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Abstract

The Facility Location Problem (FLP) requires locating facilities in or-
der to optimize some performance criteria. This problem occurs in many
practical settings where facilities provide a service, such as the location
of plants, bus-stops, fire stations, etc. Particularly, we deal with the con-
tinuous version of location problem where facilities have to be located in
an Euclidean plane. This paper contributes to research on location prob-
lems by exploring a new approach based on reactive multiagent systems.
The proposed model relies on a set of agents situated in a common envi-
ronment which interact and attempt to reach a global optimization goal.
The interactions between agents and their environment, which are based
on the artificial potential fields approach, allow to locally optimize the
agent’s locations. The optimization of the whole system is the outcome
of a process of agents self-organization. Then, we present how the model
can be extended to the multi-level version of the location problem. Fi-
nally, the approach is evaluated to check its relevance. These evaluations
concern both presented versions of the location problem.

Keywords: Environment-based Problem Solving, MultiAgent Systems, Lo-
cation Problems, Optimization.

1 Introduction

The facility location!' problems have witnessed an explosive growth. It is so
rich in possibilities and perspectives that it has generated an enormous literature
dating back to the seventeenth century [9]. As Krarup and Pruzan [17] point out,
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ocation, positioning, deployment and siting are used as synonyms.



this is not at all surprising since location policy is one of the most profitable
areas of applied systems analysis. This is due to the importance of location
decisions which are often made at all levels of the human organization. Thus,
such decisions are strategic since they have consequential economic effects.

The term facility is used in its broadest sense. It refers to entities such
as plants, bus-stops, schools, hospitals, fire stations, etc. The general problem
is, then, the location of facilities to optimize some objectives such as distance,
travel time or cost and demand satisfaction. However, location problems are of-
ten extremely difficult to solve, at least optimally. Even the most basic models
are computationally intractable for large problem instances. Many heuristics
have been proposed for these problems as well as a few exact algorithms [5].
These approaches are not easily adaptable to dynamic systems where the sys-
tem constraints, or data, change online. This is a real limitation since numerous
real problems involve parameters that change over the time, for instance the am-
bulance location problem can be quoted. To deal with this lack of flexibility and
robustness, a multiagent approach is adopted, it is known to be well suited for
open systems and online changes. Indeed, Open systems represent arguably the
most important application of multiagent systems [32]. It will be shown through
various applications that the proposed multiagent approach is able to face the
environment dynamics and then to behave in the same way when the environ-
ment parameters or constraints are slightly modified. The dynamic aspects of
the environment are related to online changes that may affect the environment
data such as the demand number and/or the facility agent’s number.

In this paper, a multiagent approach to handle the facility location prob-
lems is proposed. It is based on the self-organization of reactive agents through
their interactions with the environment. The choice of a multiagent approach
provides several advantages. First, multiagent systems are well suited to model
distributed problems. In such systems, several entities cooperate to fulfill col-
lective and personal goals. Second, even if the multiagent approach does not
guarantee to automatically find optimal solutions, it is able to find satisfying
ones without too much computational cost, besides other assets such as ro-
bustness and flexibility. In our approach, the behavior of agents has a physical
inspiration, i.e., the way particles in our universe move and globally self-organize
according to contextual information which is represented by potential fields. In
particular, in our approach, contextual information is expressed in the form of a
combination of attractive and repulsive forces. The key idea is that the behavior
of reactive agents at the microscopic level leads to an emergence of solutions at
the macroscopic level [24]. We, then, prove the openness, the flexibility and the
robustness of our approach by tackling several examples of location problems:
the location of bus-stops along already existing lines and the multi-level facility
location.

The structure of this paper reflects the above reported lines of thought.
Hence, the next section presents a review of the facility location problem. Then,
section 3 presents the reactive and the artificial potential field approaches. Sec-
tion 4 is devoted to the proposed multiagent approach. To evaluate this ap-
proach, standard test problems will be used in sub-section 5.1, a real case study



is considered in sub-section 5.2. In section 6 we take a glance at the multi-level
location problem and we prove the adaptation of our approach to this version.
In section 7, some aspects of the model are discussed. Then, the last section
gives some conclusions and perspectives.

