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Outline

The kind of stuff you get in keynote talks in hardware conferences;
Then a philosophical introduction to my own little problems:

Moore’s Law and the end of it

Computing with circuits

Hardware description languages

A gentle introduction to FPGAs?

Conclusion
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Moore’s law

From observations in a 1965 paper by Gordon Moore (Intel)

The number of transistors we can pack on an economically viable chip
doubles every two years

Mostly a self-fulfilling prophecy
If it stops being true, a huge part of the economy collapses

Mostly thanks to the ability to etch smaller transistors√
2 times smaller every other year

plus, up to the 70s, improvements in chip area
current plateau at 1 cm2

... for “economically viable”

From 2004 on: more transistors produced in the world
than grains of rice, and cheaper
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Licence CC, Source: Wikipedia
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Dennard scaling

From a 1974 paper by Robert Dennard (IBM)

Smaller transistors run faster and consume less

In details,

frequency follows Moore’s law

computing power follows Moore’s law

power dissipated in a transistor follows inverse Moore’s law

factor
√

2 on both voltage and current

And overall:

chip-level dissipated power mostly constant

Contrary to Moore’s law, Dennard scaling stopped in 2004.
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The good old times of Dennard scaling
ECE Overview What is Computer Engineering? • Trends in Computer Engineering • Computer Engineering Design

Exponential Scaling for Processor Computation
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The end of Dennard scaling
ECE Overview What is Computer Engineering? • Trends in Computer Engineering • Computer Engineering Design

Trend 2: Power Constrains Single-Processor Scaling
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Why the end of Dennard scaling

We can build faster circuits, the problem is that they melt down

Practical power dissipation limit: 100W /cm2

10x your cooking pan, comparable to the rods of a nuclear power plant

In the previous slide, the line that imposes the trend is the power.
Remark: 3D integration helps Moore, but annoys Dennard even more.
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The current solution to the end of Dennard scaling
ECE Overview What is Computer Engineering? • Trends in Computer Engineering • Computer Engineering Design

Trend 2: Multicore Performance Scaling
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Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
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The problem with the current solution to the end of
Dennard scaling

The great depression

Edward Lee: The Problem With Threads, 2006

David Patterson: The Trouble With Multicore, 2010

Homework: go read them.
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Reality shouldn’t constrain our formalisms

The end of Moore

Size of an atom?
The mesh size in silicon crystal is about 0.5nm (1nm=10−9m).

Current technology is marketed as 14nm
This corresponds to 30 atoms wide.

Corresponding oxide layer is about two atoms high,
and won’t get much thinner.

The end of Dennard

Corresponding oxide layer is about two atoms high.
−→ quantum tunelling −→ power waste

Transistor threshold voltage got down from 5V to 1V,
and won’t go much lower
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Oxide layer?

The following picture is advertising for the Electric CAD software

http://www.staticfreesoft.com/

(more interactive advertising if the beamer allows)
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Reality shouldn’t constraint our formalisms

Other limits

Speed of light?

3 · 108 m/s.

At the speed of light, a 3GHz signal
travels no further than 10 cm in a period

Homework: cross this with atom size, and get a limit frequency
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It’s the economy, stupid

The economic cost of a self-fulfilling prophecy

Each new foundry is twice as expensive as the previous one
(or: the cost of a new foundry also follows Moore’s law)

Why?

Build billions of reliable objects, each 3 atoms high, 50 atoms wide
requires a pretty good vacuum cleaner
Lithographic process used light, then UV, now almost X rays...

So foundries are teaming up to share the costs

At 22nm, we were down to 5 foundries

... at some point there will be no competitor left to merge with.
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It’s the energy, stupid

Back to physics:

Computing consumes energy

Each bit flipped entails a transfer of
electrons from the 	 to the ⊕ through
some resistors

Currently, switching 1 bit costs 10−18J
(1 attoJoule)

Figure from Energy per Instruction Trends in Intel Microprocessors by
Grochowski and Annavaramx
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It’s the energy, stupid (2)

Moving bits consumes energy

Switching 1 bit costs 10−18J,

Moving 1 bit costs 10−12J/cm (1pJ/cm)

(Really the same drawing, but with a larger C)

Doing nothing consumes energy

These days, roughly 1/3rd of power is leaked (quantum tunelling, etc).
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It’s the energy, stupid (3): the macro view

Approximate power in 28nm processor (adapted from Bill Dally)

One 64-bit floating-point Fused Multiply-Add: 50 pJ
This includes switching and moving around inside the FMA

Access to a 1Kx256-bit on-chip SRAM: 50 pJ

Moving 64 bits 1mm on-chip: 6 pJ

Moving 64 bits 1cm on-chip: 64 pJ
Remark: there are several tens of km of wires inside your Core i7

Reading 64 bits from external DRAM: 4000 pJ
due to the C of macro wires (between chips on your main board)
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Hence the current trends in VLSI circuits

Exposed here very well by Christopher Batten:

https://web.csl.cornell.edu/engrg1060/handouts/

engrg1060-ece-lecture.pdf
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The dark silicon apocalypse

Dark silicon?

