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Abstract: Even if Multiagent Systems (MASs) are recognised as an appealing 
paradigm for designing many computer systems ranging from complex 
distributed systems to intelligent software applications, they are still difficult 
to engineer. A common point of MAS engineering methodologies is the 
production of different work products or models during the different phases. 
Each work product or model helps to progress towards an implementation of 
the system under development. Nevertheless, there are very few ways to ensure 
that the work products and models produced are validated against the 
requirements. The aim of this paper is to present a formal driven prototyping 
approach for MAS. This process provides a support for incremental 
specification leading to an executable model of the system being built. Indeed, 
this process is based upon a formal organisational framework which uses a 
formal notation, namely OZS. The process is illustrated through the 
specification of a multiagent architecture. 
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1 Introduction 

Even though Multiagent Systems (MASs) are recognised as an appealing paradigm for 
designing many computer systems ranging from complex distributed systems to 
intelligent software applications, they are still difficult to engineer. When a massive 
number of autonomous components interact, it is very difficult to predict that the 
emergent organisational structure will fit the system goals or that the desired 
functionalities will be fulfilled. 

Many methodologies exist for engineering MASs (see Bernon et al., 2005; Bergenti 
et al., 2004 for a survey). The goal of these methodologies is to help the developer during 
the analysis and design phase of a MAS. A common point of many of them is the 
production of different work products or models during the different phases. For 
example, the PASSI methodology (Chella et al., 2004) uses UML and AUML (Bergenti 
and Poggi, 2000) models. Each work product or model guides subsequent design, 
implementation and verification phases. Nevertheless, there are very few ways to ensure 
that the work products and models produced are validated against the requirements. 
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The aim of this paper is to present a formal driven prototyping approach for MASs. 
We believe that one way to bridge the gap between the abstract and the concrete level is 
to build the system specification using a prototyping process (Lissajoux et al., 1998). 
This process provides a support for incremental specification, leading to an executable 
model of the system being built. Indeed, in many areas of software and knowledge 
engineering, the development process, which puts emphasis on prototyping and 
simulation of complex systems before their effective implementation, is proven to be a 
valuable approach. Indeed, prototyping enables the testing of MASs before their actual 
deployment and execution. Another important application of this approach is the 
specification and prototyping of specific models or architectures of agent and multiagent 
systems. These models are often defined in an informal way and applied in an ad hoc 
fashion. Consequently, MAS designers have been unable to fully exploit these models’ 
commonalities and to specialise or reuse them for specific problems. Thus, formal 
specification can be used to describe model concepts which can be refined to fulfil 
particular system needs. We illustrate this prototyping approach through the formal 
specification of a multiagent architecture: the satisfaction/altruism model (Chapelle et al., 
2002; Simonin and Ferber, 2000). This model is based on a behaviour-based architecture 
and introduces a cooperation mechanism for situated agents. 

Our approach is based on an organisational formal framework. This framework uses 
organisational concepts such as role, interaction and organisation to describe MASs. 
Each concept is given a formal semantics using the OZS formal notation (Gruer et al., 
2004). OZS is a multiformalism notation based upon the composition of Object-Z (Duke 
et al., 1991) and statecharts (Harel, 1987). This notation allows the specifying of reactive 
and transformational aspects of agent roles. We have defined a formal semantics which 
allows the execution of the specifications and the use of theorem provers such as STeP 
(Manna et al., 1995) or SAL (de Moura et al., 2004). With this approach we have 
prototyped several MASs (Hilaire et al., 2001; Gruer et al., 2002; 2001; Bakhouya 
et al., 2003; Hilaire et al., 2005; Rodriguez et al., 2007). This paper is organised as 
follows: Section 2 presents the OZS formal notation and the organisational framework 
defined with this notation. Section 3 presents some examples of the use of our approach. 
Section 4 presents related works. Section 5 concludes. 

2 Concepts 

2.1 OZS: multiformalism specification 

Few specification languages, if any, are well suited to model all aspects of a system. This 
has led to the development of new specification languages which combine features of 
two or more existing formalisms. These languages are called multiformalisms. Such a 
combination is particularly suited to the specification of complex systems, such as 
MASs, where the modelling of both processes and states is necessary. 

