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Abstract. The facility positioning3 problem concerns the location
of facilities such as bus-stops, fire stations, schools, so as to opti-
mize one or several objectives. This paper contributes to research on
location problems by proposing a reactive multiagent approach. Par-
ticularly, we deal with the p-median problem, where the objective is
to minimize the weighted distance between the demand points and
the facilities. The proposed model relies on a set of agents (the facili-
ties) situated in a common environment which interact and attempt to
reach a global optimization goal: the distance minimization. The in-
teractions between agents and their environment, which is based on
the artificial potential fields approach, allow us to locally optimize
the agent’s location. The optimization of the whole system is then
obtained from a self-organization of the agents. The efficiency of the
proposed approach is confirmed by computational results based on a
set of comparisons with the k-means clustering technique.

1 INTRODUCTION

The facility positioning problems have witnessed an explosive
growth in the last four decades. As Krarup and Pruzan [8] point out,
this is not at all surprising since location policy is one of the most
profitable areas of applied systems analysis. This is due to the impor-
tance of location decisions which are often made at all levels of hu-
man organization. Then, such decisions are frequently strategic since
they have consequential economic effects.
The term facility is used in its broadest sense. It refers to entities such
as bus-stops, schools, hospitals, fire stations, etc. The general prob-
lem is, then, the location of new facilities to optimize some objectives
such as distance, travel time or cost and demand satisfaction.

However, positioning problems are often extremely difficult to
solve, at least optimally (often classified as NP-Hard). There have
been works based on genetic algorithms, branch and bound, greedy
heuristics, etc. These approaches are not easily adapted for dynamic
systems where the system constraints or data change. This is a real
limitation since most of real problems are subject to change and dy-
namics. To deal with this lack of flexibility and robustness, we adopt
a multiagent approach which is known to be well suited for dynami-
cal problems [5].

This paper proposes a multiagent approach for the facility location
problem, which is based on the self-organization of reactive agents.
To our knowledge, no reactive agent-based approaches have been al-
ready used to deal with this problem. The choice of a multiagent

1 Laboratory S.e.T, University of Technology Belfort Montbéliard
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approach provides several advantages. First, multiagent systems are
well suited to model distributed problems. In such systems, several
entities evolving/moving in a common environment have to cooper-
ate to perform collective and local goals. Second, even if the mul-
tiagent approach does not guarantee to find optimal solution, it is,
often, able to find satisfying ones without too much computational
cost [19]. Through this paper we show that the reactive multiagent
approach can be an interesting new way for optimization in posi-
tioning problems. Then, it provides satisfying solutions in addition
to other assets as flexibility, modularity and adaptability to open sys-
tems. In our approach, agent behavior is based on the combination
of attractive and repulsive forces. The idea is that the behavior of
agents at the microscopic level leads to emergence of solutions at the
macroscopic level [12].

This paper is structured as follows: section 2 presents the facility
location problems. Then, section 3 details the proposed multiagent
approach. Section 4 presents experimental evaluations through com-
parisons with the k-means approach. In section 5, some aspects of the
model are discussed. Then, the last section gives some conclusions
and perspectives.

2 THE POSITIONING PROBLEM

2.1 Overview

In the literature, the general facility positioning problem consists in
locating new facilities to optimize some objectives such as distance,
demand covering, travel time, cost.
There are four components that characterize location problems [14]:
(1) a space in which demands and facilities are located, (2) a metric
that indicates distance (or other measures as time) between demands
and facilities, (3) demands, which must be assigned to facilities, and
(4) facilities that have to be located. There exists two types of loca-
tion problems: continuous and discrete ones. The problem is contin-
uous when the facilities to be sited can generally be placed anywhere
on the plane or on the network. In discrete location problems the
facilities can be placed only at a limited number of eligible points.

