
FPGAs for low latency audio applications ?

Tanguy Risset, Florent de Dinechin
Adeyemi Gbadamosi, Ousmane Touat, Gero Muller,

Stéphane Letz, Romain Michon, Yann Orlarey,
Alain Darte

Programmable Audio Workshop
(when the program is a circuit)

Introduction

Introduction

FPGA architectures

Programmable?

FPGAs for low-latency audio

Conclusion

Florent de Dinechin FPGAs for low latency audio applications ? 2

The twin gods of the computing pantheon
(A. C. Clarke)

Alan Turing John von Neumann

Florent de Dinechin FPGAs for low latency audio applications ? 3

The twin gods invented the math and the machine

Turing machine

Automaton

A universal computing object
(on paper)

von Neumann machine

Processor Memory

addresses

data

A practical universal computer
thanks to random access to
memory

Florent de Dinechin FPGAs for low latency audio applications ? 4

The twin gods invented the math and the machine

Turing machine

Automaton

A universal computing object
(on paper)

von Neumann machine

Processor Memory

addresses

data

A practical universal computer
thanks to random access to
memory

Florent de Dinechin FPGAs for low latency audio applications ? 4

When reality kicks back

Random access in constant (fast) time is impossible in practice...

A law of nature

If the memory is infinite, some bits will be physically distant
and will therefore be accessed slowly.

Half of your silicon is there to maintain the illusion of random access...
Florent de Dinechin FPGAs for low latency audio applications ? 5

Meanwhile, von Neumann had a better idea

Cellular automata, e.g. Conway’s Game of Life

an infinite number of automata (in 1D or 2D)
next-neighbour communication

Field-programmable gate arrays (FPGA)

are to cellular automata what your PC is to a Turing machine.

Florent de Dinechin FPGAs for low latency audio applications ? 6

Meanwhile, von Neumann had a better idea

Cellular automata, e.g. Conway’s Game of Life

an infinite number of automata (in 1D or 2D)
next-neighbour communication

Field-programmable gate arrays (FPGA)

are to cellular automata what your PC is to a Turing machine.

Florent de Dinechin FPGAs for low latency audio applications ? 6

Next neighbour communications suck

Example: the “firing squad problem”:
how to synchronize n cells?

right: 3n steps, using 15 states

(best known: 2n − 2 steps, 6 states)

... in real life the captain simply shouts “Fire!”

Florent de Dinechin FPGAs for low latency audio applications ? 7

Next neighbour communications suck

Example: the “firing squad problem”:
how to synchronize n cells?

right: 3n steps, using 15 states

(best known: 2n − 2 steps, 6 states)

... in real life the captain simply shouts “Fire!”

Florent de Dinechin FPGAs for low latency audio applications ? 7

FPGA architectures

Introduction

FPGA architectures

Programmable?