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

“Dark silicon” is the percentage that must be off at a given time

(picture from a 2013 HiPEAC keynote by Doug Burger)
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Pleasant times to be an architect

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation (compared
to a software implementation that would take many more cycles)

when unused, serve as radiator for the used parts

Since they are rare, nobody bothered to study them before...
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And besides and en vrac

More data from various conference presentations

In a 1MBit SRAM (a cache), 10−25 fault per bit per cycle (and
worsening)

solved by hardware CRC in SRAM architectures,
but similar fault rates affect any circuit...

Flash memory displacing spinning disks

Non-volatile RAM soon to displace flash memory

micro-controler with non-volatile registers now on the market
A complete game changer in OS design

Digital radio: able to manage charges with a resolution of 200
electrons
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Trends in embedded systems

(an old slide written in 2013) Tilera versus Kalray versus Platform2012
Homework: go googling their respective datasheets, and place bets.

Things in common

Massively multicore (64-256)
Modern 64-bit VLIW cores
Homogeneous network-on-chip

Things that differ

Local memory: scratchpad (Kalray), L1+L2 caches (Tilera),
core-specific (P2012)
How to avoid memory starvation?
Homogeneous nodes (Kalray, Tilera) versus heterogeneous nodes
(P2012)
Approaches to clock domains and power domains (probably, did not
check really)
Floating-point (Kalray) versus integer-only
Only two of them made in Grenoble (Kalray, P2012)

2019 update: only Kalray still alive
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Why care about embedded systems?

This is where 90% of the research will need you

This is where Europe is (still) active
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Computing with circuits

Moore’s Law and the end of it

Computing with circuits

Hardware description languages

A gentle introduction to FPGAs?

Conclusion
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Examples of computations

Sorting n numbers

Computing the product of an n × n matrix by a vector

Computing the exponential of a double-precision floating-point
number

Generating pseudo random numbers with a Gaussian distribution

Compiling a computation

implementing a computation

evaluating the quality of the implementation (≈ complexity)

because we want to optimize the implementation
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Warning: we’re going to change the computing model

At this point of your career, you should have pretty clear ideas on

implementation on a PC, including sequential complexity

complexity notions in non-practical models

Before compiling to circuits, we need to deconstruct some of your
software heritage.

F. de Dinechin Computing with circuits 27



Practical complexity

Just like the real thing, but

constants are important

the actual machine is important

Between “asymptotic complexity on PRAM” and “time + gnuplot’’

PRAM (Parallel RAM) is a very nice model built against the laws of physics...

The level we need for an optimizing compiler to take decisions
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For a circuit, typing is important

complexity + sorting algorithms = oh no, not again ?

What do you think of the asymptotic complexity of sorting n
integers, each represented on 16 bits ?

bucket sorting maybe ?

How many boolean operations does it take to sort n 16-bit
integers?

I don’t know exactly, but there is an answer
(need to refine the problem formulation a bit more, still. Where?)

How many boolean operations does it take to sort n arbitrarily
large integers?

I don’t know exactly, but I know it depends on their coding
(need to refine the problem formulation even more)
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For optimizing and parallelizing compilers,
typing is important, too

What can be dumber than sorting algorithms?

Matrix product maybe?

Strassen, then Coppersmith/Winograd for reducing asymptotic
complexity
Blocking for reducing practical complexity (cache inefficiencies)

Very nice on the reals, but... floating-point addition is not associative.
Strassen or blocking return different results.
Then, returning the null matrix also answers the problem, and faster.

Quoting Kahan (Turing Award)

The fast drives out the slow even if the fast is wrong.

The good question is still open

What is the complexity (in FP operations) of computing the product of
two n × n FP matrices with 3 correct decimal digits in each element of
the result?
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Why this is a compiler issue, too

The compiler should respect the semantic of the language

C imposes a strict sequential evaluation order

Many optimizations are illegal in C.

Solutions:

program in Fortran :)
hide the problem behind under-specified libraries (BLAS)
or improve the language

The good language is still to design

declarative + precision specification

what to compute, not how to do it
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For a circuit, typing is important, 2

Computing the exponential of a floating-point number.

Lindemann theorem

if z is rational and z 6= 0 then ez is transcendental.
What is the complexity of computing its binary representation?

Let’s compute an approximation, then.