A non-exhaustive list of facilities problems includes: p-center, p-
median, set covering, maximal covering, dynamic location, stochas-
tic location and multiobjective location problems. This paper fo-
cuses, particularly, on the p-median problem. The mathematical for-
mulations of the previous variants are well known. However, formu-
lating is only one step of analyzing a location problem. The other
step and the most challenging one is to find optimal solutions.

Typically, the possible approaches to such a problem and espe-
cially to the p-median problem, consist in exact methods which al-
low to find optimal solutions. A well-known example of methods is



branch and bound [18]. However, these solutions are quickly inef-
ficient for very complex problems, i.e. with hundreds of constraints
and variables. Then obtaining optimal solutions for these problems
requires colossal computational resources.

Another category of methods are proposed for the p-median prob-
lem. These methods, known as heuristics, allow to find good solu-
tions, but do not guarantee finding the optimal one(s): greedy heuris-
tics [2], genetic algorithms [6], lagrangean relaxation [3], etc.
However, these approaches have several drawbacks such as the rigid-
ity, the lack of robustness and flexibility, the computational cost
(huge population size and long convergence time, for example in ge-
netic algorithms). Particularly, these approaches are limited in their
ability to cope with dynamic problems characterized by the change
of problem constraints and optimization criteria.

This paper explores another possible heuristic which is based on
multiagent systems. The remainder of the paper will focus on this ap-
proach. The next section presents formally the continuous p-median
problem.

2.2 Continuous p-median problem statement

In the rest of the paper, the continuous p-median problem is consid-
ered. It consists to locate a fixed number of facilities such that the
whole environment can be used. The objective is to minimize the
distance between demands and facilities.
The problem is expressed as follow [13]:
E = the set of demand points in the plane<2 (or more generally<n)
indexed bye
We = a positive weight assigned to each demand
p = the maximum number of facility lo locate
d(x, e)= the distance between the facilityx and the demande
The problem is to find a subsetX of p facility locations within a fea-
sible regionS⊂ <2, such that:

min
X⊂S;|X|=p

FE(X) (1)

FE(X) =
∑
e∈E

We. min
x∈X

d(x, e)

The objective function (1) minimizes the weighted sum of dis-
tances of the demand points to their closest facility.

3 A SELF-ORGANIZATION APPROACH FOR
THE CONTINUOUS P-MEDIAN PROBLEM

Our model relies on the Artificial Potential Fields (APF) approach
which is a possible manner to build self-organized systems. This ap-
proach is presented in the next section, the proposed model is detailed
in section 3.2.

3.1 The artificial potential fields approach

Self-organization exists in many natural systems and especially in in-
sect societies. Such systems are composed of simple entities, for in-
stance ants, which can build tri-dimensional structures or solve com-
plex problems without any global control [11]. Their organization
results from the numerous interactions between agents and their en-
vironment. It is the environment that guides the agent behaviors and
the whole system organization (called stigmergy principle) [12].

Such an approach has been used to define decentralized algorithm
to deal with path finding problems (ant algorithm [4]), collective
tasks (such as boxpushing [1], navigation [15], foraging with robots),

etc. Most of these works are based either on digital pheromones (as
inspired by ants) or on artificial potential fields (APF). We adopt this
second one because it is well suited to deal with spatial constraints,
as it is the case in the p-median problem.

This APF approach has several inspirations (physical, biological,
etc). The concept was introduced in Lewin’s topological psychol-
ogy [9]. The basic idea is that human behavior is controlled by a
force field generated by objects or situations with positive or nega-
tive values or valences. During the past decade, potential field theory
has gained popularity among researchers in the field of autonomous
robots [7] and especially in robot motion planning thanks to their
capability to act in continuous domains in real-time. By assigning
repulsive force fields to obstacles and an attractive force field to the
desired destination, a robot can follow a collision-free path via the
computation of a motion vector from the superposed force fields [1].
In [16], artificial potential fields are used to tackle cooperation and
conflict resolution between situated reactive agents.

