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Abstract. Even if the multi-agent paradigm has been evolving for fif-
teen years, the development of concrete methods for problem solving
remains a major challenge. This paper focuses on reactive multi-agent
systems because they provide interesting properties such as adaptability
and robustness. In particular, the role of the environment, which is effec-
tively where the system computes and communicates, is studied. From
this analysis a methodology to design or engineer reactive systems is in-
troduced. Our approach is based on the representation of the problem’s
constraints considered as perturbations to stabilize. Agents are then de-
fined, in the second place, as a means of regulating the perturbations.
Finally, the relevancy of our proposition is justified through the devel-
opment of two solving models applied to real and complex problems.

1 Introduction

Even if the multi-agent paradigm has been evolving for fifteen years, the de-
velopment of concrete methods for problem solving remains a major challenge.
This paper addresses this problem by proposing a methodology aimed at de-
signing reactive multi-agent solutions. Such systems rely on reactive agents,
which are simple entities that behave following their perceptions [14]. We fo-
cus on reactive systems because they present interesting features such as self-
organization/emergent phenomena, robustness, adaptability, simplicity and re-
dundancy of the agents (and consequently low cost agent design). It has been
shown that this approach is efficient for tackling complex problems such as life-
systems simulation/study [31] [21] [26], cooperation of situated agents/robots
[38] [27] [9] [26], problem/game solving [8] [10],...
However, it is difficult to extract a generic method to build reactive-based so-
lutions facing (distributed) problems. This difficulty is due to the complexity
of such systems where agents and interactions are numerous and where global
dynamics are complex to control and/or predict.

As it has been emphasized in [31] and [28], the environment plays an im-
portant role in reactive multi-agent systems (MAS). It is the main place where



the system computes, builds and communicates. In the problem-solving frame-
work, it is clear that one reactive agent can neither handle a representation of
the problem nor compute its solution. The resolution is obtained from numerous
agent-agent and agent-environment interactions [14] [31] [21]. Agent interactions
are reactions to perceptions, they participate directly in the solving processes,
but they do not provide a means to express the problem. So, the representation
of the problem can only be defined through the environment model. In this paper
we re-examine the role played by each element in collective systems, by focus-
ing on the environment. This work is motivated by the necessity of clarifying
the common points used in different environment-based techniques and reac-
tive agent-based MAS. Thus we present a synthetic view on reactive systems
by considering existing collective solving systems such as the pheromone-based
approach and the eco-resolution model. This analysis allows us to propose a
methodology aimed at building environment-based solving systems.

The proposed methodology establishes the link between the representation of
the problem, expressed as environmental constraints, and agent behaviors, which
are regulation items of the environmental perturbations. This method contrasts
with classical approaches that involve defining agents and interactions by fol-
lowing the expected organization (as proposed in [27] [28]). In our case, agents
are defined in the second place, and build as regulation processes depending on
the problem model. The environment is clearly defined as a first-class entity of
the multiagent system ([42] as shown the importance of such an approach in
multiagent conception).

The paper is structured as follows. Sect.2 presents a re-examination of re-
active MAS from an automatic control point of view and classical collective
models are analyzed. In Sect.3 the four main points of the methodology are intro-
duced, first with a general point of view and then in detail considering a concrete
use. This section ends with a comparison to related work. Section 4 illustrates
the methodology through two examples of applications: the satisfaction-altruism
model for decentralized cooperation between situated agents and a Physics based
model for localization and target tracking. Finally, in Sect.5, we conclude on the
proposed methodology and present some future work.