The multiformalism approaches (Zave and Jackson, 1993; Paige, 1997) compose two 
or more formalisms in order to produce system specifications more easily and naturally 
than with a single formalism. Indeed, the multiformalism approach deals with complexity 
by applying formalisms to problem aspects for which they are best suited. 

There are two kinds of techniques for multiformalism integration. The first consists in 
translating one formalism into another. The second is composition and consists in using 
several formalisms in the same specification. We have chosen the latter type of approach. 
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The main principle of our approach is to integrate within an Object-Z class a specific 
schema called behaviour that specifies the behaviour of the class using a statechart. It 
enables specifiers to use all Object-Z and statechart constructs. 

Object-Z extends Z with object-oriented concepts. The basic construct is the class, 
which encapsulates a state schema with all the operation schemas that may affect it. 
Object-Z is well suited for specifying the state space and the methods of a class in a 
predicative way. It is, however, weak at describing dynamic and communication aspects 
(Smith, 1997). 

Statecharts extend finite state automata with constructs for specifying parallelism, 
nested states and broadcast communication. Both languages have constructs which 
enable the refinement of the specifications. Moreover, statecharts have an operational 
semantic which allows the execution of a specification owing to the STATEMATE 
environment (Harel et al., 1990). However, statecharts have little support for modelling 
the structural and functional aspects of a complex system. 

Our method for composition relies on precisely combining the two notations. We 
define a heterogeneous basis consisting of the notations of interest and we resolve 
syntactic differences among the notations as presented in Paige (1997). The role of the 
heterogeneous basis is twofold. First, it provides relationships between Object-Z and 
statecharts without translating a formalism into another. Second, it extends expressive 
capabilities of each formalism using features available in the other. In other words, the 
heterogeneous basis enables the use of both specification styles without being restrained 
to a subset of any of the formalisms. 

The class describes the attributes and operations of the objects. This description is 
based upon set theory and first-order predicate calculus. The statechart specifies the 
possible states of the object and how events may change these states. The statechart 
included in an Object-Z class can use attributes and operations of the class. The sharing 
mechanism used is based on name identity. Moreover, we introduce basic types [Event, 
Action, Attribute, State]. Event is the set of events which trigger transitions in statecharts. 
Action is the set of statechart actions and Object-Z class operations. State is the set of 
states of the included statechart. 

Operations are described by Object-Z schemas and can be referenced in statecharts 
transition. Attribute is the set of object attributes. The definition of these sets allows the 
specification in Object-Z of statechart features, such as events and states, and the use of 
Object-Z features such as attributes and operations within the included statechart. 

2.2 Example 

The LoadLock class, presented below, illustrates the integration of the two formalisms. It 
specifies a LoadLock composed of two doors whose states evolve concurrently. The key 
syntactic element is the class schema. Each class has a name, (LoadLock in the example), 
and contains subschemas that specify different aspects of the class. The first subschema 
specifies the state space of the class. In the LoadLock example there is only one boolean 
attribute called someoneInLL. The following subschema defines the initial state, for 
instance, of the class, and is called Init. The constraint placed here states that initially, the 
boolean someoneInLL is false. The next two subschemas are operations that modify the 
state of the class. The inLL and outLL operations are divided into two parts: a declarative 
part in the upper part of the subschema and a constraints part in the lower predicate part. 
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The ∆-list someoneInLL in the upper part of both subschemas is an abbreviation for 
someoneInLL and someoneInLL’ and, as such, includes the state of someoneInLL before 
and after the operation. The predicate part of the inLL (or outLL) operation states that 
after the operation someoneInLL becomes true (or false). The last subschema, called 
behaviour, includes a statechart and specifies the behaviour of the class. Parallelism 
between the two doors is expressed by the dashed line between DOOR1 and DOOR2. 
The first door reacts to activate1 and deactivate1 events. The sequence, in order to go 
through the loadlock, is the following: someone activates the first door and enters the 
loadlock. It may then enter the loadlock and deactivate the first door from inside. This 
done, he can activate the second door and go out of the loadlock. The transition triggered 
by the deactivate1 event executes the inLL operation, which sets the someoneInLL 
boolean to true. The temporal invariant at the end of the class specifies that a LoadLock 
must not be in DOOR1.opened and DOOR2.opened states simultaneously. This invariant 
uses the predicate instate(S), which is true whenever the S state of the statechart is active. 