FPGAs for low-latency audio

Conclusion

Florent de Dinechin FPGAs for low latency audio applications ? 8

Basic FPGA structure

Overview

A grid of configurable cells

... to build arbitrary logic

... and sequential circuits

Configurable wiring

routing channels
switch boxes

→ random access
to distant cells

Inside a cell

F

x0
x1
x2
x3

R yr

y

A Look-Up Table (LUT) F
4 inputs, one output
holds any truth table

1 bit of run-time memory R

Florent de Dinechin FPGAs for low latency audio applications ? 9

Basic FPGA structure

Overview

A grid of configurable cells

... to build arbitrary logic

... and sequential circuits

Configurable wiring

routing channels
switch boxes

→ random access
to distant cells

Inside a cell

F

x0
x1
x2
x3

R yr

y

A Look-Up Table (LUT) F
4 inputs, one output
holds any truth table

1 bit of run-time memory R

Florent de Dinechin FPGAs for low latency audio applications ? 9

Basic FPGA structure

Overview

A grid of configurable cells

... to build arbitrary logic

... and sequential circuits

Configurable wiring

routing channels
switch boxes

→ random access
to distant cells

Inside a cell

F

x0
x1
x2
x3

R yr

y

A Look-Up Table (LUT) F
4 inputs, one output
holds any truth table

1 bit of run-time memory R

Florent de Dinechin FPGAs for low latency audio applications ? 9

Basic FPGA structure

Overview

A grid of configurable cells

... to build arbitrary logic

... and sequential circuits

Configurable wiring

routing channels
switch boxes

→ random access
to distant cells

Inside a cell

F

x0
x1
x2
x3

R yr

y

A Look-Up Table (LUT) F
4 inputs, one output
holds any truth table

1 bit of run-time memory R

Florent de Dinechin FPGAs for low latency audio applications ? 9

A configured FPGA

Also known as reconfigurable circuits
used for reconfigurable computing

Florent de Dinechin FPGAs for low latency audio applications ? 10

Two moments in the life of an FPGA

Configuration time (1-1000 ms)

the LUTs are filled with truth tables

the state (on/off) of each switch in each switch box is defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.

You don’t program an FPGA, you configure it (as a circuit).

Florent de Dinechin FPGAs for low latency audio applications ? 11

Two moments in the life of an FPGA

Configuration time (1-1000 ms)

the LUTs are filled with truth tables

the state (on/off) of each switch in each switch box is defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.

You don’t program an FPGA, you configure it (as a circuit).

Florent de Dinechin FPGAs for low latency audio applications ? 11

Two moments in the life of an FPGA

Configuration time (1-1000 ms)

the LUTs are filled with truth tables

the state (on/off) of each switch in each switch box is defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.

You don’t program an FPGA, you configure it (as a circuit).

Florent de Dinechin FPGAs for low latency audio applications ? 11

Performance: It’s the routing, stupid

Most FPGA silicon is dedicated
to programmable routing.

“Customers buy logic,
but they pay for routing”

(Langhammer, Intel)

a picture from 1999 −→
(it got much worse since then)

A circuit that would fit in 1 mm2 of ASIC silicon
will only fit in a 50mm2 FPGA...

... and the configured FPGA will run at 1/10th the frequency

there are transistors on all the wires!

The FPGA costs 50e, where a 1mm2 circuit would cost 20,000e...

Florent de Dinechin FPGAs for low latency audio applications ? 12

Performance: It’s the routing, stupid

Most FPGA silicon is dedicated
to programmable routing.

“Customers buy logic,
but they pay for routing”

(Langhammer, Intel)

a picture from 1999 −→
(it got much worse since then)

A circuit that would fit in 1 mm2 of ASIC silicon
will only fit in a 50mm2 FPGA...

... and the configured FPGA will run at 1/10th the frequency

there are transistors on all the wires!

The FPGA costs 50e, where a 1mm2 circuit would cost 20,000e...

Florent de Dinechin FPGAs for low latency audio applications ? 12

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

More and more space between the buildings is dedicated to roads and
parking. How does that scale?
Los Angeles is a proof that the answer is: very badly:

2/3 of the area is dedicated to cars (roads + parking lots)

The circuit variant of this curse is called Rent’s law.

Florent de Dinechin FPGAs for low latency audio applications ? 13

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

More and more space between the buildings is dedicated to roads and
parking.

How does that scale?
Los Angeles is a proof that the answer is: very badly:

2/3 of the area is dedicated to cars (roads + parking lots)

The circuit variant of this curse is called Rent’s law.

Florent de Dinechin FPGAs for low latency audio applications ? 13

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

More and more space between the buildings is dedicated to roads and
parking. How does that scale?

Los Angeles is a proof that the answer is: very badly:
2/3 of the area is dedicated to cars (roads + parking lots)

The circuit variant of this curse is called Rent’s law.