2 Examination of Collective Processes

2.1 Expression of Reactive MAS within the Automatic Control
Approach

As opposed to the socio or bio inspired approaches, we propose a more pragmatic
engineering method for defining reactive agent-based problem solving systems.
Our approach is closely tied to the standard regulation loop defined in automatic
control. The goal of the problem solving is to build a solution, stable in time
and space, considering the formulation of a problem that has its own topology
(i.e. how the problem is structured in space) and dynamics (i.e. how the problem
evolves). Thus, the MAS can be considered as a regulation (or filtering) process.
As a consequence, solving a problem leads to defining the parameters of the



regulation loop in order to obtain a stable output (solution level) considering
the variations of the input (problem level).
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Fig. 1. Environment based solving principle

The environment is defined as the input layer of the regulation loop, see Fig.1.
It translates the variations and the topology of the problem and presents them to
the agents. The organization is the output layer of the system. It represents the
state of the system on a spatial and temporal level. The regulation mechanism
is defined by the agents’ actions and their interactions. These interactions have
been divided into two categories. The first characterizes the agent-agent interac-
tions, which compose the direct branch of the regulation loop that is considered,
in automatic control, as amplification. This can be compared to positive feed-
back defined by Muller in [28]. The second, called the negative feedback, is the
regulation loop carried out by agents-environment interactions (these different
kind of interactions are detailed in Sect. 3.2). The environment is modified by
both the problem and regulation dynamics.

2.2 Analysis of Classical Collective Solving Models

In this section, we re-examine two widespread techniques of collective problem
solving: the eco-resolution and the pheromone-based models. This re-examination
considers the automatic control point of view exposed in the previous paragraph.
The goal of this section is to evaluate the place of the environment and of the
regulation mechanisms in these methods.

Eco-resolution The eco-resolution model [13][8] relies on the agentification of
all the elements of the problem. As a consequence the environment is divided
in a set of agents (for instance in the Towers of Hanoi problem, the disks and
the stacks will be defined as agents). Each agent is defined by the same reactive
model (the eco-agent model). An eco-agent has only 3 possible states: satisfied,
dissatisfied and attacked. It has 3 possible behaviors: (i) searching a place to flee
when attacked, (ii) attacking the agents that hinder its actions, (iii) running an



action to be satisfied. The resolution relies on the fact that when an agent is
attacked, it has to search a place to flee. If such a place does not exist it has to
attack its hinderers.

In this model each agent has to be satisfied to consider the problem solved,
corresponding to the achieving of a stable state (the solution representation).
An agent tries to move when attacked by another agent. This attack represents
a perturbation in the environment. The model then ensures that the attacked
agent tries to flee in order to regulate this perturbation (local interaction). If
this locate regulation cannot be performed, due to the presence of hinderers,
the attacked agent propagates the perturbation by attacking new agents. This
“recursive” process corresponds to the generation of a collective process, i.e. a
solving process at the macro level, leading to the whole solution (details in [13]).
However, this model can presents instable processes such as loops or oscillations.
It is then necessary to enhance agents’ perceptions and/or introduce knowledge
on the system state, as presented in [10] for the N-Puzzle solving.

Pheromone-based Algorithms The well known pheromones-based algorithms
are typical environment-based solving systems. Agents drop artificial pheromones
in the environment in order to create shared information (these pheromones are
chemical substances diffusing and evaporating). Here we illustrate the principle
on the construction of an optimal path between a nest and a resource place. The
problem is represented by the nest, the resource and an obstacle that define two
possible paths of different length (as presented in [7]). Agents drop pheromones
as they move, then the pheromone is initially distributed along the two possible
paths (probabilities to choose one of them are equal). For the agents this repar-
tition of pheromones represents an absence of information. The resulting state
of the environment, and consequently of the problem, can be considered to be
totally perturbed.

In order to allow the emergence of the optimal path, a reinforcement mechanism
is defined by a simple agent behavior. Agents move preferentially towards direc-
tions with the maximum amount of pheromones. Consequently ants concentrate
pheromones on the shortest path (details in [7]). This concentration involves
a reduction of the initial perturbation of the environment state. The reinforce-
ment mechanism leads, in time, to a stable state where only one path is built and
used between the nest and the resource. This state is characterized by equilib-
rium between the problem dynamics, made material by the diffusion/evaporation
phenomenon, and the resolution dynamics induced by the agents.