How many floating-point operations does it take to compute the
floating-point number nearest to the exponential of a floating-point
number?
How many operations does it take to compute the floating-point
number nearest to the exponential of a floating-point number?

Don’t forget to type the complexity, too!

F. de Dinechin Computing with circuits 32



For a circuit, typing is important, 2

Computing the exponential of a floating-point number.

Lindemann theorem

if z is rational and z 6= 0 then ez is transcendental.
What is the complexity of computing its binary representation?

Let’s compute an approximation, then.

How many floating-point operations does it take to compute the
floating-point number nearest to the exponential of a floating-point
number?
How many operations does it take to compute the floating-point
number nearest to the exponential of a floating-point number?

Don’t forget to type the complexity, too!

F. de Dinechin Computing with circuits 32



For a circuit, typing is important, 2

Computing the exponential of a floating-point number.

Lindemann theorem

if z is rational and z 6= 0 then ez is transcendental.
What is the complexity of computing its binary representation?

Let’s compute an approximation, then.

How many floating-point operations does it take to compute the
floating-point number nearest to the exponential of a floating-point
number?

How many operations does it take to compute the floating-point
number nearest to the exponential of a floating-point number?

Don’t forget to type the complexity, too!

F. de Dinechin Computing with circuits 32



For a circuit, typing is important, 2

Computing the exponential of a floating-point number.

Lindemann theorem

if z is rational and z 6= 0 then ez is transcendental.
What is the complexity of computing its binary representation?

Let’s compute an approximation, then.

How many floating-point operations does it take to compute the
floating-point number nearest to the exponential of a floating-point
number?
How many operations does it take to compute the floating-point
number nearest to the exponential of a floating-point number?

Don’t forget to type the complexity, too!

F. de Dinechin Computing with circuits 32



For a circuit, typing is important, 2

Computing the exponential of a floating-point number.

Lindemann theorem

if z is rational and z 6= 0 then ez is transcendental.
What is the complexity of computing its binary representation?

Let’s compute an approximation, then.

How many floating-point operations does it take to compute the
floating-point number nearest to the exponential of a floating-point
number?
How many binary operations does it take to compute the floating-point
number nearest to the exponential of a floating-point number?

Don’t forget to type the complexity, too!

F. de Dinechin Computing with circuits 32



Practical version

How many cycles does it take to compute exp if I have two parallel
fused multiply-and-add operators pipelined in 5 cycles each?

How much
memory does it consume?

See the Itanium books by HP’s Markstein or Intel’s Cornea et al.
In both cases, mathematical library team very close to the compiler
team.
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Time versus space

Naive matrix product takes n3 operations.

My FPGAs are massively parallel. These n3 operations can be
computed on n2 operators in n time.

Let’s vote

Strassen brings down the operation count for matrix multiplication to
22.808. Does it reduce

the time?

the number of needed operators?

both?
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The future is parallel, isn’t it?

The past was parallel, too (we have had a Laboratoire de l’Informatique
et du Parallélisme in Lyon since the 90s)

Three problems:

Technological problem 1: cost of communication wrt cost of
computation

Technological problem 2: programming

parallel programming vs automatic parallelization
none of which works well in all cases

Semantic problem: wild parallelism =⇒ non-determinism

linked to the language problem, of course

See the great depression.

Processor makers’ current marketing

Your old bicyle takes tou from Terreaux to La Doua in 20 minutes?
Buy our new dodecacycle, and you will travel in less than 2 minutes!
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Still, there is no escaping parallelism

I call that a heavy trend

current top supercomputer built out of 260-core chips

current phone processors with 8 cores

Kalray processor has 288 cores

current GPUs with 400+ cores

current FPGAs with 3000+ multipliers
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Hardware description languages

Moore’s Law and the end of it

Computing with circuits

Hardware description languages

A gentle introduction to FPGAs?

Conclusion
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Classical design flow

Circuit described in the VHDL or Verilog languages

Compilation in several steps

Logic optimization
Technology mapping: implement the logic as a graph of basic
components

I CMOS VLSI: nand, nor, flip-flop, ...
I FPGA: 6-input LUT, 18x18 multiplier, ...

Place the components to minimize wasted space and total length of
wires (NP-complete)
Route the wires between the components (also NP-complete)

Place and route may take weeks or months...
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The VHDL language in two slides (1)

Entities (= black boxes), ports, instances, signals (= wires)

just like when we draw architectures

Intrinsically parallel

in a circuit, all the gates operate in parallel
consequence: the order of statements in the code is often irrelevant
A <= B xor C; means: connect output of B xor C to A

(this describes an infinite number of xor operations)

Two approaches to describing circuits (to be used together)
structural: connect boxes with wires

I to be used for hierarchical description of complex circuits

behavioural: describes what the circuit does, not how it is built
I to be used to describe the lower-level (smaller) boxes
I describe semantics, leave to the compiler the technology-dependent

plumbing of gates/LUT
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Semantic of a circuit? Event-driven simulation

.

an event (t, s, v) is a transition of signal s to value v at instant t.
v may be 0, 1, Z (high impedance), and a few others

the semantic of a circuit is: how it reacts to events on its inputs.