However, the APF technique is limited by a well known drawback:
local minima. Indeed, adding attractive and repulsive fields can pro-
duce areas where forces are equilibrated. Then, an agent that uses
potential fields to move can be trapped in such places. The original-
ity of our approach relies on the fact that we do not try to avoid such
local minima. At the opposite, we exploit them as interesting places
where facilities are located at the balance of different influences.

3.2 A self-organizing multiagent model

As facilities are elements to be placed in the environment, we model
them as reactive agents. The environment is defined by a finite and
continuous space. Demands, which are static data of the problem, are
defined as an environment characteristic.

As in the reactive multiagent methodology proposed in [17], our
approach consists to, first, define the behavior of a single agent (facil-
ity) so as to optimize its position considering the perceived demand.
Second, we consider interactions between agents, to obtain the col-
lective problem solving.

3.2.1 Local demand satisfaction

We first define the behavior of an agent which must minimize its dis-
tance to the perceived demand. The key idea is that demand induces
attraction forces which are applied on the agent. Considering one de-
mand point, an attractive force is defined from the agent towards the
demand. It is expressed as a vector the intensity of which is propor-
tional to the demand weight and to the distance between the agent
and the demand. Formally, for an agentA perceiving a demandD
with weightWD

→
F D/A= WD .

−−→
AD (2)

The influence of the attraction decreases when the agent moves
towards the demand. Thus, if the agent attains the demand the attrac-
tion behavior is inhibited.

For the set of perceived demands, the influence on an agent is de-
fined as the sum of all induced forces. Formally, the local attraction
force undergone by an agentA is computed as follows:

→
F demands/A=

∑n

i=1

→
F i/A

n
(3)

n is the number of demands perceived by the agentA through its
attraction radiusra (n = 5 in Fig.1). The demand is indexed byi.
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Figure 1. Attractions lead the agent to the weighted barycenter of demands

As a consequence the agent moves to the weighted barycenter of
the demands, which is known to approach the minimum average
distance to several close weighted points [10, 13]. For example, if
an agent is subject to two attractive forces (from two different de-
mands), it will be more attracted towards the biggest demand. Then,
it will move towards a balance point. This point is defined as the
place where the two attraction forces are equilibrated.

Now, we have to consider several agents applying such a behavior.
Then, some of them could move to the same locations. In such a
case the process is sub-optimal since several agents cover the same
demand. To prevent such a process repulsive forces are introduced to
the model.

3.2.2 Local coordination

In order to avoid that agents have the same locations, we introduce
repulsive forces between them. It concerns close agents, i.e. situated
under a particular distance, defined as the repulsion radius (rr in
Fig.2).

The force intensity is defined as inversely proportional to the inter-
agent distance (see Fig.2).
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Figure 2. Repulsions between agentsA andB lead them to keep away

Formally the repulsive force induced by an agentB on an agentA
is expressed as follow:

→
RB/A=

−→
BA∥∥−→AB

∥∥2
(4)

Then, the local repulsive force undergone by an agentA is com-
puted as follows:

→
Ragents/A=

∑m

j=1

→
Rj/A

m
(5)

m is the number of agents perceived by the agentA. These agents
are indexed byj. Fig.2 illustrates this repulsive process between two
agents.

This repulsion process allows the coordination of agents while
moving to the demand (see next section). Moreover, such repulsive
forces can allow to respect constraints on minimal distances sepa-
rating facilities (constraint present is many facility location applica-
tions).

3.2.3 Collective solving

The agent behavior is defined as the weighted sum of both local at-
traction and repulsion forces. Formally, for an agentA, it is expressed
as follows:

−−−→
Move = α

→
F demands/A +(1− α)

→
Ragents/A (6)

The coefficientα allows us to favour either the attraction or the
repulsion.

We now consider the whole system, where several facilities must
optimize their positioning to cover numerous demands. In the self-
organizing approach, no global control is used. Agents are created
and distributed in the environment and act following the defined in-
dividual behavior.

