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Abstract. This paper addresses the problem of cooperation
between learning situated agents. We present an agent’s
architecture based on a satisfaction measure that ensures altruistic
behaviors in the system. Initially these cooperative behaviors are
obtained by reaction to local signals emitted by the agents
following their satisfaction. Then, we introduce into this
architecture a reinforcement learning module in order to improve
individual and collective behaviors. The satisfaction model and the
local signals are used to define a compact representation of agents’
interactions and to compute the rewards of the behaviors. Thus
agents learn to select behaviors that are well adapted to their
neighbor’s activities. Finally, simulations of heterogeneous robots
working on a foraging problem demonstrate the interest of the
approach.

1. INTRODUCTION

Over the last few years, learning in distributed systems has become
an important field of research. Within this context our work
concerns situated agents (autonomous entities that evolves in a real
or simulated physical environment) that have to cooperate to
achieve global tasks.

The behavior based approach is well suited to design situated
agents. This kind of architecture allows defining agents that are
able to evolve in dynamic and partially unknown environments (for
example [1][2][3][4]).

Cooperation between situated agents can be obtained directly
(i.e. by direct communication [3][5]) or indirectly (i.e. by auto-
organization and agents-environment interactions [6]). Usually,
agents architectures use high level direct communications.
However, applications in real conditions (as in mobile robotics)
induce failures and complexity.

To avoid these problems, we suggest an architecture using
simple signal emissions (local diffusion of values without
acknowledgement). These signals are used to manage cooperation
and to define a reinforcement learning module.

In previous works a cooperative agent architecture using signals
of agent satisfaction was defined [7][8]. In this approach,
cooperation is based on a simple reaction to these signals (see
details in section 2). This architecture is able to solve some
collective problems of foraging tasks [7][8] and spatial conflicts
resolution (with real and simulated robots) [4].

However, these agents are not able to remember which behavior
is the best adapted to any given cooperative situation. This paper
presents the integration of a reinforcement learning module using
these signals in order to improve cooperative behaviors.

The agent learns, for a given situation, which behavior satisfies
the majority of its neighbors. This kind of process is also known as
Social Learning [9].

This paper is organized as follows. Section 2 introduces the
agent satisfaction measure and describes the satisfaction-altruism

model. Section 3 presents the integration of a reinforcement
learning module in this architecture. Then in section 4 the model is
evaluated by its application to a classic collective problem of
foraging. Some results of simulations show the improvement of
agents cooperative behaviors. Finally we conclude in section 5 by a
discussion of these results and by presenting our future work.

2. WHAT IS AGENT’S SATISFACTION ?

In order to design and study cooperative agents two generic
agent’s satisfaction measures have been defined [7]. The first one,
the personal satisfaction, evaluates the progression of the agent’s
actions. The second one, the interactive satisfaction, evaluates the
effect of the neighbors’ actions on the agent’s task.

We consider that each agent ai holds a set of functions Fi, also
called behaviors, which are useful to achieve some tasks. These
functions may be released by the perception of environmental
stimuli or conditions to act.

Each agent’s function fi is defined by

• its conditions of releasing : cond(s)→boolean
•(where s is information from sensors)

• a current trigger weight : W(t) →[0,1]
• a set of processes : to drive effectors
• a satisfaction measure when fi is performed: P∈[-1,1]

2.1 Personal Satisfaction

The personal satisfaction is a value continually computed by each
agent following its current actions.

Definition: for an agent ai who performs a function fk, let P(t)∈
be the value of personal satisfaction at time t, computed as follow:

• P(t) = P(t-∆t) + v,
• v∈  is a measure of the progress of fk during ∆t (|v|  Pmax)
• ∀t ≥ 0, |P(t)| ≤ Pmax, Pmax is a constant of +

• the initial value P(t0) = W(t0).

Definition the progression of satisfaction v of the function fk
during ∆t is computed as follows:

This measure of v is an extension of the progress estimator
functions proposed by M.J. Matarić [2]. We introduce a negative
reward when the agent is immobilized. In particular, the penalty
value f is greater than any negative reward of regression
(f < n < 0).

This satisfaction model allows agents to control the persistence
of their function execution (see figure 1). This behavioral principle
may be abstracted as follows :

m   progress towards fk goal
   v = n    regress forwards fk goal

f     immobilization of agent action
   with  - Pmax  f < n < 0 ≤ m  Pmax

(1)
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• the impossibility to achieve a task induces a quick drop of the
personal satisfaction which stops the current function,

• the regression of the current function induces a slow drop of
satisfaction which gives the agent time to persist (or to find a
new way) in doing its task.