Florent de Dinechin FPGAs for low latency audio applications ? 13

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

More and more space between the buildings is dedicated to roads and
parking. How does that scale?
Los Angeles is a proof that the answer is: very badly:

2/3 of the area is dedicated to cars (roads + parking lots)

The circuit variant of this curse is called Rent’s law.

Florent de Dinechin FPGAs for low latency audio applications ? 13

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

More and more space between the buildings is dedicated to roads and
parking. How does that scale?
Los Angeles is a proof that the answer is: very badly:

2/3 of the area is dedicated to cars (roads + parking lots)

The circuit variant of this curse is called Rent’s law.

Florent de Dinechin FPGAs for low latency audio applications ? 13

Rent’s law?

Yet another experimental law

In a circuit of diameter n,
the number of wires crossing a diameter
is proportional to nr with 1 < r < 2.

more than proportional to n, the diameter,

note quite proportional to the area n2

of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit.

FPGAs are designed for worst-case circuits, hence r close to 2...

Replace “circuit” with “city”, and “wires” with “citizen commuters”,
and you have the explanation of the Hopeless Universal Trafic Jam
in expanding cities.

Florent de Dinechin FPGAs for low latency audio applications ? 14

Rent’s law?

Yet another experimental law

In a circuit of diameter n,
the number of wires crossing a diameter
is proportional to nr with 1 < r < 2.

more than proportional to n, the diameter,

note quite proportional to the area n2

of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit.

FPGAs are designed for worst-case circuits, hence r close to 2...

Replace “circuit” with “city”, and “wires” with “citizen commuters”,
and you have the explanation of the Hopeless Universal Trafic Jam
in expanding cities.

Florent de Dinechin FPGAs for low latency audio applications ? 14

How many wires per routing channel?

1990

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1990

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1993 ?

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1993 ?

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1994

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1990

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1993

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1996

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

1999

Florent de Dinechin FPGAs for low latency audio applications ? 15

How many wires per routing channel?

2001

Florent de Dinechin FPGAs for low latency audio applications ? 15

Solutions

Can we save Los Angeles?

Build highways of various widths

Build busses, underground, light rail

Relocalize the economy

Use bicycles instead of SUVs

Transposed to FPGA:

heterogeneous routing

increase compute granularity

relocalize computations

compute just right

Oh, and by the way, did you get the message that complexity tools can
be applied to circuits?

Florent de Dinechin FPGAs for low latency audio applications ? 16

Solutions

Can we save Los Angeles?

Build highways of various widths

Build busses, underground, light rail

Relocalize the economy

Use bicycles instead of SUVs

Transposed to FPGA:

heterogeneous routing

increase compute granularity

relocalize computations

compute just right

Oh, and by the way, did you get the message that complexity tools can
be applied to circuits?

Florent de Dinechin FPGAs for low latency audio applications ? 16

Solutions

Can we save Los Angeles?

Build highways of various widths

Build busses, underground, light rail

Relocalize the economy

Use bicycles instead of SUVs

Transposed to FPGA:

heterogeneous routing

increase compute granularity

relocalize computations

compute just right

Oh, and by the way, did you get the message that complexity tools can
be applied to circuits?

Florent de Dinechin FPGAs for low latency audio applications ? 16

It was too simple so far, people would complain

coarser cells,
optimized for additions

many independent clock
networks with their PLLs

many small (≈ 24 bit) hard
multipliers (“DSP blocks”)

many small (≈ 10 kBit)
memories

the Altera/Intel stratix IV FPGA

Numbers for our cheap-ish (≈ 50e) Xilinx Zynq 7010

2 ARM processor cores @ 667MHz
+ 28k logic cells + 80 DSP blocks + 60 36kBit memory block ...
running at 200 MHz

Florent de Dinechin FPGAs for low latency audio applications ? 17

It was too simple so far, people would complain

coarser cells,
optimized for additions

many independent clock
networks with their PLLs

many small (≈ 24 bit) hard
multipliers (“DSP blocks”)