The result of the composition of Object-Z and statecharts seems particularly suited for 
specifying MASs. Indeed, each formalism has constructs which enable complex 
specifications. Moreover, aspects such as reactivity and concurrency can be easily dealt 
with. The semantics of the OZS notation is defined by means of transition systems (Gruer 
et al., 2004). It is an operational semantics which enables automatic verification of 
specification properties. 
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Available OZS constructs enable the natural specification of ‘low’-level aspects 
inherent to MASs. Higher-level aspects like coordination are expressed by roles, 
interactions and organisation classes, which are presented in the following section. 

2.3 RIO 

Our specification approach uses an organisational metamodel which is based on three 
interrelated concepts: Role, Interaction and Organisation. Roles are generic behaviours. 
These behaviours can interact mutually according to interaction patterns. Such a pattern, 
which groups generic behaviours and their interactions, constitutes an organisation. 
Organisations are thus descriptions of coordination structures. Coordination occurs 
between roles as and when interactions take place. 

In this context, an agent is only specified as an active communicative entity which 
plays roles (Ferber and Gutknecht, 1998). This model places no constraints on the 
internal architecture of agents and does not assume any formalism for individual agents. 
In fact, agents instantiate an organisation (roles and interactions) when they exhibit 
behaviours defined by the organisation’s roles and when they interact following the 
organisational interactions. The main reason for this choice is that one can study agent 
behaviours and agent architectures separately. Indeed, the different roles an agent plays 
define its behaviour. The architectures used by agents may be different for the same 
behaviour and so it is sound to study them apart from the core agent behaviour. For 
example, in Gruer et al. (2002) we have specified a specific cognitive agent architecture 
by extending the RIO framework classes. 

An agent may instantiate one or more roles and a role may be instantiated by one 
or more agents. The role-playing relationship between roles and agents is dynamic. It 
means that agents can change the roles they are playing at run-time. We think this model 
is a basis for the engineering of societies of agents and what Castelfranchi (2000) calls 
‘social order’. 

We make no assumptions on agent architectures. The generality of the agent 
definition allows the specification of many agent types. More specific choices can be 
introduced in more accurate models. This model enables a modular approach by 
prototyping separate parts of the MAS. The behaviour of the MAS as a whole is the 
result of the role playing by agents. 

The RIO framework is composed of OZS classes (Hilaire et al., 2001; 2002), one for 
each concept in the RIO metamodel. These classes specify the key organisational 
concepts needed to specify a MAS. In this paper we will describe the following concepts: 
Role, Interaction and Organisation. The Role class is a superclass for all acting entities of 
the system. A role is a specific behaviour; for example, Lecturer, Researcher and Student 
are roles. An interaction occurs when two roles communicate; for example, the Lecturer 
and Student roles interact during a course. Interactions are then defined by the origin and 
destination roles involved. Organisations are sets of interacting roles. The University 
organisation may group Lecturer, Researcher and Student roles. The RIO framework is 
associated with a step-by-step process to guide the development from analysis to design. 
This process is a refinement-based process where each step is used to build the next step. 
In the analysis stage, roles in the system are identified and their interactions are specified. 
Coherent patterns of interacting roles are grouped so as to form organisations. Once 
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pertinent organisations and their components are specified, the next stage consists in 
identifying which roles can be played simultaneously by one or several agents and under 
which constraints. 