In the case of pheromone-based algorithms, the emergent organization is partic-
ular. It is not included in the agents states but directly in the environment itself
(areas concentrating pheromones).



3 Methodology for Building an Environment-based
Solving System

3.1 General Description of the Methodology

Existing environment-based solving techniques are generally presented by re-
ferring to a set of implicit or explicit concepts (such as biological behaviors,
emergence principles, regulation loops, etc). Defining a methodology allows to
clarify the implicit methods used for the construction of many environment-
based systems. The two previous sections establish the role of the environment
that can be considered as the place where the problem constraints are expressed
and the multi-level resolution of these constraints thanks to agent behaviors.
This analysis leads to define a conception methodology for environment-based
solving processes, which is composed of four main steps:

1. Defining the problem’s model, i.e. the environment. It has to repre-
sent the problem to solve on both a topological and dynamic level (details
in next section). Modeling an environment implies also for the designer to
define almost an environment structure (for spatial representation, which
can be discrete or continuous) and the laws that govern its dynamics (as
analyzed in [42]). Note that the environment can be totally a virtual one or
include elements of the real world. In this last case, the environment can be
considered as an enhanced real world.

2. Defining agent perceptions. Agents must be able to perceive the envi-
ronmental perturbations modeling the problem. They have to detect states
and dynamics that are considered as problem constraints, in order to solve
them. Means of perception abilities are tackled in the next section.

3. Defining agents’ interaction mechanisms in order to reduce the per-
turbations. These mechanisms are defined in 3 levels:

(a) Provide individual and local reactions to the perceived constraints, i.e.
actions from agent to the environment.

(b) If these local actions are inefficient in some situations or can lead to
conflicts, even considering their combination, provide direct interactions
(agent-agent(s)) that enable cooperative processes. They have to reduce
conflicts/constraints perceived by agents and to perform complex tasks
(involving several agents).

(¢) Provide actions to regulate the previous processes (local and coopera-
tive) when they present instability risks (amplifications, loops, etc..)



4. Measuring/Observing the result as an emergent structure, in terms
of agents (position, dynamics,...) or in terms of environment (structure,
topology,...) as defined in [29]. This structure is the consequence of the two
dynamics of the solving principle (i.e. the dynamics of the problem on one
side and the resolution dynamics on the other). This result can only be
measured and/or observed at a macroscopic level. Measuring organization
in reactive MAS is a recurrent problem. The next section gives some clues
in order to tackle with this issue.

A fifth optional step may be considered. It consists to iterate on the third
step after the measuring/observing phase. Indeed, the designer can discover,
while measuring/observing the resolution, that it neglected some constraints or
that instable behaviors are not taken into account (these ones are generally dif-
ficult to forecast). Modifying agents’ interaction can then improve the system
efficiency (it is the parameter settings phase of the system). This phase can be
a process of trail and error and/or learning/optimization process with specific
algorithms such as gradient descent methods.

3.2 Detailled Points on the Methodology

The previous section describes the general meaning of the proposed methodology.
The goal of the current section is to give some clues in order to cope with each
point of the methodology. The key principles given are not necessarily exhaustive
but they represent the main directions that a designer can follow in order to build
up a reactive MAS solving process.

How to Build up a Problem’s Model ? Two main characteristics have to
be taken into account to build up an environment representing the problem’s
model: its topology and dynamics (as emphasized in [42]).

As for the topology, there are two main possibilities whether the problem’s topol-
ogy must be discretized or not. In fact, this choice depends also on what kind of
approach is used to deal with the agents’ decision processes and moves. Indeed,
if the agents have to follow a probability law to compute their next position, the
choice of a discrete representation is more relevant. For instance, if pheromones
[33] or Markov models [5] are key elements for the agents’ decision process, using
a discrete environment is the best choice. By contrast, if the moves are computed
considering Physics based force fields [17], [25], the environment has to be con-
tinuous to better fit to agents’ behaviors.