many small (≈ 10 kBit)
memories

the Altera/Intel stratix IV FPGA

Numbers for our cheap-ish (≈ 50e) Xilinx Zynq 7010

2 ARM processor cores @ 667MHz
+ 28k logic cells + 80 DSP blocks + 60 36kBit memory block ...
running at 200 MHz

Florent de Dinechin FPGAs for low latency audio applications ? 17

FPGAs in 2019

Lots of (coarse) configurable cells

tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

in small blocks of a few kbits
configurable in all sorts of ways
providing massive intra-FPGA bandwidth

up to several thousand DSP blocks

Multiply-Accumulate unit (typically 18x18+40 bits, integer)
Also sometimes flexible (may be split into 9x9 multipliers, etc)
Capable of 32-bit floating point on Intel

matching clock capabilities (hundreds of clock domains etc)

matching I/O capabilities

more than 1000 pins on large FPGAs
High-speed configurable I/Os: 1500 pages of documentation

Embedded ARM multi-core processors

it is unclear what is embedded in what

Florent de Dinechin FPGAs for low latency audio applications ? 18

FPGAs in 2019

Lots of (coarse) configurable cells

tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

in small blocks of a few kbits
configurable in all sorts of ways
providing massive intra-FPGA bandwidth

up to several thousand DSP blocks

Multiply-Accumulate unit (typically 18x18+40 bits, integer)
Also sometimes flexible (may be split into 9x9 multipliers, etc)
Capable of 32-bit floating point on Intel

matching clock capabilities (hundreds of clock domains etc)

matching I/O capabilities

more than 1000 pins on large FPGAs
High-speed configurable I/Os: 1500 pages of documentation

Embedded ARM multi-core processors

it is unclear what is embedded in what

Florent de Dinechin FPGAs for low latency audio applications ? 18

FPGAs in 2019

Lots of (coarse) configurable cells

tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

in small blocks of a few kbits
configurable in all sorts of ways
providing massive intra-FPGA bandwidth

up to several thousand DSP blocks

Multiply-Accumulate unit (typically 18x18+40 bits, integer)
Also sometimes flexible (may be split into 9x9 multipliers, etc)
Capable of 32-bit floating point on Intel

matching clock capabilities (hundreds of clock domains etc)

matching I/O capabilities

more than 1000 pins on large FPGAs
High-speed configurable I/Os: 1500 pages of documentation

Embedded ARM multi-core processors

it is unclear what is embedded in what

Florent de Dinechin FPGAs for low latency audio applications ? 18

FPGAs in 2019

Lots of (coarse) configurable cells

tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

in small blocks of a few kbits
configurable in all sorts of ways
providing massive intra-FPGA bandwidth

up to several thousand DSP blocks

Multiply-Accumulate unit (typically 18x18+40 bits, integer)
Also sometimes flexible (may be split into 9x9 multipliers, etc)
Capable of 32-bit floating point on Intel

matching clock capabilities (hundreds of clock domains etc)

matching I/O capabilities

more than 1000 pins on large FPGAs
High-speed configurable I/Os: 1500 pages of documentation

Embedded ARM multi-core processors

it is unclear what is embedded in what

Florent de Dinechin FPGAs for low latency audio applications ? 18

FPGAs in 2019

Lots of (coarse) configurable cells

tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

in small blocks of a few kbits
configurable in all sorts of ways
providing massive intra-FPGA bandwidth

up to several thousand DSP blocks

Multiply-Accumulate unit (typically 18x18+40 bits, integer)
Also sometimes flexible (may be split into 9x9 multipliers, etc)
Capable of 32-bit floating point on Intel

matching clock capabilities (hundreds of clock domains etc)

matching I/O capabilities

more than 1000 pins on large FPGAs
High-speed configurable I/Os: 1500 pages of documentation