2.4 Formal specifications 

A role is an abstraction of an acting entity. We have chosen to specify it by the Role 
class. This class represents the characteristic set of attributes whose elements are of 
[Attribute] type. These elements belong to the attributes set. A role is also defined by 
stimuli it can react to and actions it can execute. These are specified by stimulus set and 
actions set respectively. The [Attribute], [Event] and [Action] types are defined as given 
types and are not defined further. 

The reactive aspect of a role is specified by the subschema behaviour, which includes 
a statechart. The behaviour schema specifies the different states of the role and 
transitions among these states. The obtainConditions and leaveConditions attributes 
specify conditions required to obtain and leave the role. These conditions require specific 
capabilities or features to be present in the agent in order to play or leave the role. Stimuli 
which trigger a reaction in the role’s behaviour must appear in at least one transition. The 
action belonging to the statechart transitions must belong to the actions set. In order to 
ensure coherence between Object-Z and statechart parts, we have specified common 
concepts grouped on a heterogeneous basis following the method of Paige (1997). Two 
constraints (below the short line in the state subschema) specified in the Role class use 
these heterogeneous basis concepts. 

 

An interaction is specified by a couple of roles, which are the origin and the destination 
of the interaction. The roles orig and dest interact using operations op1 and op2. 
These operations are combined by the || operator, which equates output of op1 and input 
of op2. The ◊ symbol is a temporal logic operator which states that, eventually, the 
expression following the symbol will be true. In order to extend interactions to take into 
account more than two roles or more complex interactions, has to create a new class 
which inherits from the Interaction class. 
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An organisation is specified by a set of roles and their interactions. Interactions happen 
between roles of the concerned organisation. It means that for each interaction of 
the interactions set, the roles of the interaction must belong to the roles set of 
the organisation. 

3 Validation and verification 

The example described here illustrates two different aspects of the prototyping process. 
The first aspect concerns the validation of the specification. We have worked on an 
already existing MAS architecture, named satisfaction/altruism model, dedicated to 
collective mobile robots (Simonin and Ferber, 2000). We have made a reverse 
engineering process to extract from this architecture the different roles and their 
specifications (Hilaire et al., 2005). The validation consists in asserting that the 
specification is a good model of the real system. Our approach for establishing this 
assertion consists in executing the specification and observing the behaviour of the 
system. The execution of the specification is allowed by the operational semantics of the 
OZS formalism. This approach is very useful but not complete in the sense that an 
execution is not a formal proof. It depends on the context of the execution and on the 
chosen scenarios. To overcome this problem we propose to formally prove some desired 
properties of the specifications made using our approach. This aspect is detailed in 
Section 3.2. 

3.1 The satisfaction/altruism architecture 

The satisfaction/altruism model proposes a generic mechanism to deal with cooperation 
and conflict solving in situated MASs (Simonin, 2001; Simonin and Ferber, 2000). It 
allows us to extend the swarm intelligence approach, which requires a lot of agents and 
time as it relies on indirect communications. So the satisfaction/altruism model 
introduces direct interactions between agents through the emission of attractive and 
repulsive signals. These signals act as new artificial fields which are dynamically 
generated by agents. They augment the information present in the environment to enable 
direct cooperation between agents. 
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At the heart of the agent architecture there are two modules dedicated to individual 
and cooperative behaviours. The first module computes the Personal Satisfaction (Sat. P 
box in Figure 1) and the second one measures the agent interaction with its neighbours 
(Interactive Satisfaction box). 

Figure 1 Satisfaction/Altruism model: agent-agents and agent-environment interactions 

 

The personal satisfaction gives an evaluation in real time of the agent task progress. 
This individual satisfaction is expressed by a value P(t) ∈ [–Pmax, Pmax], where Pmax 
is a limit depending on the application. The personal satisfaction is computed at each step 
of the decision-action loop by considering three possible task evolutions: progress 
(increase in P), regress (decrease in P) and blocking (strong decrease in P) (see details in 
Simonin, 2001). 

At the opposite, the second module evaluates interactions of the agent with its 
neighbours. This interactive satisfaction can be negative (if the other agent hinders), 
positive (if the other can potentially help) or neutral. 