2 Location problems

2.1 Overview

In literature, the general facility location problem is concerned with the
determination of the optimal number, size and geographic configuration of fa-
cilities, in such a way that a certain criterion (or several criteria) is optimized.
Three basic classes can be identified in location analysis, following the space
criterion: continuous location, network location and discrete location [3]. The
differences between these arise from the structure of the set of possible loca-
tions for the facilities. Hence, finding optimal facility locations on the edges
or vertices of a network corresponds to a network location model while for dis-
crete location models the facilities can be placed only at a limited number of
eligible positions. Finally, continuous location models are characterized by two
essential attributes: (a) the solution space is continuous, that is, it is feasible
to locate facilities on every point in the space (b) distance is measured with
a suitable metric. Typically, the Euclidean or the Manhattan distance metrics
are employed. Each of these three classes has been actively studied, arousing
intense discussions on approaches proposed to solve location problems. In this
paper, we are particularly interested in continuous problems since this problem
is more generic than the discrete and the network ones.

2.2 Related works

Typically, the possible approaches to location problems consist in exact
methods which allow to find optimal solutions. A well-known example of meth-
ods is branch and bound [30]. However, these solutions are inefficient for very
complex problems, i.e., with hundreds of constraints and variables. Moreover,
they are restricted to relatively small instances. Therefore, obtaining optimal
solutions for these problems requires colossal computational resources. As a
consequence, heuristics are needed to quickly solve large problems and, some-
times, to provide good initial solutions for exact algorithms. These methods
allow to find good solutions, but do not guarantee finding the optimal one(s),
we quote: tabu search [6], genetic algorithms [16], etc. However, these ap-
proaches have several drawbacks such as the rigidity and the lack of robustness
and flexibility. Particularly, they are limited in their ability to cope with dy-
namic problems characterized by online change of the problem constraints and
optimization criteria.

Various heuristics closely related to multiagent systems have been proposed
for different versions of location problems. These ones are mainly based on



Ant Systems [27]. In [28] the authors propose an ant system-based approach
for a discrete problem: the Set Covering Problem (SCP), where the aim is to
find a minimum cost set of facilities. In [18] Ant colony Optimization (ACO)
is applied to another discrete location problem: the Single-Source Capacitated
Facility Location Problem (SSCFLP). These ant-based approaches are dedicated
to the discrete version of location problem. As for the purely agent approaches
that deal with the problem, the work of [2] can be quoted. In this paper the
authors propose a framework for situated multiagent systems and they apply
their model, among others, to a discrete location problem: the shopping centers
positioning. They focus on the modeling phase of a discrete problem, without
seeking to optimize an objective function.

This paper explores the reactive multiagent-based heuristic for the optimiza-
tion of the continuous version of location problems. The remainder of the paper
will focus on this approach. The next section presents formally the continuous
location problem that we address in this paper.

2.3 Continuous location problem statement

In the continuous version of the location problem the objective is to generate
m facility sites in R? space to serve the demands of n customers or fixed points
in such a manner to minimize the total transportation (or service) cost.

The considered uncapacitated version (i.e., no capacity constraints on the
facilities), referred as the continuous p-median problem, may be formulated as
follows [5]:

n m
mind > wi ;- ail (1)

i=1 j=1

where
a; is the known location of demand i, i = 1,...,n;

X = (21,...,xy) denotes the vector of location decision variables, with
xj = (21, 2,2) being the unknown location of facility j, j = 1,...,m;

w; 1is the given total demand or flow required by demand i, i = 1, ..., n;

W = (w;;) denotes the vector of allocation decision variables, where w;;
gives the flow to demand ¢ from facility j, i =1....,n, j = 1...,m;

Hl‘j — C(q” = [(le — aﬂ)z + (Jijg — ai2)2]1/2 is the Euclidean norm. It
represents the distance separating the demand a; to the closest facility ;.