Two main methods are widespread in order to deal with the dynamics. One is
a bio-inspired method using digital pheromones [33], [34]. In this case, the dy-
namics of the environment is tied to the evolution of the amount of pheromone
(evaporation, aggregation, diffusion,...). The second is a Physics based approach
and is linked to artificial potential fields [1] or force fields (gravitational or elec-
trostatic) such as these used in Co-Fields [25]



How to Perceive the Problem’s Constraints ? The perception of the prob-
lem’s constraints that take place in the environment depends strongly on their
representation. Yet, we can use generic models such as the model for active
perception proposed in [41]. This is composed of 3 main modules (sensing, inter-
preting, filtering) that can be adapted to specific application. As for the proposal
of this paper, since only reactive agents are taken into account, the last two mod-
ules (interpreting and filtering) are reduced to their minimum. Hence, the key
point is the definition of the constraints’ sensing. This can be direct thanks to a
definition of an artificial vision-like ability (or smelling-like ability if it concern
pheromones) or indirect when the agents sustain the influences of fields present
in the environment.

Which Kind of Interaction Models for Reactive Agents 7 Basically, in-
teractions in MAS can be defined considering two orthogonal axes [14]. On one
side the type of the interaction (which can be direct or indirect) and on the other
side its nature (cooperation or competition).

Concerning the type of the interaction, indirect ones are usual in reactive sys-
tems because, due to the limit of each entity, the environment is used as a shared
memory. Agents have indirect “communication” via their changes of the envi-
ronment (for instance dropping a mark [37], a pheromone [31], etc.). Such an
approach is very efficient to self-organize numerous entities and enable stigmergy
processes [6][26]. It is well suited to steps 3-b and 3-c of the proposed method-
ology.

Direct interaction, involved in particular in step 3-a of the methodology, can
take three forms: (i) one agent that physically acts on the environment (that
can possibly produce an environment-agent reaction), (ii) an agent-agent inter-
action (which can be a physical interaction or a message/signal exchange) and
(iii) one agent interacting simultaneously with several others (through a signal
emission, its physical presence, etc.).

The nature of the interaction can be abstracted in two categories: cooperation
and competition. Generally cooperative interaction/actions are defined to solve
conflicts or to perform difficult tasks that cannot be performed by only one
agent. Reactive coordination can be placed in this category [14]. By contrast,
competitive interaction or attacking actions can be defined as direct influences
(as for instance in [8] [35]). Such interaction can express conflicts between agents
and trigger some behaviors solving them such as the escape behavior in Eco-
Resolution [13].

How to Measure the State of Balance of the System 7 The characteriza-
tion of the equilibrium of the system is a complex issue from both a theoretical
and practical point of view. In the context of problem solving, two kinds of
situation have to be considered depending on whether the problem is static or
dynamic. The difficulty of expressing equilibrium in complex systems is similar
to that encountered in biology for stable organisms. To avoid the static connota-



tion of the term equilibrium, the notion of homeostatic process is used to qualify
a stable organization/entity whatever its dynamics [6].

In the case of a static problem, where the constraints do not change in time,
the equilibrium of the solving system can be characterized by a stable state in
which the agents stop interacting. This is the simplest case to consider.

When the problem is dynamic, the task is much harder because the state of
balance of the system depends on whether there is equilibrium between two dy-
namics (the problem and the solving process). Thus, state of balance cannot
be considered only as a measure of the interaction activity of the agents. Con-
sequently, a measure of the equilibrium (and by translation, a measure of the
organization) has to be designed. Much of the related work deal with the issue of
the measurement of the organization. In many cases, this measure is closely tied
to the intrinsic nature of the problem [17]. Another solution consists of designing
a measure based on the mechanisms of the system. For instance, the entropy can
be one of these measures. Entropy can be considered as a global estimation of
the organization of the system on a global topological level [2], as a local con-
sideration of the dynamics of each agent [32] or both of the two methods [20].
None of the propositions in the related literature deal with the nature of the
local mechanisms, however.