Both satisfactions are used in the action-selection module to compute two decisions: 
(1) to decide if the agent must continue or change its current goal (see details in Chapelle 
et al., 2002) and (2) to emit signals in order to influence other agents’ behaviours. 

We focus on the latter, as direct cooperation relies on signals emitted by 
agents. Agents can broadcast locally attractive and repulsive signals, named I(t), defined 
as numerical values with I(t) ∈ [–Pmax, Pmax] (denoted ‘Signals I’ in Figure 1). The 
semantic of Signals I is the following: positive values for attractions and negative ones 
for repulsions. 

A cooperative behaviour consists in reacting to the perception of such a signal. 
This reaction is defined as a simple coherent displacement according to the signal 
semantic: go towards the signal origin when the agent perceives an attraction and go 
away when it perceives a repulsion. If several signals are simultaneously received, the 
agent selects the strongest one, which is noted Iext(t), in order to react to the greatest and 
nearest requests. 

This kind of cooperative reaction is called altruistic behaviour in the model, and it is 
performed only when: 

| ( ) | ( ) | ( ) | ( ).ext extI t P t I t I t≥ ∧ ≥  
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This condition expresses that an agent reacts to an external signal if its intensity is greater 
than the intensity of its current satisfaction (to give priority to altruism when the current 
task cannot be achieved easily). The altruistic reaction is defined as a displacement, 
which is expressed by a vector computed simply from the sign and the intensity of the 
received signal (according to the semantic defined above). Note that in order to optimise 
agents’ navigation, this motion vector can be combined with others derived from 
environmental constraints, e.g., obstacle-avoiding vectors (see Simonin et al., 2000). 

The satifaction/altruism model has been validated in different simulated problems 
such as collective foraging and box-pushing (Chapelle et al., 2002), and with real 
robots to solve navigation conflicts in constrained environments (see details in 
Lucidarme et al., 2002). 

Figure 2 represents the Satisfaction/Altruism organisation. It is specified by two 
roles: Individual and Altruist. Each role may interact with other Individual and Altruist 
role-players. The interactions mentioned earlier are signals. The next section presents the 
formal specification of these roles. 

Figure 2 Satisfaction/Altruism RIO diagram 

 

3.2 Specification 

In order to specify the Satisfaction/Altruism model we have distinguished two roles: 
Individual and Altruist. Figure 2 represents the roles and their interactions. 

The first attribute of the Individual role, current, is the action the role-player is 
executing. This role is also described by weights associated with the actions it can carry 
out. These different weights, representing the task’s priority, can be modified by the 
experience of the agent. The initial values of the weights are defined by initialWeight. 
The progressionReward function maps each action to a 3-uplet, giving the reward or 
penalty values when the agent is respectively in progression, regression or locked. The 
element of DiscreteSensor type specifies a sensor which enables the perception of the 
environment. This part of the specification is out of the scope of this paper so it will not 
be discussed here. Note that in general, agents emit a value (I) equal to their satisfaction 
level. Therefore, satisfaction and I are numbers which allow the comparison between 
the level of satisfaction of the role and external influences (perceived signals). The 
Iext operation outputs the maximum signal perceived. 
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The actionSelection operation chooses the best action according to the personal 
satisfaction of the current action and the individual weights of the others. There are two 
different cases detailed in the constraints. The two cases depend on whether there is an 
action with true preconditions and a greater weight than the current action or not. If there 
is no such action, the current action remains unchanged; otherwise the current action is 
replaced with the new one. 
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The Altruist role is also specified by a progressionReward function, a Discrete-Sensor 
and two values – satisfaction and Signal I – measuring satisfaction and 
external influences. 