The objective function above minimizes the weighted sum of distances from
the demand points to their closest facility. The main difficulty in optimizing
equation (1) arises from the fact that the objective function is neither convex
nor concave [5] and, may have a large number of local minima. Moreover, for
large sets of demands and facilities this problem is unsolvable in acceptable



time [26]. To cope with this complex problem a new agent-based heuristic is
presented. The next section is devoted to the description of our proposition.
It is then adapted to the classic version as well as to the multi-level version of
location problems.

3 A Self-Organizing approach for the continu-
ous location problem

Our model draws from the Artificial Potential Fields (APF) which is an
approach to build self-organized systems. This approach as well as the reactive
one are presented in the next sub-sections, the proposed model is detailed in
section 4.

3.1 The reactive approach and the artificial potential fields
technique

The reactive approach arose in artificial intelligence, in the 80’s with the
work of M. Minsky [22]. Minsky constructed a thesis for a way in which human
intelligence can be built up from the interactions of simple parts called agents.
This thesis matured in the end of the 80’s, when researchers where interested
in the functioning of insects societies. They showed that these reactive agents
are able to collectively solve complex problems. This phenomenon observable at
the macro level is called emergent self-organization. Emergence in multiagent
systems is a dynamic nonlinear process that leads to emergents properties, be-
havior, etc. at the macro-level of a system from the interaction of parts at the
micro-level. Such emergent phenomena are novel since they can not be readily
understood by taking the system apart and looking at the parts. The micro-
macro effect of emergence implies that not one agent has to be aware of that
global behavior.

Emergent self-organization exists in many natural systems and especially
in insect societies. Such systems are composed of simple entities, for instance
ants, which can solve complex problems without any global control [25]. Their
organization results from the numerous interactions between agents and their
environment. It is the environment that guides the agents’ behaviors and the
whole system organization according to the so called stigmergy principle [24].
Self-organization has been used to define decentralized algorithm to deal with
path finding problems, as in ant algorithm, collective tasks such as box-pushing
[1], navigation and foraging with robots [29], etc. Most of these works are
based either on digital pheromones, as inspired by ants, or on artificial potential
fields. This second one is adopted because it is well suited to deal with spa-
tial constraints as in the location problems. Besides, APF approach promotes
self-organization and self-adaptation where agents activities are automatically
adapted to the environmental dynamics. The APF approach has several inspi-
rations: physical, biological, etc. The concept was introduced by Kurt Lewin



in his book “Principles of topological psychology” [19]. The basic idea is that
human behavior is controlled by a force field generated by objects or situations
with positive or negative values or valences. During the past decade, potential
fields theory has gained popularity among researchers in the field of autonomous
robots and especially in robot motion planning thanks to their capability to act
in continuous domains in real-time [33]. By assigning repulsive force fields to
obstacles and an attractive force field to the desired destination, a robot can
follow a collision-free path via the computation of a motion vector from the
superposed force fields [1].

3.2 Reactive agents-based heuristics for problems solving

Various reactive agents-based approaches have been proposed for problem
solving ranging from planning to optimization. Without the ambition of be-
ing exhaustive, three classes of agent-based heuristics where the environment
abstractions have a central role can be distinguished.

The first class involves the satisfaction-based heuristics which are mainly

based on Eco-Problem-Solving (EPS) and Constraint Satisfaction. Ferber de-
veloped the Eco-Problem-Solving model [12], in which problems are composed
and solved by the interactions of simple behavior-based eco-agents. These ones
behave according to their specific programs of simple “tropism”, i.e. a behavior
made of reactions to the environment, and are continuously questing for sat-
isfaction state. Interaction between agents is characterized by aggression and
concession. Problem solving is seen as the production of stable states in a dy-
namic system, where evolution is due to the behavior of simple agents. In this
context, Drogoul applied EPS model to the N-puzzle problem [10].
Several other research in distributed artificial intelligence has considered the
distributed Constraint Satisfaction Problem (CSP) in which variables of a CSP
are distributed among agents. Each agent has an exclusive subset of the vari-
able and has sole responsibility to instantiate their values. While satisfying its
own constraints, each agent instantiates/modifies its variable values. Coordina-
tion among agents facilitates effective problem solving. Ghédira constructed a
model of simple reactive agents for resource allocation problems without prece-
dence constraint on task [15]. The model involves Task and Resource agents in
interaction, each of them seeking its maximal satisfaction in terms of getting
resource allocation and maximizing resource utilization.

