, X is written to the VHDL untouched.
– If currentCycle < X.cycle, FloPoCo emits an error message complaining that X is being

used before the cycle at which it is defined.
– If currentCycle > X.cycle, FloPoCo delays signal X by n=currentCycle−X.cycle cy-

cles. Technically, it just replaces, in the output VHDL, X with X_dn. It also updates X.lifeSpan
to be at least equal to n.

• All the needed signals will be declared in the output VHDL based on the lifeSpan information.

This whole scheme is actually run in two passes so that currentCycle may be moved forth and back
in the FloPoCo code, which is useful in some situations.

This scheme gracefully degrades to a combinatorial operator. It also automatically adapts to random
insertions and suppressions of synchronization barriers. Typically, one synthesizes an operator, and decides
to break the critical path by inserting a synchronisation barrier in it. This may be as simple as inserting a
single nextCycle() in the code. FloPoCo takes care of the rest.

It is also possible to have ifs before some of the nextCycle(), so that the pipeline adapts to the
frequency, the operator generic parameters, etc. See IntAdder for an example. However, starting with
version 2.1.0 a finer-grain procedure for pipelining operators is introduced and will be explained section
3.4.

Some more notes:

• The second parameter of declare(), the signal width, is optional and defaults to 1 (a std_logic
signal).

• Other functions allow to manipulate currentCycle

– setCycle(int n) sets currentCycle to n.
– setCycleFromSignal(string s) sets the currentCycle to the cycle of the signal whose

name is given as an argument (going back if needed),
– syncCycleFromSignal(string s) is similar to the previous but may only advance
currentCycle. It allows to synchronise several signals by setting currentCycle to the max
of their cycle.
See FPAdderSinglePath or FPLog for examples of such synchronisations.

All these functions have an optional boolean second argument which, if true, inserts in the generated
VHDL a comment “– entering cycle n”.

• If our toy example, is part of a larger circuit such that X is itself delayed, the pipeline will adapt to
that.

3.3 Pipeline with sub-components

We now show how to replace the + and * with FloPoCo pipelined operators. These operators support
frequency-directed pipelining, which means that the resulting MAC will also have its pipeline depth auto-
matically computed from the user-supplied frequency (the -frequency option of the command-line).

(...)
// vhdl << declare("T", 64) << " <= Y * Z;" << endl;
IntMultiplier *my_mult = new IntMultiplier(target, 32, 32);
oplist.push_back(my_mult); // some day this will be an addOperator method
inPortMap (my_mult, "X", "Y"); // formal, actual
inPortMap (my_mult, "Y", "Z");
outPortMap (my_mult, "R","T");
vhdl << instance(my_mult, "my_mult"); // 2nd param is the VHDL instance name

// advance to the cycle of the result
syncCycleFromSignal("T");
// pipelined operators do not have a register on the output
nextCycle();

// vhdl << "R <= X + T;" << endl;
IntAdder *my_adder = new IntAdder(target, 64);
oplist.push_back(my_adder);
inPortMap (my_adder, "X", "X");
inPortMap (my_adder, "Y", "T");
inPortMapCst(my_adder, "Cin", "0"); -- carry in
outPortMap (my_adder, "R","RR");
vhdl << instance(my_adder, "my_add");

// advance to the cycle of the result
syncCycleFromSignal("RR");

vhdl << "R <= RR;" << endl;
(...)

And that’s it. In the code above, an inPortMap() does the same job as an occurrence of signal on
the right-hand side, and an outPortMap() does the same job as a declare(), although it doesn’t need
a signal width since it can read it from the sub-component. instance() also has the side effect that
outputVHDL() will declare this component in the VHDL header of MAC.

3.4 Frequency-directed pipelining

The command line of FloPoCo supports specifying the desired frequency of the generated operators by
using the -frequency option. The philosophy behind is to generate the smallest (in terms of resource
usage) and the shorter latency operator given this frequency specification (-frequency command-line
option) for a given target (-target command-line option).

A fixed pipeline can be easily obtained using the nextCycle() function previously introduced. As
suggested before, frequency directed pipelining can be accomplished by conditional statements around the

nextCycle(). The following methodology does exactly that, but in a generic and (hopefully) future-proof
way.

Let’s go back to our basic MAC example (the one without components). Looking at the critical path it
is clear that it goes through a multiplication and then an addition. Before emitting the code of an operation
that will increase the critical path (in our example, the multiplication) we want to evaluate in advance what
the critical path becomes if we add to it the delay of this operation. There are two cases:

• the new delay is greater than 1/ f . This means that it will be impossible to perform these two opera-
tions in the same cycle while ensuring proper operation at frequency f . In this case a nextCycle()
must be called to insert a synchronisation barrier. This resets the critical path delay, which becomes
the delay of the operation after the barrier (the multiplication in this example).

• this new critical path delay is smaller than the target period (1/ f). In this case we just have to perform
some bookkeeping: the critical path delay is incremented with the operation delay.

The FloPoCo command that does it all is manageCriticalPath(double delay). It must be placed
before each block of code that generates some hardware on the critical path – there is some designer exper-
tise here.