3.3 Validation of the specification 

The prototyping is performed by using STATEMATE (Harel et al., 1990), an 
environment which allows the prototyping and the simulation of the statechart 
specifications. There exist other software environments for executing statecharts, such as 
Selic (1996) or Harel and Gery (1997). STATEMATE is one of the most complete tools 
regarding statechart constructs and semantics, and so we have relied on it. The 
specification analysis is based upon execution of the statecharts and can be done using 
two techniques. The first technique is simulation and the second is animation. In our case 
simulation would consist in assigning probabilities to events or action occurrences. With 
this technique one can evaluate quantitative parameters of the specified system. As an 
example, in the satisfaction/altruism model, probabilities can be assigned to an agent in 
order to simulate exploration of various environments. 
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The animation technique consists of testing the specification with predefined 
interaction scenarios. It enables one to test if the system behaviour is consistent 
with requirements. 

In order to evaluate our specification of the architecture, we simulated the behaviour 
of two robots evolving in a particular environment. We defined a closed narrow corridor 
where it is impossible for two agents to intercross, as shown in Figure 3(a). The goal of 
each agent is to find an exit by exploring the whole corridor. With such an environment, 
exploration conflicts are unavoidable and lead to the emission of repulsive signals and 
altruistic reactions. In particular, when the agents meet around the centre they both try to 
push the other back, which causes a quick fall in their satisfactions. The most dissatisfied 
agent repulses the other to the end of the corridor. As the ends are closed, the agents will 
be blocked again. The first agent to arrive at one end of the corridor will be surrounded 
by three walls. Thus it will be more constrained than the other agent and its satisfaction 
will decrease faster. The model ensures that it will then repulse the other agent and thus 
both will continuously explore the environment. If an exit for the corridor is artificially 
created, the robots will find it. 

Figures 3(b) and 3(c) show an example of such a test. The x-axis represents time; and 
the y-axis represents discretised positions in the corridor for Figure 3(b) and level of 
satisfaction for each robot for Figure 3(c). One can see that levels of satisfaction and 
trajectories are correlated. Indeed, each time the two robots are locked in, the satisfaction 
levels decrease. They decrease faster when a robot is locked against a wall. As soon as 
the altruism test becomes true the concerned robot plays the altruist role and changes its 
direction (this is the case around time 109, 155 and 235). If a robot is not locked in and 
can explore the corridor following its initial direction, its satisfaction level increases. 

This animation shows an example of the execution of the specification for a specific 
environment (the corridor) and a specific number of agents (limited by computer 
capacity). These parameters can be easily modified in order to check the specification 
against pertinent test cases. It is important to note that the validation of the specification 
by simulation gives similar results as the real-world experiments (Lucidarme et al., 
2002). In Figure 4 a hedograph, from the Greek hedos, which means satisfaction, shows 
the satisfaction levels of two real robots. 

The simulation is performed by executing the behaviour part of the obtained 
specifications without developing a specific simulator. The simulation tool offers an 
interactive simulation mode and a program-controlled mode. In the latter a program 
written in a high-level language replaces the user. One feature of this programming 
language is the breakpoint construct. The breakpoint stops the specification execution 
when a condition is verified. Possible uses of breakpoints are, for example, configuration 
tests with predefined interaction scenarios and output of statistics. 
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Figure 3 Corridor environment (a), agents location (b) and satisfaction (c) 
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Figure 4 Hedographs of two real robots 

 

3.4 Proofs of specification properties 

In this subsection we establish fundamental properties of the satisfaction/altruism model 
in corridor environments. OZS semantics (Gruer et al., 2004) is based upon transition 
systems as defined in Manna and Pnueli (1995). It means that for each OZS specification 
there is an associated transition system. This transition system represents the set of 
possible computations the specification can produce. There are software environments, 
such as Manna et al. (1995) and de Moura et al. (2004), which take as input transition 
systems and allow the making of proofs of properties concerning the specified system. Of 
course there exist other environments for automatic theorem proving with different input 
formalisms such as Parent (1994), Nipkow et al. (2002) and Saaltink (1997). The 
semantics defined for our formalism has led us to use transition systems tools. 
Specifically we have chosen the SAL enviroment. With transition systems and a software 
environment such as SAL (de Moura et al., 2004), one can use several model checkers or 
theorem provers. 