Embedded ARM multi-core processors

it is unclear what is embedded in what

Florent de Dinechin FPGAs for low latency audio applications ? 18

FPGAs in 2019

Lots of (coarse) configurable cells

tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

in small blocks of a few kbits
configurable in all sorts of ways
providing massive intra-FPGA bandwidth

up to several thousand DSP blocks

Multiply-Accumulate unit (typically 18x18+40 bits, integer)
Also sometimes flexible (may be split into 9x9 multipliers, etc)
Capable of 32-bit floating point on Intel

matching clock capabilities (hundreds of clock domains etc)

matching I/O capabilities

more than 1000 pins on large FPGAs
High-speed configurable I/Os: 1500 pages of documentation

Embedded ARM multi-core processors

it is unclear what is embedded in what

Florent de Dinechin FPGAs for low latency audio applications ? 18

The real (Xilinx) Configurable Logic Block

A “slice” (cut from Xilinx Virtex7 doc):

Granularity increasing

6-input LUTs
(and counting)

4 LUT/slice
(and counting)

2 slice/CLB
Ratio reg/LUT

still equal to 1

All this keeps routing local

Support of frequent ops

addition: carry logic
(skips the slow routing)

shift registers: SRL

Florent de Dinechin FPGAs for low latency audio applications ? 19

The real (Intel) Logic Array Block

4 input/LUT

4 LUT/ALM

10 ALM/LAB

ratio LUT/reg still 1

specific addition logic.

Florent de Dinechin FPGAs for low latency audio applications ? 20

Xilinx configurable DSP block

Florent de Dinechin FPGAs for low latency audio applications ? 21

Programmable?

Introduction

FPGA architectures

Programmable?

FPGAs for low-latency audio

Conclusion

Florent de Dinechin FPGAs for low latency audio applications ? 22

It was too simple, people would complain

Synthesis tool

classical HDL flow

HLS tool

High-level
language
e.g. C++

High-level synthesis (HLS) flow

You don’t program, you design a circuit
with fancy languages such as VHDL or Verilog
with compilers called “synthesis tools” that can take hours

Since the 2010, FPGA programming in C/C++ for the rest of us
but you won’t escape the synthesis tools

C++ programming is called “high level” !?!

Florent de Dinechin FPGAs for low latency audio applications ? 23

It was too simple, people would complain

Synthesis tool

classical HDL flow

HLS tool

High-level
language
e.g. C++

High-level synthesis (HLS) flow

You don’t program, you design a circuit
with fancy languages such as VHDL or Verilog
with compilers called “synthesis tools” that can take hours

Since the 2010, FPGA programming in C/C++ for the rest of us
but you won’t escape the synthesis tools

C++ programming is called “high level” !?!

Florent de Dinechin FPGAs for low latency audio applications ? 23

It was too simple, people would complain

Synthesis tool

classical HDL flow

HLS tool

High-level
language
e.g. C++

High-level synthesis (HLS) flow

You don’t program, you design a circuit
with fancy languages such as VHDL or Verilog
with compilers called “synthesis tools” that can take hours

Since the 2010, FPGA programming in C/C++ for the rest of us
but you won’t escape the synthesis tools

C++ programming is called “high level” !?!

Florent de Dinechin FPGAs for low latency audio applications ? 23

The VHDL language in two slides (1)

Entities (= black boxes), ports, instances, signals (= wires)

just like when we draw architectures

Intrinsically parallel

in a circuit, all the gates operate in parallel
consequence: the order of statements in the code is often irrelevant
A <= B xor C; means: connect output of B xor C to A

(this describes an infinite number of xor operations)

Two approaches to describing circuits (to be used together)
structural: boxes connected with wires

I to be used for divide-and-conquer description of complex circuits

behavioural: describes what the circuit does, not how it is built
I to be used to describe the lower-level (smaller) boxes
I describe semantics, leave to the compiler the technology-dependent

plumbing of gates/LUT

compiling behaviour into structure is a challenge, forever

Florent de Dinechin FPGAs for low latency audio applications ? 24

The VHDL language in two slides (1)