The issue of measuring the organization of a MAS is central when deploying a
problem solving application. Indeed, it is not only required characterizing the
state of balance of the system but also for evaluating its performance and, by
extension, the way of improving it by using learning algorithms for instance.

3.3 Related Work

Cybernetics Work. Cybernetics was defined by Weiner ([39]) as the study
of control and communication in the animal and the machine. During 1940’s
cybernetics introduced the feedback principle, or retroactive loop. With such
a loop, a system can adapt its actions to its own outputs. This approach is
well suited to stabilizing a system towards a predetermined goal. Although this
approach concentrated on the development of individual entities, its influence
on the swarm approach was important. Indeed, it emphasized that social insects
are also machines and that regulation loops exist at the colony level. Work of the
last decade has developed the study of social systems involving numerous entities
(social insects, collective robots, particle systems). In particular, such work has
shown the importance of the loop in linking agents to the environment ([31][28]).
This main loop, allowing collective solving, is present in our representation of
an environment-based solving system (Fig. 1). In a sense, this loop is similar to
that defined in cybernetics for one agent. We apply a similar approach in that
we consider regulation at the agent level but also at the macro/collective level.

MAS Methodologies. The multiagent community has proposed a set of me-
thodologies for the design and the analysis of MAS, such as Gaia [43], Adelfe
[3], Promotheus [30]. Most of these methodologies focus on agent definition and



their interactions, especially on deliberative agent architectures. For instance,
Adelfe methodology aims at designing adaptive MAS [3] considering the AMAS
agent architecture (for adaptive MAS). This one relies on agent’s attitude, com-
petences, beliefs and interactions language. Then the “cooperation failures” ac-
tivity, defined as the A7-S2 step of the Adelfe methodology, is defined following
social attitudes, such as incomprehension, ambiguity, uselessness, which are not
suitable to our reactive-based approach.

One particularity of our methodology is to focus on the problem-solving frame-
work considering collective systems. In existing works, methodologies are gen-
erally devoted to software engineering, using object-oriented methodologies [3]
and organizational concepts such as role and group.

Nevertheless, an extended version of Gaia methodology presents interesting ele-
ments in relation to our proposition. In particular, this methodology defines the
environment as a primary abstraction of MAS [44]. Authors propose to first de-
fine the environment by considering resources that can be sensed and consumed
by agents. They point out the possibly constraints induced by their accessibility.
In the first step of our methodology, we let the designer defining the constraints’
representation, and then defining agent resources can be a way to model them.
The second phase of the environmental modeling proposed in [44] concerns agents
perception. As for us it is emphasized that they depend on both the environment
model and the concerned application. Next phases of this methodology do not
focus on reactive-based solving processes.

Concerning methodologies devoted to reactive-based systems our approach
can be compared to the constructivism method, exposed in [15]. The construc-
tivism methodology aims at designing reactive Multi-Agent Systems for the
solving of spatially defined problems (such as features extraction in images,
cartographic generalization and spatial multi-criteria decision processes). This
technique, which is specific to spatialized problems (i.e. defined by a map or a
picture), is based on the interpretation of the position and state of the agents.
Consequently, it is not well adapted to dynamic problems. Nevertheless, as we
have exposed in our proposition, the problem constraints are defined and repre-
sented in the environment. By contrast, authors deal with problems where the
form of the solution is known in advance and then use it to define constraints
on the agents’ organization. However, [15] gives some interesting clues as to the
definition of spatially defined problem constraints.

4 Application
This section presents two applications following the four steps of the proposed

methodology.