The model checkers are easy to use but suffer from combinatorial explosion. A 
solution to avoid this is to use theorem provers but their use requires great expertise. A 
third way proposed in Rushby (2006) is to use bounded model checking and induction to 
prove theorems. Given a system S specified by an initial predicate Init and a transition 
relation T, there exists a counterexample of length k to invariant P if there is a sequence 
of states 0 0 1 1( ) ( , ) ( , ) ( )k k kInit s T s s T s s P s−∧ ∧ ∧ ∧¬… . 

The induction is defined as: 

Basis: 0 0( ) ( )P s I s⇒  and 

Step: 1 1 2 2( ) ( , ) ( ).P r T r r P r∧ ⇒  
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This ordinary induction is extended to depth k as: 

Basis: no counterexample of length k or less 

Step: 1 1 2 2 1 1( ) ( , ) ( ) ( ) ( , ) ( ).k k k kP r T r r P r P r T r r P r− −∧ ∧ ∧ ∧ ∧ ⇒…  

The bounded model checker is used to establish the initial predicate. The induction 
theorem prover is used to prove the general induction property. 

With this technique we have proven two lemmas, which have led us to a third 
interesting property. The first lemma may be interpreted as ‘the most constrained robot is 
the most dissatisfied’. It is specified by the following formula: 

( , [1..# ], ( ) ( ) ( ) ( )).i i i ji j Robots i j left r wall right r robot sat r sat r◊ ∀ ∈ ≠ ∧ = ∧ = ⇒ <  

It is eventually true that, for two different robots, if one is locked between a wall and 
another robot, its satisfaction will be lesser than the others. This lemma was proved by 
the technique presented above. 

The second lemma may be interpreted as ‘it’s the less constrained robot which 
becomes altruist’. 

( , [1..# ], ( ) ( ) ( )).i j Robots i j s i altruist sat i sat j∀ ∈ ≠ ∧ = ⇒ >,  

For two different robots in a corridor, if one is in the altruism state then its satisfaction is 
lesser than the other’s satisfaction. This lemma was also proved using the SAL 
environment. With these two lemmas taken as axioms, the SAL prover has established 
the following theorem: ‘When a robot is in altruism state it unlocks the conflict.’ 

( , [1..# ], ( ) ( ) ( )).i j Robots i j s i altruist direction i direction j∀ ∈ ≠ ∧ = ⇒ =,  

It means that a robot in the altruism state is repulsed and so follows the nonaltruist 
robot’s direction. 

4 Related works 

This section describes some approaches for Agent-Oriented Software Engineering. The 
TROPOS methodology is based on a requirements analysis performed by means of goals, 
dependencies, roles, actors, positions and agents (Bresciani et al., 2004). They are 
graphically presented on the same schema. It is sometimes difficult to read such schemas, 
where all concepts are on the same level. Moreover, the tools associated with this 
methodology provide only static analysis of goals satisfaction. 

Prometheus (Bergenti et al., 2004) is a methodology which defines a process 
associated with a set of deliverables. It covers phases from specification to architectural 
and detailed designs. The available supporting tool verifies features at the architectural 
and detailed design levels and it is mainly concerned with interfaces compatibility and 
plans consistency. 

Kendall (2000) suggests the use of extended Object Oriented methodologies such as 
design patterns and CRC. CRC is extended to Role Responsibilities and Collaborators. In 
Kendall et al. (2000), a seven-layered architectural pattern for agents is presented. These 
concepts do not allow the prototyping of MASs. 
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The Andromeda methodologies (Drogoul and Zucker, 1998) use the role notion and 
propose a step-by-step methodology in order to design a MAS based upon reactive agents 
integrating machine-learning techniques. We have already specified the cognitive 
architecture (Gruer et al., 2002). 

The MaSE methodology (DeLoach, 1999) insists upon the necessity of software tools 
for software engineering, specifically code generation tools. MaSE methodology suffers 
from limited one-to-one agent interactions. The authors authorise a dynamic role-playing 
relationship without suggesting how it can be done. 