Entities (= black boxes), ports, instances, signals (= wires)

just like when we draw architectures

Intrinsically parallel

in a circuit, all the gates operate in parallel
consequence: the order of statements in the code is often irrelevant
A <= B xor C; means: connect output of B xor C to A

(this describes an infinite number of xor operations)

Two approaches to describing circuits (to be used together)
structural: boxes connected with wires

I to be used for divide-and-conquer description of complex circuits

behavioural: describes what the circuit does, not how it is built
I to be used to describe the lower-level (smaller) boxes
I describe semantics, leave to the compiler the technology-dependent

plumbing of gates/LUT

compiling behaviour into structure is a challenge, forever

Florent de Dinechin FPGAs for low latency audio applications ? 24

The VHDL language in two slides (1)

Entities (= black boxes), ports, instances, signals (= wires)

just like when we draw architectures

Intrinsically parallel

in a circuit, all the gates operate in parallel
consequence: the order of statements in the code is often irrelevant
A <= B xor C; means: connect output of B xor C to A

(this describes an infinite number of xor operations)

Two approaches to describing circuits (to be used together)
structural: boxes connected with wires

I to be used for divide-and-conquer description of complex circuits

behavioural: describes what the circuit does, not how it is built
I to be used to describe the lower-level (smaller) boxes
I describe semantics, leave to the compiler the technology-dependent

plumbing of gates/LUT

compiling behaviour into structure is a challenge, forever

Florent de Dinechin FPGAs for low latency audio applications ? 24

Semantic of a circuit? Event-driven simulation

.

an event (t, s, v) is a transition of signal s to value v at instant t.
v may be 0, 1, Z (high impedance), and a few others

the semantic of a circuit is: how it reacts to events on its inputs.

How to simulate a circuit (event-driven simulator)

maintain a list of events (t, s), sorted by t:
next event to happen is first of list

while(list not empty) {
remove first event;
propagate it through the components that have it at input;
insert the resulting events in the list;
}

Not completely deterministic if several events happen at the same time.

Florent de Dinechin FPGAs for low latency audio applications ? 25

The VHDL language in two slides (2)

The semantic of A <= B xor C; is:
each time an event arrives to B or to C, propagate it through the
xor to generate an event on A

again, such statements may be written in any order: the order of
events is given by the graph of the circuit

more accurate (when needed): A <= B xor C after 10 ns;

Behaviourial VHDL: describe your circuit as processes that react to
events. Such processes may be described in an imperative
language.

Florent de Dinechin FPGAs for low latency audio applications ? 26

The big challenge: rising abstraction level

Refining: Incrementally moving from an high-level description to an
implementation
Examples of refinements (non exhaustive list)

Replace a behavioral block with a structural one

Parallelization: extract parallelism from sequential code

Timing refinement: schedule everything

Data refinement: from floating-point to fixed-point

Placement and routing

...

Florent de Dinechin FPGAs for low latency audio applications ? 27

FPGAs for low-latency audio

Introduction

FPGA architectures

Programmable?

FPGAs for low-latency audio

Conclusion

Florent de Dinechin FPGAs for low latency audio applications ? 28

The Syfala project

Motivation: low-latency audio embedded systems
musical instruments
virtual and augmented audio (ambisonics...)
etc.

Classical processors: enough power but latency too high
audio buffers all over the place

Sound processing on FPGAs?
no bufffer, an audio pipeline with sub-sample latency
4000 FPGA cycles in a sample period @ 44kHz
and also ample parallel computing power (80 DSP blocks)
and also fancy operators (e.g. 1-cycle sine)
... but extremely complex to program

The Syfala project

High level audio description language: Faust (GRAME).