4.1 The Satisfaction-altruism Model

This model aims at providing a means of cooperation and of conflict solving to
reactive agents working in the same environment. As agents are simple, inten-
tionality does not exist in their behaviors, and only intelligent collective processes



can be considered at a macro level. So, in order to provide intentional interac-
tions while keeping collective properties, the model extends such an approach.
The artificial potential fields (APF) model is considered because of its efficiency
for collective and individual tasks (such as individual and team navigation). This
technique relies on the perception of attractive elements and obstacles present in
the agents’ close environment (details in [22] [1] [26]). The satisfaction-altruism
model relies on this extension and on the definition of satisfaction states inspired
by the homeostatic behavioral model of C. Hull [19].

1. In order to express agent intentions, the satisfaction-altruism model [35][36]
introduces new artificial fields in the environment. These fields are dynamically
and intentionally generated by agents thanks to the emission of attractive and
repulsive signals. Agents broadcast such signals in order to influence their close
neighbors. Repulsive signals express constraints/conflicts between agents (ex-
pression of a part of the whole problem) and positive signals express cooperative
calling. Fig. 2 shows the application of the model to the foraging task. Over
the working area a surface is drawn to represent the enhanced environment (i.e.
obstacles plus signals). Cooperative signals are represented as hollows and repul-
sive signals as peaks (the latter ones are added to fields generated by obstacles).
These artificial fields augment the information present in the environment in
order to express agent goals and constraints. The next steps show that agents
are designed to reduce these artificial perturbations.

2. To cooperate and to solve conflicts, agents must be able to perceive the
signals and the presence of other agents. The key idea of the model is that agents
evolve in the perceptual environment drawn in Fig. 2. So agent perceptions are
limited to the detection of physical obstacles and to the reception of attractive
and repulsive signals.

3. Interactions consist of agents carrying out cooperative reactions to signal
reception. One interesting application of this model is the distributed resolution
of access conflicts in constrained environments (several robots/agents trying to
navigate in narrow passages, as represented in Fig. 3.a). In this problem there
are two kinds of constraints: the presence of static obstacles and other agents
(which are moving obstacles).

— (a) Individual level : the perception of local obstacles is used as stimulus to
avoid them (a simple avoidance behavior is defined).

— (b) Cooperative level : If several agents are blocked, i.e. a deadlock due to
the environment’s topology (cf. Fig. 3.a), simple avoidance behavior will
be inefficient. A cooperative mechanism, based on the emission of repulsive
signals, is then added. Agents measure their local constraints, i.e. elements
surrounding them, to broadcast a level of dissatisfaction (agents and walls
do not have the same weight, see [35]). The cooperative reaction, which is
called altruism, forces the less dissatisfied agents to move away in order to
unlock the situation. Thanks to this mechanism, signals are propagated to
all agents involved in the blocking. Fig. 3.a shows an example of a column
of blocked agents where the less dissatisfied ones are at the top.
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Fig. 2. Application of the satisfaction-altruism model to the foraging task (snapshot
simulation step 497). On top, representation of attractive and repulsive signals as
environment distortions (= the environment perceived by agents).
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Fig. 3. Snapshots of simulated individual robots based on the satisfaction-altruism
model. Example of conflict resolution. Each robot is represented by its range of per-
ception, id number, current satisfaction and possible emitted signal value.



— (¢) Regulations : Signal propagation can lead to oscillatory and cyclic be-
haviors (as in the eco-resolution model). To avoid oscillations, the notion
of persistence is added to the emission of repulsive signals: a blocked agent
emits its initial dissatisfaction while it is not totally free (see agent number 5
in Fig. 3.b). This behavior illustrates the necessity of regulation mechanisms
in cooperative processes.

4. The observed solution is equilibrium between the problem dynamics and
agent interactions. For the navigation application, the solution is characterized
by coherent displacements of all the agents (note that immobilized agents express
a conflicting situation). For conflicts involving several agents, repulsive signals
are passed from agent to agent. As a consequence, we observe the emergence of
groups of agents moving in the same direction as a coherent entity (see details
in [24]). Tt is the case in Fig. 3.b for the two robots freeing from the conflict,
noted emergent group.