• the progression of the current function gives a high positive
satisfaction value that increases the motivation of the agent to
continue its actions.

2.2 Interactive Satisfaction, Signals and Altruism

The interactive satisfaction is a set of measures of interactive
situations: level of hindrance, need for help or possibility to share
resources (the definition of these measures or perceptions depends
on the considered application).

To manage these situations, agents can emit local signals
(cf. fig. 2). They are simple relative values, noted I(t), defined in
[-Pmax, Pmax]:

• a positive value to attract the neighbors,
• a negative value to repulse them.

In order to obtain cooperative behaviors, a mechanism of
reaction to these signals has been defined, called the altruism
behavior [7]. As agents are situated in physical environments, this
altruistic reaction is defined by the computation of a movement.

An agent decides to be altruist by comparing its personal
satisfaction (P) and the greater external signal intensity |Im|. The
agent becomes altruist when |Im|>P. To satisfy the request (i.e. Im
signal) it moves by applying the altruism vector deriving from a
signed potential field. For an agent B that receives a signal IA of an
agent A, the altruism vector is computed as:
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Thus, the goal of the agent may become this vector which is
combined with obstacle avoidance vectors. Figure 2 illustrates the
complete model.

If the agent doesn’t choose the altruistic reaction, it only
continues to perform its current function if the weights of activable
functions are less strong than P(t). Elsewhere, it selects the
behavior with the highest weight W(t) (see [7][8] for more details
on the satisfaction-altruism architecture).

The next section presents how we use the personal satisfaction
and the emission of local signals to integrate a learning module in
this model. The aim is to improve cooperative behaviors.

3. LEARNING TO COOPERATE

3.1 Principle of the approach

We now extend the presented model to include learning, an
ability that allows the agents to acquire new and adapt old
behaviors for individual and group benefit.

The reinforcement learning approach [10][11] is well adapted to
manage learning behavior selection. The simplicity of the
algorithm and its possible use in dynamic non-deterministic
environments makes it popular in many works [2][5][12].

In this method, the agent learns from external feedback received
from the environment. The feedback is interpreted as a positive or
negative scalar reinforcement. The goal of the learning system is to
improve the action selection process by maximizing the externally
given rewards.

The main issue in this approach is the evaluation of the rewards.
In real systems, the agents must perceive themselves the success or
the failure of their actions. In simulated grid worlds, reward values
can be easily computed [13][14]. This problem remains difficult
when it concerns the evaluation of agents interactions but it can be
handled with communication.

In our approach, to make agents learn to cooperate, the
reinforcement reward value is calculated using the neighbors
personal satisfaction. Then, in the learning model, agents
continuously emit their personal satisfaction level P : I(t) = P(t).

Figure 3 abstracts the principle of the model. The following
example gives an illustration: If an agent A acts on the
environment and helps another agent B, the satisfaction level of B
rises. By receiving B signals, agent A knows that its behavior is a
cooperative one. By learning this behavior, agent A may reproduce
it when the same situation is recognized.

Our learning model is an “on policy” method. This allows the
agent to explore its action space and also to use the learned
knowledge. The advantage of using an “on policy” method is that
the agent continuously updates its knowledge following the
environment evolution.

Figure 1 – Illustration of the Personal Satisfaction evolution.
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Figure 3 – Representation of the reinforcement learning model
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Figure 2 – An agent A perceiving two signals (an attraction from
B and a repulsion from C), an obstacle and its current goal. If one
signal is stronger than the personal satisfaction of A, the agent will
change its goal to reply by computing the altruism vector (eq. 2).
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3.2 The formal model

Figure 4 presents the algorithm of the behavioral cycle of each
agent. We detail below the more important stages of this cycle:

Agent’s interactive state representation

The signals of personal satisfaction exchanged by the agents allow
us to define a compact representation of their interactions.

We consider heterogeneous systems that are composed of n
different types of agents. All emitted signals contain the sender
type. Every agent holds a vector V of n values which represents the
perceived signals. Each element vi can have one of the three
following values:

• 0 if no signal is received from any agent of type i
• 1 if the sign of the signal is positive
• 2 if the sign of the signal is negative

When several signals of the same type are received, only one is
considered according to the following rule:

If several signals are received at the same time, the agent
selects the more negative signal in priority over the more positive.

This rule ensures that conflicting situations (dissatisfied agents)
are treated in priority. In situated multi-agent systems it is
necessary to avoid any deadlock/conflict before providing other
proprieties [4].

The current state of the agent is defined by the vector V and by
other perceptions of the world. This representation of the
interactions defines a finite set of conditions to trigger the
behaviors (cf. application in section 4).