Bergenti and Poggi (2000) suggest the use of four UML-like diagrams. These 
diagrams are modified in order to take into account MAS-specific aspects. Among these 
MAS-specific aspects there are conceptual ontology description, MAS architecture, 
interaction protocols and agent functionalities. 

In Odell et al. (2000), the authors present an approach extending UML for 
representing agent relative notions. In particular, the authors insist upon role concept and 
suggest the use of modified sequence diagrams to deal with roles. To the authors’ 
knowledge no specific tool is proposed to deal with these diagrams. 

The approach proposed by Herlea et al. (1999) is based upon the refinement of 
informal requirement specifications to semiformal and then formal specifications. The 
system structuring is based on a hierarchy of components (Brazier et al., 1997). These 
components are defined in terms of input/ouput and temporal constraints. A kind of 
testing technique based upon model checking is proposed in Herlea et al. (1999) but it is 
limited to some logical properties. Luck and d’Inverno (1995) propose a formal 
framework which uses the Z language. This framework is the starting point of any 
specification. It is composed of concepts to be refined in order to obtain a MAS 
specification. However, this approach has three main drawbacks. First, the specifications 
unit is the schema. Therefore, state spaces and operations of agents are separated. This 
drawback is avoided in our approach as we specify structure, properties and operations of 
an entity in the same Object-Z class. Second, Luck and d’Inverno’s framework does not 
allow one to specify temporal and reactive properties of MASs (Fisher, 1997). In our 
framework these aspects are specified by temporal invariants and statecharts. Third, no 
operational semantics is given for Z specifications. So it is very difficult to use these 
formal specifications for prototyping or code generation. 

The Gaia methodology (Wooldridge et al., 1999) and its extension (Zambonelli 
et al., 2003) deals with the analysis and design of MASs. It is composed of two 
abstraction levels: agent level and structural organisational level. No tool is proposed for 
this methodology. 

5 Conclusion 

In this paper we presented a formal-driven prototyping approach for MAS based upon a 
formal framework using organisational concepts such as role, interaction and 
organisation. The formal notation used, OZS, is based on the composition of Object-Z 
and statecharts. This multiformalism notation is given semantics in terms of transition 
systems. These semantics allow the animation of specifications and the verification of 
properties by using software environments such as STATEMATE (Harel et al., 1990) 
and SAL (de Moura et al., 2004). We have illustrated this approach by specifying an 
existing MAS architecture. The first step consists in defining a RIO model for this 
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architecture as a result of an organisational reverse engineering. The second step consists 
in validating the formal specification against existing experiments realised with real 
robots. In order to validate the specifications we have executed them. In fact, the 
specifications were animated in order to validate them against real scenarios. Once the 
specifications were validated so we were sure that they constituted a good model of  
the architectures, we were able to prove pertinent properties using formal proof. The 
properties we proved were linked to the requirements of the architecture. These 
properties are emerging properties that enable us to solve deadlocks during exploration. 

This prototyping approach was also used to specify and analyse several MASs from a 
cognitive architecture (Gruer et al., 2002) to an immune-based architecture (Bakhouya 
et al., 2003) and holonic MAS (Rodriguez et al., 2007). 

However, we are aware of our approach’s limitations. In particular we plan to ease 
the specification process by associating it with a methodology. A CASE tool could be 
helpful to support the specification. Morever, we cannot say that our formalism is 
adapted to all MAS architectures. Up to now, for the problems we have dealt with we 
encountered no expressive limitations, but this is not proof. 

Future works may take several directions. We are working on techniques to reduce 
combinatorial explosion of theorem proving and model checking, such as compositional 
verification techniques. The RIO organisational framework eases the use of such 
techniques as organisations and roles define components that can be verified separately. 
These techniques will facilitate the proving of complex properties. 

We follow our previous works on the specification of MAS methodologies and 
architectures. We are currently formalising the RIO semiformal notation and trying to 
apply it to holonic MAS modelling. Several methodologies such as PASSI (Chella et al., 
2004) are currently under specification. The specifications of these methodologies will 
contribute to give a formal and precise meaning to each one of them. We are also 
developing a software environment in order to help the specifier using our process. 
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