The second class concerns the biology inspired heuristics. These ones
utilize insects metaphor in collective problem solving [25]. Research is directed
toward constructing systems composed of reactive agents that are situated in
their environment and act by stimulus and response. Colorni et al. presented,
for instance, a distributed optimization scheme for Traveling Salesman Problem
(TSP) based on ant colonies [7].

The third class is represented by the physics inspired heuristics. The
physical inspiration is essentially concerned by field-based approaches [21]. Tech-
niques based on fields have proven to be valuable in various applications that
involve movement of agents in a metric space [31]. The computational fields



that are propagated in a distributed environment and locally sensed by agents,
provide contextual information to support agent interaction. Gechter et al.
proposed a problem-solving model based on a swarm approach where agents
interact using physics-inspired mechanisms. This model was then applied to lo-
calization and tracking [14]. In [29], artificial potential fields are used to tackle
cooperation and conflict resolution between situated reactive agents.

4 A self-organizing multiagent approach

In the proposed approach, facilities are modeled as reactive agents which
are situated in the environment. The environment topology is known a priori,
it corresponds to a finite and continuous space involving the demands. The
proposed approach provide an interaction model for the agents in which the
environment has a central role. Agent’s interactions are enabled and mediated
by artificial fields supported by attractive and repulsive forces. They represent
a very expressive contextual information. These forces are propagated in the
system by the agents (facilities) themselves and by the environment via the
demands. The objective of an agent or a facility consists to:

1. Optimize its position considering the perceived demands,

2. Consider interactions with other agents in order to reach the collective
problem solving.

Then, the agent’s behavior corresponds to a move vector reflecting the above
objectives. The computation of this vector is detailed in the following sub-
sections.

4.1 Local demand satisfaction

The agent’s objective consists in minimizing its distance from a set of per-
ceived demands. The key idea is that a demand induces attraction forces which
are applied on the agent. Considering one demand point, an attractive force is
defined to pull the agent to it. It is expressed as a vector the intensity of which
is proportional to the demand weight and to the distance between the agent
and the demand. It is supposed that only one facility is necessary to satisfy
a demand, and that a facility can satisfy (or cover) several demands. Indeed,
repulsion forces are introduced to avoid that several facilities cover the same
demand. The demand weight is constant. It represents for the demand the
necessary service quantity to be satisfied or covered by the facility. The weight
for a demand point, can be the number of passenger waiting at the bus-stop or
the quantity of a product that must be served to a depot from a factory, etc.
Formally, for an agent A perceiving a demand D with weight Wp:

Fpja=Wp . AD (2)



The influence of the attraction decreases when the agent moves towards the
demand. Thus, if the agent attains the demand, the attraction behavior is
inhibited. For a set of perceived demands, the influence on an agent is defined
as the sum of all induced forces. Formally, the local attraction force undergone
by an agent A is computed as follows:

Z?:l Fisa
n

Fdemands/A: (3)

Parameter n is the number of demands (indexed by i) perceived by the
agent A through its attraction radius r,. Figure 1 represents an agent A that
is attracted by 5 perceived demands (n = 5), consequently the agent will move

following the resultant attraction vector F,. Obviously, the radius r, should be
considered as a variable. It can range from infinity to a calculated best value
(specific to the problem). But in our real experiments a fixed radius imposed
by the requirements is considered. For this reason, in the following only fixed
radius are considered.