Triggering conditions of a learning phase

When an agent ends a behavior and perceives any signal, it decides
following a probability (the exploration factor, 0.5 in simulations)
to perform a learning phase (an experiment). In this case, the agent
has to choose one of its behaviors.

The probability to select a function is inversely proportional to
its number of trials. This weighting ensures the exploration of all
the possible behaviors.

Reinforcement computing

During the experiment, an agent computes the average value of
the satisfaction signals it receives. It applies the selection rule seen
above in order to reinforce only the functions that satisfy all its
neighbors.

This average value, noted SatI  is directly used in the
reinforcement computation. However, an average value may not be
significant of the improvement of a situation. To avoid this
problem, the reinforcement value is computed as the difference
between the average satisfaction and the first received signal value
(noted SatI0). This difference is computed by:

( )0
max

.
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The r reward of the experiment depends on ∆ if |∆| is important
(close to 1). Otherwise it depends essentially on the average value.
Then the reward is computed as:

( )
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This value must be normalized to weight interval definition, i.e.
in [0,1]: r = 0.5 (r’+1). Thus r ∈ [0,1], the weight of the
experimented function is reinforced as follows:

rWW ii ).1(. ββ −+=

The figure 5 abstracts the architecture and the reinforcement
principle.

4. APPLICATION

We evaluated our learning model following classical collective
tasks. More precisely, we studied variants of the foraging problem.
This problem [15] can be presented as a base from which mobile
robots must explore the world. These robots don’t know the
environment and only have a local perception of it. They must find
some specific elements, take them and get them back to the base.

4.1 Pusher and cutter robots

We have defined a heterogeneous version of the foraging problem
that introduces:
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Figure 4 – Agent’s behavior algorithm
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• The elements to be discovered are rectangular plates of any size
(which represent for example toxic waste).

• There are two kinds of robots: the first one, the pushers, can
take plates and move them to the base, the other kind, the
cutters, can divide a plate into two new ones.

• The environment contains some obstacles (walls).

The pusher robots have an arm that allows them to catch a plate
and apply a pushing force. So their capacity to move an object
alone is limited. For big plates, the push power of several robots
can be cumulated to allow their movement (this is the so-called box
pushing application [16]).

The cutter robots have a tool to cut plates. They also have an
arm that allows them to hold the plate and easily cut it. The
division of a plate in two smaller ones simplifies the pushers job.
Finally each agent has the six following behaviors:

4.2 Simulation rules

Robots evolve in a finite size world which has a rectangular shape
and which is non-cyclic (world limits are considered as walls). The
environment contains walls that robots can’t move or cross.

Robots must move plates to a depot zone which is a disc
centered on the base. If a plate stands in this zone, the base
automatically consumes it (the plate disappears). To locate the
depot zone, the base emits a signal continuously allowing robots to
perceive its direction. A simulation is complete when all plates
have been moved to the depot zone.

Personal satisfaction computation

The personal satisfaction of the agents is defined by an integer
value in the interval [-127,127].

Computation of the satisfaction variation (eq. 1) for each
behavior:

• search moving (for the two types of robots):
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α is the angle difference between the performed moving
direction and the goal direction.

• force application on a plate:
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• cut action on a plate (only for cutter robots):
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where s is the cutting speed defined by the interval ]0,2]

Interactions

A plate can be cut by a single cutter robot at once. During a cutting
phase :

• If another cutter tries to start a cut phase, this action fails and
the first cutter is slowed down (s=0.5).

• If another pusher tries to move the plate, the cutting process
stops (then both agents satisfaction drops).

• If another robot holds the plate it prevents any movement and
speeds up the cut (s=2). Then the cutter satisfaction increases.

Current agent’s situation representation

Now we apply to this system the agent’s situation representation
detailed in section 3.2. It is defined by two kinds of perceptions:
perceived signal sign and plate perception (no plate, plate seen,
plate handled) as shown in table 2.

These three variables allow us to represent in only 27 (33)
different cases the interactive situations of each agent.

This representation leads us to define a behavioral matrix. It
contains the trigger weight for each situation-function couple (as
used by M. Matarić in [2]).

Matrixes are initialized in order to reproduce the behavior of the
initial model without learning. The altruism function has a weight
of 0.6, the random walk function is initialized to 0.1 and for every
other case, an average weight of 0.5 is set.

4.3 Simulations and results

To experiment our learning method, we programmed a simulator of
situated heterogeneous agents in dynamical environments (non-
deterministic). This allows us to obtain realistic simulations of
interactions between agents and their environment (see figure 6).
The simulator is programmed in Java language on the MadKit
platform [17].