High Level Synthesis of FPGA bitsreams: VivadoHLS (Xilinx)

Advanced arithmetics optimization: Flopoco (Socrate)

Florent de Dinechin FPGAs for low latency audio applications ? 29

First Syfala prototype on Zybo Z7

main chip: Xilinx Zynq-7000

2 ARM processor cores
FPGA fabric

I 28k logic cells
I 80 DSP blocks
I 60 36kBit memory block
I ... running at 200 MHz

Audio chip: SSM 2603

1GB DDR RAM

all sorts of inputs/outputs

First internship: set up an audio pipeline on the FPGA

route audio directly from SSM chip to FPGA logic and back
(not using the ARM audio driver)

(I2C/I2S protocols)

Florent de Dinechin FPGAs for low latency audio applications ? 30

First latency evaluation: simple echo

#file echo.dsp
myecho = par(i, 2, echo(delay, fback))
with {
 echo(d,f) = + ~ (@(d) : *(f));
 delay = hslider("delay", 4800, 1, 16000, 1) - 1;
 fback = hslider("feedback", 0.7, 0, 0.99, 0.01);
};
process = myecho;

High Level S
ynthesis

Human check

Zybo board

Faust compiler

Faust

C++

faust -lang c -light -os
 -a fpga.cpp -o echo.dsp

result: 840 µs latency: too much! (target: 100 µs)

800 µs due to SSM chip

⇒ get rid of SSM chip?

use a lower-latency audio chip?
use a plain ADC + analog filter? (see e.g. futur3soundz)

Ultimately we want multiple input, multiple outputs anyway

Florent de Dinechin FPGAs for low latency audio applications ? 31

Current state and upcoming challenges

Current state:

Faust-to-Zybo working and automated

credits to Adeyemi, Ousmane, Tanguy, Stéphane, Romain, Yann,
Gero and Alain

... including RAM access (to store past audio samples)

but currently inefficient

who needs floating-point for audio hardware?

Fun stuff ahead

fix the sound chip latency issue

human interface on the ARM controlling the FPGA?

fine-tune the Faust-generated hardware

define a fixed-point Faust backend

audio sample clock versus FPGA clock

...

Florent de Dinechin FPGAs for low latency audio applications ? 32

Conclusion

Introduction

FPGA architectures

Programmable?

FPGAs for low-latency audio

Conclusion

Florent de Dinechin FPGAs for low latency audio applications ? 33

FPGA programming for the rest of us

I want to try to program an FPGA, where do I start?

Amazon, Microsoft or OVH all offer FPGA resources on the cloud

I haven’t tried yet.

Xilinx as well as Intel (intend to) sell entry-level boards
that can be programmed in Python

I haven’t tried yet (but maybe somebody here has).

Frameworks that limit application domains/expressivity
for the sake of ease of use?

e.g. assemble pre-compiled block to avoid the huge compilation time
Maxeler data-flow compiler (see last talk today)

Go for HLS, even if it means sacrificing performance?

parallel with popular programming languages...
don’t believe that you get good results without understanding the
FPGA architecture
don’t believe that you get good results without tweaking

Florent de Dinechin FPGAs for low latency audio applications ? 34

The Dinechin theorem

For 20 years, the FPGA community has been waiting for the “killer
application”.
(The widely useful application on which the FPGA is so much better)

Theorem: we’ll wait forever.

Proof: When such an application pops up,

either it is indeed widely useful, and next year’s Pentium will do it
in hardware 10x faster than the FPGA, so it won’t be an FPGA
killer app next year,

or the FPGA remains competitive next year, but it means that it
was not a killer app.

Still, the killer feature of FPGAs is their programmability.

Florent de Dinechin FPGAs for low latency audio applications ? 35

The Dinechin theorem

For 20 years, the FPGA community has been waiting for the “killer
application”.
(The widely useful application on which the FPGA is so much better)

Theorem: we’ll wait forever.

Proof: When such an application pops up,

either it is indeed widely useful, and next year’s Pentium will do it
in hardware 10x faster than the FPGA, so it won’t be an FPGA
killer app next year,

or the FPGA remains competitive next year, but it means that it
was not a killer app.