The agent moves to the weighted barycenter of the demands, which is known
to be the minimum average distance to several close weighted points [20, 26].
For example, if an agent is subject to two attractive forces (from two different
demands), it will be more attracted towards the biggest demand. Then, it will
move towards a balance point. This point is defined as the place where the two
attraction forces are equilibrated. Contrary to the classical use of APF, we do
not try to avoid local minima. They provide natural local solution to a facility
location.

When we have several agents, attraction forces may bring the agents to the
same location. In such a case the process is sub-optimal since several agents
cover the same demand. To prevent this process repulsive forces are introduced
to the approach.

4.2 Local coordination

In order to avoid that agents have the same locations, repulsive forces be-
tween them are introduced. The repulsion force concerns close agents, it is
necessary when an agent perceive other agents through its repulsion radius (r,
in Figure 2). Indeed, the agents try to cover the demands competitively. So,
an agent who is perceived by another represents an obstacle because it pre-
vents its self-satisfaction represented by the demand covering. Thus, the agent
generates a repulsive force which pushes the perceived agents away from it.
Moreover, such repulsive forces are interesting to deal with constraints on mini-
mal distances separating facilities. Such constraints are present in many facility
location applications. The force intensity is defined as inversely proportional
to the inter-agent distance: the less the distance is, the bigger the repulsion is.
Formally the repulsive force induced by an agent B on an agent A is expressed



as follow:
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Then, the local repulsive force undergone by an agent A is computed as
follows: =

- 27‘,;1 Rj/a

Ragents/A: == 9

(5)

Parameter m is the number of agents perceived by the agent A. These agents
are indexed by j. Figure 2 illustrates this repulsive process between two agents.

m

4.3 Collective solving

The agent behavior is defined as the weighted sum of both local attraction
and repulsion forces. Formally, for an agent A, it is expressed as follows:

- — —
Move = o Fdemands/A +(1 - CY) Ragents/A (6)

The coefficient « allows to favor either the attraction or the repulsion influence.
It depends on the considered application.

We now consider the whole system, where several facilities must optimize
their positioning to cover numerous demands. In the self-organizing approach,
no global control is used. Agents are created and distributed in the environment
and act following the defined individual behavior. The agents try to satisfy their
local objectives, this leads to the emergence of a global location, i.e. a sub-
optimal solution. The collective solving process is presented in Algorithm 1.
The agent’s target move is regarded as a result of the above two tendencies i.e.,
attraction and repulsion. The behavior in Algorithm 1 does not prevent the main

Algorithm 1 Collective solving process
1: Initialization of Agent positions
2: while Fitness in progress do
3. for all Agents do
4 Attraction computation
5 Repulsion computation
6: Vector Move computation
7
8

Move execution
end for
9:  Global fitness computation
10: end while

drawback of the artificial potential fields technique: the local minima. Indeed,
introducing attractive and repulsive forces leads to the emergence of areas where
forces are equilibrated. Thus, an agent that is subject to these influences can be
trapped in such places. In the proposed agent-based heuristic these local minima



are considered as interesting places where facilities are located at the balance of
different influences. They represent potential solutions globally satisfying and
quickly obtained as explained in the following sections.

5 Computational study

5.1 Results on test suite

An empirical study was carried out to evaluate the proposed approach. The
50-customer problem listed in [11] and the fitness presented in sub-section 2.3
are considered. The weights w; are specified as unitary [5]. Initial solution is
obtained by a random positioning of facilities.

The number of facilities to locate was varied over a wide range (from 2 to 25
facilities). This provided a large number of problem instances ranging from small
to relatively larger instances. Thus, we were able to investigate the performance
of the proposed approach over an extensive range of problem difficulty.

The results which are listed in Table 1 are expressed as a percent deviation
from the best solutions. These solutions which are known to be global optimal
solutions are compared in [5] to several heuristics such as the Tabu Search
(TS) and the projection (PROJ) ones. The performance of our agent-based
solutions is also compared to these two heuristics. For more detail refer to [6]
and [4] respectively for TS and PROJ. Some observations are inferred from a
comparison of the results in Table 1. These are summarized below.