How to simulate a circuit (event-driven simulator)

maintain a list of events (t, s), sorted by t:
next event to happen is first of list

while(list not empty) {
remove first event;
propagate it through the components that have it at input;
insert the resulting events in the list;
}

Not completely deterministic if several events happen at the same time.
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The VHDL language in two slides (2)

The semantic of A <= B xor C; is:
each time an event arrives to B or to C, propagate it through the
xor to generate an event on A

again, such statements may be written in any order: the order of
events is given by the graph of the circuit

more accurate (when needed): A <= B xor C after 10 ns;

Behaviourial VHDL: describe your circuit as processes that react to
events. Such processes may be described in an imperative
language.
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A gentle introduction to FPGAs?

Moore’s Law and the end of it

Computing with circuits

Hardware description languages

A gentle introduction to FPGAs?

Conclusion
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FPGAs

FPGAs are mass-produced VLSI chips
designed to emulate arbitrary logic circuits

Mostly used for rapid prototyping

Simulate/debug a circuit at 1/10 the speed
instead of 1/100000 for software simulation

Other applications:

Small series (cheaper than designing a chip)
Market locking (Cisco)

I faster to market than founding a chip
I product out before standard is finalized, then upgraded on the field

Can we use these chips as programmable co-processors?
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Basic FPGA structure

Overal view

Logic: Look-Up Table F
4 inputs,
1 output

filled with an arbitrary
truth table

Memory: 1-bit register

Cell: configurable logic blocks

Configurable routing

need random access here

Content of one block

F

x0
x1
x2
x3

R yr

y

In blue, switch boxes to connect crossing lines
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Two moments in the life of an FPGA

Configuration time (a few ms)

the LUTs are filled with truth tables

the switching state (on/off) of each switch in each switch boxes is
defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.
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A configured FPGA

Also known as reconfigurable circuits
used for reconfigurable computing
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Compared to ASIC, 1/10th the speed

Why?

Most of the silicon is dedicated to programmable routing

Cost in area, but also delay: many transistors on each wire

“Customers buy logic, but they pay for routing” (Langhammer)

And it gets worse (Rent’s law)
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Rent’s law?

Yet another experimental law

In a circuit of diameter n, the number of wires crossing a diameter is
proportional to nr with 1 < r < 2.

more than proportional to n, the diameter itself,

note quite proportional to the area n2 of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit, etc.

Replace “circuit” with “city” and “wires” with “citizens each morning”
and you have the explanation of the Hopeless Universal Trafic Jam
in expanding cities.
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Programming FPGAs

Current mainstream design-flow is hardware-like:

You don’t write a program, you design a circuit

Design tools are inherited from those of VLSI circuits

This is the main challenge. Who wants 1-week compilation time?
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Current generation of FPGAs

Programmable cells got coarser

currently, clusters of 6-input LUT
up to 500,000 of them
tens of millions of equivalent logic gates

up to several tens of Mb of embedded memories

configurable in all sorts of ways
massive intra-FPGA bandwidth

up to several thousand DSP blocks

MAC unit (typically 18x18+40 bits, integer)
Also flexible (may be split into 9x9 multipliers, etc)

and many other features irrelevant to this talk

High-speed configurable I/Os: 1500 pages of documentation
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Summary: Finest Programmable Granularity Around

Programmable chips, but programmed in VHDL

Efficient for integer addition and integer multiplication

Efficient for implementing tables

All this at the granularity of the bit

17-bit adder
multiplier of 7-bit numbers by 56-bit numbers
table of 27 entries of 17 bits each
...

And of course glue logic
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Conclusion

Moore’s Law and the end of it

Computing with circuits

Hardware description languages

A gentle introduction to FPGAs?

Conclusion
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Computing at large

Think parallel, but then think circuit.
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The “no killer app for FPGAs” theorem

For 20 years, the FPGA community has been waiting for the “killer
application”.
(The widely useful application on which the FPGA is so much better)

Theorem: we’ll wait forever.

Proof: When such an application pops up,

either it is indeed widely useful, and next year’s Pentium will do it
in hardware 10x faster than the FPGA, so it won’t be an FPGA
killer app next year,

or the FPGA remains competitive next year, but it means that it
was not a killer app.

The killer feature of FPGAs is flexibility

To exploit it, we need to design better tools...
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