To implement the proposed multiagent model, we can (i) assign
a thread to each agent or (ii) define a scheduler that simulates the
parallel agents computation. We adopt the second solution which is
generally used for reactive agents implementation. Finally, the col-
lective solving process is presented in Algorithm 1. The initialization
(step 1) and the fitness computation (step 9) are detailed in the next
section.

Algorithm 1 Collective solving process
1: Initialization of Agent positions
2: while Fitness in progressdo
3: for all Agents do
4: Attraction computation
5: Repulsion computation
6: Move computation
7: Move execution
8: end for
9: Fitness computation

10: end while

4 EXPERIMENTATIONS

After exposing the principle of the approach, the model is evaluated
on a case study. It consists in positioning facilities (bus-stops, restau-
rants, etc) on a continuous environment corresponding to the map
of France presented in Fig.3 (400x400 size). It contains the demand
weights which are values between 0 and 255 (randomly generated).
These weights are represented as a gradation from black color (255)
to white color (0).

The initial positioning of facilities is performed with a random
computation (Fig.3 (a)). Parameters values are:α = 0.5, ra =
25, rr = 20.

When the algorithm starts, facility agents (the white points in
Fig.3) move towards demands while avoiding other agents (Fig.3
(b)). In the first iterations we can observe important moves to the
highest demands while the repulsive forces globally stabilize this ten-
dency. The system iterates until it attains a global equilibrium state
(convergence to a stable state).

Fig.3 (c) shows the final state to which the system converges.
The facilities repartition is characterized by an intensification of the



(a) Demand representation (dark areas) 
and random  initialization of facility locations 

(b) Facilities motion (iteration 20) (c) Final result 
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Figure 3. The evolution of facilities positioning for the case study with 400 agents

agents in areas where demands is high. This result is visible inside
the rectangular area. It is also clear that all facilities respect a mini-
mal distance between them.

The performance of the multiagent model has been compared with
the k-means clustering technique. The k-means algorithm is a well
known technique that computes very good solutions to the facility
location problem [10]. It allows us to classify or to group objects
based on attributes/features intoK number of groups. The grouping
is done by minimizing the sum of distances between data and the
corresponding cluster centroid (Algorithm 2).

Algorithm 2 The k-means clustering
1: repeat
2: Place k points into the space represented by the objects that

are being clustered.
3: Assign each object to the group that has the closest centroid.

When all objects have been assigned, recalculate the positions
of the k centroids as weighted barycenters.

4: until The centroids no longer move.

Comparisons are made according to a global fitness index ex-
pressed by the formula (7) and corresponding to the mean distance
between each demand and the nearest facility:

Fitness =

∑
ij

Dij ∗ d(Cij , xij)∑
ij

Dij
(7)

Dij = the demand at pointxij

d(Cij , xij) = the distance between the pointxij and the nearest
facility Cij

Comparisons are carried out on different number of facilities, as
shown in Table 1. For each facility number, 50 tests have been ex-
ecuted. The fitness values obtained by applying the multiagent ap-
proach are very close to the k-means ones. The difference is small
and it is inversely proportional to the number of facilities.

A second comparison has been performed considering another cri-
terion: the time required to converge to a solution. Results are pre-
sented in Table 2, they show that the multiagent model converges to a
solution more rapidly than the k-mean, e.g. for 400 facilities the mul-
tiagent approach is 3 times faster than the k-means. It is particularly

Table 1. Comparison with k-means clustering

Fitness: minimal values
Facilities 50 100 150 200 400
Multiagent 16,592 11,187 9,164 7,945 5,696
k-means 15,556 10,965 9,010 7,820 5,593
Difference 1,036 0,222 0,154 0,125 0,095

interesting to note that the multiagent approach is more efficient than
the k-means while the number of agents increases.