Simulation of agents without learning module

The satisfaction model without learning allows cooperative
interactions. We have observed the following cooperative
behaviors:

• Conflict avoiding: if an agent A is hindered by another agent B,
it emits a repulsive signal. By applying the altruistic reaction,
agent B runs away.

• Cooperative help: if an agent doesn’t succeed in pushing a plate
(because of its weight), it emits an attractive signal to recruit
other agents.

• Force summation: Several robots can cumulate their force in
order to move a plate which is too heavy for a single robot (see
figure 6.c).

But simulations on various environments show us that all
conflicts are not well handled. For example: when a robot tries to
push a plate on which a cutter works, it stops the cutting process.
Holding the plate to ensure a fast cut would be a better behavior.
The goal of the learning module is to discover these new
cooperative behaviors or to optimize existing ones to handle
conflicting cases.

Taking advantage of the Learning module

Simulations were performed on the environment shown in Figure
6, which contains a big plate to be cut and moved. This small
environment has been designed to cause many agent interactions.

Behavioral matrixes evolved during several simulation runs.
After few successive simulations (about 5), we observed some
behaviors that were not programmed in the initial behavioral
matrixes. Obtained values became stabilized after only thirty to
forty experiments of the same function. We present here the more
significant results :

Table 1 – Agent’s behavior set
0: Random walk (plate searching) 3: Go to a detected plate
1: Push a plate 4: Hold a plate to stabilize it
2: Cut a plate (only for cutter robots) 5: Altruism reaction

Table 2 – Situation representation
Code I1: cutter signal sign I2: pusher signal sign S3: plate percept.

0 No signal No signal No plate
1 Positive + Positive + Seen
2 Negative - Negative - Handled



• Pusher robots reinforced their pushing function for situations
where another pusher was perceived.

• Both robot types decreased the altruistic function weight when
pusher neighbors were dissatisfied, because running away does
not help the other pushers.

• Cutter robots decreased Hold and Cut functions when these
behaviors were not compatible with their neighbors.

• Cutter robots reinforced the Hold function to stabilize the plate
when another cutter was working. This behavior accelerated the
cutting process.

• Cutter robots discovered a new behavior not initially
programmed. When they were close to pusher robots, cutters
robots also learned to push the plate. This behavior helped the
pusher to move heavy plates (see table 3).

Consider the situation 022 (table 3) where a cutter robot holds a
plate and perceives a pusher neighbor that is not satisfied. The
push function with an initial weight of 0 has been experimented to
reach a weight of 0.12 in only 35 tries. That makes this function a
predominant one for this situation. This behavior can be translated
by: “If I hold a plate and if I perceive a signal of a dissatisfied
pusher, I push the plate to satisfy it”.

More simulation results and their analysis can be viewed on the
web site http://www.lirmm.fr/~chapelle/works.

5. CONCLUSION

This work focused on learning cooperative behaviors in situated
multi-agent systems.

We presented an architecture of cooperative agents based on a
personal satisfaction measure and on local signal diffusions. Then
we introduced a reinforcement learning module to improve this
architecture. Agent states were defined by an original compact
representation of its perceived signals. Moreover, behavior weights
of the agents were reinforced by monitoring neighbors
satisfactions.

This model has been evaluated by simulation of a heterogeneous
variant of the foraging problem. Analysis of the behavioral
matrixes of the agents has shown the apparition of new cooperative
behaviors and weight reduction of others. Thus many conflicting
situations, not fully handled in the satisfaction-altruism reactive
model, are now better managed.

Evaluation of the model is still pending. Many different
environments are currently being tested to demonstrate its
usefulness. Moreover, we think to improve the model by handling
dependencies between tasks as proposed in [13][14].

However, these preliminary results seem very encouraging to
us. As a consequence, we envisage to implement the presented
learning module on real autonomous robots. Actually, the
satisfaction-altruism architecture is already implemented and
validated on real robots [4]. Which therefore should allow us to
integrate the proposed learning module easily.
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Figure 6 – Simulation evolution snapshots (the personal satisfaction signal is written under each agent, the half-disc represents the agent perception)

a b c

Agent n1 in situation 022 Before After Δ
Random walk 0,10 0,11 + 10%
Push a plate 0 0,12 New
Cut a plate 0,50 0,09 - 82%

Go to detected plate ⁄ ⁄ ⁄
Hold and stabilize plate 0,50 0,15 - 70%

Altruism reaction 0,60 0,10 - 83%

Table 3 – Cutter discovered the Push function
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