This model has been applied to different simulated problems such as collab-
orative foraging [36], navigation in constrained environments, box-pushing [12]
and validated with real robots in conflict problem solving [24].

4.2 A Physics-based Reactive Model

Localization, with mobile or fixed sensors, is a very difficult but required task
to control mobile robots in an indoor dynamic and uncertain environment. This
task can be defined as finding the position of an object, mobile or not, in a well
known referential. The localization is composed of two methods: localization
with on board sensors (also called self localization) and localization with exter-
nal sensors. The algorithms used generally stem from signal or image processing,
or from the stochastic methods based on Markov Decision Processes (MDP) [16].
So, the standard localization algorithms are extremely dependent on the nature
of the used sensors and deal only with one single target. There are no multi-
agent based localization and tracking devices except with specialized cognitive
agents [11]. Some related work, such as environment mapping and data fusion
deals also with cognitive agent-based methods. In this way, tracking is consid-
ered to be a collection of temporally and spatially coherent localizations. As a
means of localization, the tracking algorithms stem from the signal processing.
Among the most spread out we can point out the Kalman filter, the optical flow
algorithms and the particle filtering [23]. The main difficulty in designing such
systems for localization and tracking is to take into account the characteristics
of the used sensors while obtaining properties such as robustness and adaptation
to the variation in the targets’ kinetics. Considering these required properties,
using a reactive multi-agent system to solve this problem seems to be adapted.

Before detailing the physics based model following the methodology exposed
in Sect.3, a description of the problem is required. For this, both the topological
and the dynamic point of view have to be considered.



Localization and tracking are based on the use of sensors that are spread out in
the environment. The topology of the problem is tied to the gathering range of
the sensors. This can be considered as an area, observable by the sensors, where
the targets are expected to move. The dynamics of the problem depend on the
dynamics of the targets.

These can (i) appear, i.e. they arrive in the observation field of the sensors, (ii)
move, i.e. they go from one observable point of the real world to another observ-
able point, (iii) disappear, i.e. they go out of the observation field.

With this description in mind, the constraints of the problem can be formalized.
The topology has to take into account the range of each sensor and the topology
(obstacles, walls, doors, ...) of the observed area. The dynamics of the problem
have to take into account those of the targets. The structure of the model is
shown in Fig. 4. From here, the proposed methodology can be applied.
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Fig. 4. Architecture of the Physics based reactive model for the localization and the
tracking.

1. To start with, an environment model has to be defined in order to repre-
sent the problem and its constraints. For the localization and the tracking, the
chosen representation is an occupancy grid that represents the areas of the real
world observable according to the range of the sensors. The obstacles are labeled
as unreachable areas of the grid. As for the dynamics, these have been trans-
lated into two main trends. First, accumulation of the sensing information deals



with the appearance of the targets. This accumulation leads to the construction
of a plot that represents a possible position for a target. This construction can
be considered as a deformation of the environment that has to be perceived by
the agents. Second, evaporation of the plot has been designed. This deals with
the disappearance of the targets. It also prevents the persistence of bad infor-
mation in the environment. This evaporation tends to reduce the deformation
involved in the accumulation. These two trends take into account the targets’
movements. The movement of a target to a place near its last position can be
considered as the appearance of this target in a place near from its last position.
Since the evaporation tends to reduce the out-dated plots, this last position will
disappear.

2. Then, the perceptions of the agents have to be defined. Without any infor-
mation the agents’ environment is flat. The deformation of the environment,
induced by the accumulation, can be considered as a perturbation. This Physics
based model has been designed for the perception of this kind of perturbation.
The agents perceive the plots through the environment by means of an attraction
force. This force is induced by the appearance of a plot and depends on its size.
Thus, the agents are mass particles in a force field.

3. As for the interaction mechanisms, they have to be defined considering indi-
vidual and collective levels and the required regulation.

— (a) Individual level: The agents are expected to compensate the perturba-
tions in the environment. Since they are already attracted by the plots, a
behavior has to be designed to reduce the plot when the agents are on it.
So, a consumption behavior has been introduced.