Table 2. Comparison of computation time

Computation time (in second)
Facilities 100 150 400
Multiagent 34.289 24.925 33.019
k-means 37.678 73.306 118.251

Fig.4 plots the evolution of the fitness values for 400 facilities.
We can show that the fitness decreases until the convergence to a
constant value. Here, the convergence is attained rapidly: since the
41 th iteration.

All the experimentations have shown that the agents systemati-
cally converge to a stable location. It corresponds to a global balance
between attraction to demands and inter-agents repulsive forces.

5 DISCUSSION

The previous experimentations allow to point up some observations
on the proposed model. The obtained solutions are globally satisfy-
ing considering the fitness values. We have shown that these solutions
are quickly obtained.

For each specific application, the multiagent approach needs a pa-
rameter setting stage. However, the proposed model depends only
on three parameters: attraction and repulsion radius, and the weight
combination of influences (α in formula (6)). Attraction and repul-
sion radius depend on the considered application. Generally, the at-
traction radius is defined by the coverage distance (for a demand, the
next facility must be within a specified distance, the covering radius).
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Figure 4. The fitness evolution for the case study with 400 agents

The repulsion radius is defined by the minimal distance allowed be-
tween two facilities.α is defined following the designer objectives.

Generally, the existing solutions for facility positioning [2, 18, 6]
are not easily adaptable when the problem constraints change, par-
ticularly, for dynamic perturbations. It can concern the environment
structure (e.g. demands), the facilities number, etc. For instance,
when facilities have been located, any change in the demand will gen-
erally needs a new execution of the employed algorithm (it is the case
with genetic algorithms, branch and bound, etc). At the opposite, our
self-organizing approach will immediately adapt the locations to the
perturbation. The algorithm can compute this adaptation from its last
state. Moreover, it is interesting to not stop the algorithm in order
to observe new solutions which are dynamically obtained while per-
turbing the system.

The proposed model can be also adapted to variations in the prob-
lem statement. For instance, we have applied our model to bus-stops
positioning in a real bus-line network. The considered network serves
a 60000 inhabitants city. Demands correspond to real values of in-
habitants density per quarter. In this problem the positioning of facil-
ities is limited to the lines. The model has been adapted to this new
constraint without changing the agent behaviors. We have just con-
strained the agents to stay on lines (the move vector is transformed so
as the agents move along lines). Experimentations have shown that
the fitness value decreases until its convergence to a constant value,
which corresponds to an optimization of the bus-stops location.

6 CONCLUSIONS

This paper has presented a self-organizing multiagent approach for
the continuous p-median problem. Facilities, which are modeled as
reactive agents, move according to their local perception. Demands
induce attractive forces and the proximity between agents generates
repulsive ones. The agent behavior is defined as a combination of
these two kind of opposite influences.

Local minima, which must be avoided in the artificial potential
fields approach are exploited in our model as balance points between
demands.

At a collective level, we have shown that the system, i.e. the whole
set of agents, interact to minimize distances to demands. Then, the
system converges to a global stable state.

The relevance of our approach has been shown through its applica-
tion to location of facilities on a continuous environment. In particu-
lar, it has been compared to the k-means clustering algorithm. A first

evaluation criterion concerns the variation of the final fitness value.
The multiagent results tend to the k-means values when the number
of agents increases. The second evaluation concerns the computation
time to obtain a stable solution. In this case, the multiagent approach
is clearly faster and this advantage grows with the number of agents.
These different evaluations show that a self-organizing multiagent
approach can be an interesting perspective to optimization in posi-
tioning problems.

Future works deal, first, with a more formal evaluation of the
global system convergence. Then, we seek to apply our approach
to another problematic in location problems: the dimensioning prob-
lem. It consists to optimize the number of facilities to locate, since
each new facility increases the location cost. We obtain a multicri-
teria problem. We then propose to add two behaviors allowing the
creation and the removing of agents in order to optimize facilities
location and number.
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