The augmented FloPoCo code would look something like:

setCriticalPath(0.0);
manageCriticalPath(target->DSPMultiplierDelay());
vhdl << declare("T", 64) << " <= Y * Z;" << endl;
manageCriticalPath(target->adderDelay(64));
vhdl << "R <= X + T ;" << endl;

Note that the delay passed to manageCriticalPath() should be evaluated, whenever possible, using
methods of the Target class. This ensure that this pipelining work is done once for all the possible targets.

3.5 Sub-cycle pipelining (optional)

A working pipeline using sub-components is typically obtained by placing synchronization barriers on the
inputs and outputs. However, it is often an overkill: most of the times, the previous approach leaves the
output cycle not fully consumed. Also, sometimes, one wants to perform only a very simple, low-delay
operation on the inputs.

For such cases, operators can optionally :

• receive a list of delays on the inputs ((”X”,1.5e-9),(”Y”,1.2e-9)) representing the combinatorial delays
already present on these signals.

• report the combinatorial delay on the output signals (”R”, 2.0e-9).

Using this information, the sub-component constructor can properly adjust the pipeline for the given
frequency. Here is full example. The input delays are given in the variable named inputDelays.

setCriticalPath(getMaxInputDelays(inputDelays));
manageCriticalPath(target->DSPMultiplierDelay());
vhdl << declare("T", 64) << " <= Y * Z;" << endl;
manageCriticalPath(target->adderDelay(64));
vhdl << "R <= X + T ;" << endl;
outDelayMap["R"] = getCriticalPath(); //returns the current delay on the critical path

In the case of the second, component-based design, the code becomes:

setCriticalPath(getMaxInputDelays(inputDelays));
// vhdl << declare("T", 64) << " <= Y * Z;" << endl;
IntMultiplier *my_mult = new IntMultiplier(target, 32, 32, inDelayMap("X",getCriticalPath()));
oplist.push_back(my_mult); // some day this will be an addOperator method
inPortMap (my_mult, "X", "Y"); // formal, actual
inPortMap (my_mult, "Y", "Z");
outPortMap (my_mult, "R","T");
vhdl << instance(my_mult, "my_mult"); // 2nd param is the VHDL instance name

// advance to the cycle of the result
syncCycleFromSignal("T");
setCriticalPath(my_mult->getOutputDelay("R"));

// vhdl << "R <= X + T;" << endl;
IntAdder *my_adder = new IntAdder(target, 64, inDelayMap("X",getCriticalPath()));
oplist.push_back(my_adder);
inPortMap (my_adder, "X", "X");
inPortMap (my_adder, "Y", "T");
inPortMapCst(my_adder, "Cin", "0"); -- carry in
outPortMap (my_adder, "R","RR");
vhdl << instance(my_adder, "my_add");

// advance to the cycle of the result
syncCycleFromSignal("RR");
setCriticalPath(my_adder->getOutputDelay("R"));

vhdl << "R <= RR;" << endl;
outDelayMap["R"] = getCriticalPath();

For more information, check FPExp for example, and don’t hesitate to contact us.

4 Test bench generation

4.1 Operator emulation

Operator provides one more virtual method, emulate, to be overloaded by each Operator. As the name
indicates, this method provides a bit-accurate simulation of the operator.

Once this method is available, the command
flopoco FPAdder 8 23 TestBench 500
produces a test bench of 500 test vectors to exercise FPAdder.

It is useful to consider emulate() as the specification of the behaviour of the operator. Therefore, as
any instructor will tell you, it should be written before the code generating the VHDL of the operator!

Most operators should be fully specified: for a given input vector, they must output a uniquely defined
vector. Imitate IntAdder for an integer operator. For floating-point operators, this unique output is the
combination of a mathematical function and a well-defined rounding mode. The bit-exact MPFR library is
used in this case. Imitate FPAdderSinglePath in this case.

Other operators are not defined so strictly, and may have several acceptable output values. The last
parameter of addOutput defines how many values this output may take. An acceptable requirement in
floating-point is faithful rounding: the operator should return one of the two FP values surrounding the
exact result. These values may be obtained thanks to the rounding up and rounding down modes supported
by MPFR. See FPLog for a simple example, and Collision for a more complex example (computing the
two faithful values for x2 + y2 + z2).

4.2 Operator-specific test vector generation

Overloading emulate() is enough for FloPoCo to be able to create a generic test bench using random
inputs. However, it is often possible to perform better, more operator-specific test-case generation. Let us
just take two examples.

• A double-precision exponential returns +∞ for all inputs larger than 710 and returns 0 for all inputs
smaller than−746. In other terms, the most interesting test domain for this function is when the input
exponent is between −10 and 10, a fraction of the full double-precision exponent domain (−1024 to
1023). Generating random 64-bit integers and using them as floating-point inputs would mean testing
mostly the overflow/underflow logic, which is a tiny part of the operator.

• In a floating-point adder, if the difference between the exponents of the two operands is large, the
adder will simply return the biggest of the two, and again this is the most probable situation when
taking two random operands. Here it is better to generate random cases where the two operands have
close exponents.

Such cases are managed by overloading the Operator method buildRandomTestCases(). Finally,
buildStandardTestCases() allows to test corner cases which random testing has little chance to find.
See FPAdder.cpp for examples.