Still, the killer feature of FPGAs is their programmability.

Florent de Dinechin FPGAs for low latency audio applications ? 35

The Dinechin theorem

For 20 years, the FPGA community has been waiting for the “killer
application”.
(The widely useful application on which the FPGA is so much better)

Theorem: we’ll wait forever.

Proof: When such an application pops up,

either it is indeed widely useful, and next year’s Pentium will do it
in hardware 10x faster than the FPGA, so it won’t be an FPGA
killer app next year,

or the FPGA remains competitive next year, but it means that it
was not a killer app.

Still, the killer feature of FPGAs is their programmability.

Florent de Dinechin FPGAs for low latency audio applications ? 35

The Dinechin theorem

For 20 years, the FPGA community has been waiting for the “killer
application”.
(The widely useful application on which the FPGA is so much better)

Theorem: we’ll wait forever.

Proof: When such an application pops up,

either it is indeed widely useful, and next year’s Pentium will do it
in hardware 10x faster than the FPGA, so it won’t be an FPGA
killer app next year,

or the FPGA remains competitive next year, but it means that it
was not a killer app.

Still, the killer feature of FPGAs is their programmability.

Florent de Dinechin FPGAs for low latency audio applications ? 35

Finest Programmable Granularity Around

Programmable chips, but programmed in terrible languages

Efficient for integer addition and integer multiplication

Efficient for implementing tables

All this at the granularity of the bit

17-bit adder
multiplier of 7-bit numbers by 56-bit numbers
table of 27 entries of 17 bits each
...

And of course glue logic

This is the teaser for my second talk.

Florent de Dinechin FPGAs for low latency audio applications ? 36

Finest Programmable Granularity Around

Programmable chips, but programmed in terrible languages

Efficient for integer addition and integer multiplication

Efficient for implementing tables

All this at the granularity of the bit

17-bit adder
multiplier of 7-bit numbers by 56-bit numbers
table of 27 entries of 17 bits each
...

And of course glue logic

This is the teaser for my second talk.

Florent de Dinechin FPGAs for low latency audio applications ? 36

Finest Programmable Granularity Around

Programmable chips, but programmed in terrible languages

Efficient for integer addition and integer multiplication

Efficient for implementing tables

All this at the granularity of the bit

17-bit adder
multiplier of 7-bit numbers by 56-bit numbers
table of 27 entries of 17 bits each
...

And of course glue logic

This is the teaser for my second talk.

Florent de Dinechin FPGAs for low latency audio applications ? 36

Finest Programmable Granularity Around

Programmable chips, but programmed in terrible languages

Efficient for integer addition and integer multiplication

Efficient for implementing tables

All this at the granularity of the bit

17-bit adder
multiplier of 7-bit numbers by 56-bit numbers
table of 27 entries of 17 bits each
...

And of course glue logic

This is the teaser for my second talk.

Florent de Dinechin FPGAs for low latency audio applications ? 36

Finest Programmable Granularity Around

Programmable chips, but programmed in terrible languages

Efficient for integer addition and integer multiplication

Efficient for implementing tables

All this at the granularity of the bit

17-bit adder
multiplier of 7-bit numbers by 56-bit numbers
table of 27 entries of 17 bits each
...

And of course glue logic

This is the teaser for my second talk.

Florent de Dinechin FPGAs for low latency audio applications ? 36

Back to the war of the programming models

Here are two((((
(((hhhhhhhprogrammable��

�H
HHchips ways of wasting silicon.

Which is best for (insert your computation here) ?

Florent de Dinechin FPGAs for low latency audio applications ? 37

Thank you for your attention.

Florent de Dinechin FPGAs for low latency audio applications ? 38

Backup slides

Florent de Dinechin FPGAs for low latency audio applications ? 39

	Introduction
	FPGA architectures
	Programmable?
	FPGAs for low-latency audio
	Conclusion