— (b) Cooperative level: Two situations have to be considered. The first charac-
terizes the system in its stable initial state (i.e. when there is no information
given by the sensors). In this case, the agents have to be as far as possible
from each other in order to better prevent the arrival of information. So,
a repulsion behavior has been defined. This behavior is based on a Model
inspired by Physics as the attraction is. In the second case, the agents have
to deal with the information that deforms their environment. If the agents
are expected to cooperate in the consumption of the information, they must
be allowed to be near each other. So the repulsion mechanism is inhibited
when the agents are consuming considering their respective potential energy.
This value is computed considering the level of the plot where the agent is.

— (c) Collective and local regulation: As it has been defined, the environment is
physically coherent (i.e. all the behaviors have been defined following math-
ematical formulations based on Newtonian Physics). Nevertheless, it is still
conservative since the speed of an object moving in the environment, with-
out any interaction, remains constant. Consequently, a fluid friction force
has been introduced in order to regulate the movements of the agents.

4. Then, the emerging collective organization has to be observed. This is both a
gathering of the agents on the percepts, which leads to a group construction, and
a homogenous repartition of them in the information less areas. Each group can



thus be considered as a localized target. The output of the system is stable when
equilibrium is established between the refreshing and the resolution dynamics.
Fig.5 shows of the localization and tracking solving process using the automatic
control point of view applied in the proposed methodology.

Targets :
-Appear  Percepts” T T T T - T T - T - - - -~ -<
- Move Environment :
- Disappear - Accumulation
- Evaporation
Interactions :
- Friction

- Consumption

Groups <:| Agents :

| - Repulsion
| - Groups' formation

1

1
l 1
l 1
l 1
l 1
! 1
1 - Attraction |
l 1
! 1
l 1
! 1

1

1

1

Filtering Process

Fig. 5. Representation of the solving process as a filter.

From an application point of view, this device has been successfully applied
in simulation and with real targets. It shows relevant properties compared to
classical localization and tracking algorithms such as anticipation of the tar-
gets’ moves, independence from the number of information sources (information
sources can be added and/or remove in run time), independence from the number
of targets,... (see [18] or [17] for detailed results).

5 Conclusion

This paper presents an environment-based methodology for building reactive
multi-agent systems aimed at dealing with the problem solving issue. Consider-
ing the limitation of simple entities, the environment appeared to be the main
element involved in a reactive-based solving problem system. First, it models
the problem to solve and its constraints. Second it establishes the link between
the problem on one side and the reactive solving process on the other. Finally,
in some cases, it can also characterize the emergent organization.

Our approach contrasts with classical emergentist or artificial life works that
define agents and interactions by following the expected emergent organization.
Our proposition can be seen as a bottom-up methodology based on the repre-
sentation of the problem, where constraints are translated into perturbations
in the environment. These have to be regulated through agent behaviors. The



originality of our methodology is the fact of starting the building of the solving
system by focusing on the environment instead of focusing on the agents, their
knowledge and their behaviors as it is done in the classical approach.

The fourth step of the methodology claims that the global solution emerges from
the solving process and can be characterized when the system reaches a stable
state. Such a state must be measured or observed by an external agent. It is a
complex task that remains an open problem. However, we propose in Sect.3.2
some clues about the characterization of this stable state.

Two detailed examples illustrate the application of the methodology: (i) a generic
kernel for cooperation and conflict solving between situated agents, which is
based on an extension of the APF approach (ii) a model for localization and
target tracking using a Physics based approach. It appears to us that describing
these models following the construction steps is a good way for their presenta-
tion/understanding.

The proposed methodology is currently applied to features extraction in im-
age processing by using agent based active shapes that respect the B-Spline
formalism. The methodology is also applied to the facilities location issue. On
the theoretical level, we plan to develop some keys for the definition of the en-
vironment model as expressed in the first point of the methodology.
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