From 10 to 25 facilities the agent-based approach is generally better than
the T'S method and close to the PROJ method. Moreover, the agent approach
outperforms the TS on average.

While increasing the number of facilities the three presented heuristics have
relatively poor performance compared to the optimal values. This implies that
random starts are not an effective solution strategy for “high” problem instances.
It relates to the existence of local minima. In fact, the number of local minima
increases with problem size.

5.2 Application to bus-stop location

In this section the proposed approach is applied to a real case study. The
bus-stops positioning on the bus-network of the city of Belfort (France, 60,000
inhabitants) is considered. Bus-stops must be located such as the distance from
the passengers to the nearest bus-stop is minimized. We dispose of the real bus-
network (see lines structure in Figure 3) and the real values of demands. In this
case study we have a continue demand representation. It is expressed by den-
sities which correspond to the number of inhabitants per quarter, i.e., for each
houses block we have the sum of the existing demands. In Figure 3, dark areas
characterize important demands, the more the area is dark the more important
the demand is. This example introduces an important constraint for facilities.
While moving, bus-stop agents must remain on the lines. Each line has a prede-
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termined number of bus-stops. Terminus agents are fixed and are not subject to
attractive and repulsive influences. The integration of the new constraint does
not need to update the model. Its adaptation concerns only the projection of
the move vector on the bus-lines (i.e., the move vector is transformed so as the
agents move along lines). The initial bus-stop positions are computed randomly,
see Figure 3(a). Agents can be anywhere on the lines network. White points in
Figure 3 correspond to bus-stop agents. The repartition of bus-stop agents is
ensured thanks to the previous influences. Figure 3(b) shows the final state to
which the system converges. The bus-stops repartition is characterized by an
intensification of the agent number in areas where demand is high. To observe
the convergence to a stable state a fitness index is introduced. It corresponds
to the mean weighted distance separating a demand and its closest bus-stop.
Figure 4 plots the fitness values which decrease until the convergence to a stable
state. Convergence is attained rapidly: since the 24th iteration. The optimal
number of this fitness is 175 meters. In other words, for a demand (customer),
the nearest bus-stop is situated at an average distance of 175 meters.

In this case study the considered data are static: demand and bus-stop num-
ber. In our approach, this data can be changed online without disturbing the
agents behavior. Here, the data changing concerns the increase or the remove
of the demands and/or facilities (bus-stops) number. These modifications leads
to a changing in the agents perceptions which engender an adjustment of the
attraction forces, while changing the demands, and the repulsion forces, while
modifying the bus-stops number. All these changes are perceived as contex-
tual information which leads the agents to re-adapt their positions and move
following their new perceived forces without any global control.

6 Adaptation to multi-level problems

This section is another illustration of the flexibility of the proposed approach.

The multi-level location problem which is a variant of the location problem is
tackled.

6.1 The multi-level location problem

In the classical facility location problem only one level of facilities has to
be located. However, many practical situations involve more than one type
of facilities and therefore multi-level models have recently an increased deal of
attention [3, 8]. In literature this problem is designated as: hierarchical, multi-
level, multi-echelon, multi-stage, etc. Generally, the designation of the problem
indicates the maximum number of levels considered: k-hierarchical, k-level, k-
echelon location problems refer to problems with, at most, k levels of facilities.
The objective is to choose where to simultaneously locate facilities in each level
in order to optimize a global objective function. These levels may have dif-
ferent characteristics (by offering different services to clients, for instance) and
interact with each other. So, it is not possible to locate facilities in each level
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independently from the others. This problem is NP-hard, since it is a general-
ization of an NP-hard problem, as stated in [13]. There is several examples in
our daily lives that show the importance of considering multi-level facility loca-
tion problems: the hierarchical health service system, the hierarchical education
system, the multi-level structure of bank and post-offices, etc. In literature, var-
ious approaches were developed to tackle the different variants of the multi-level
problem. These approaches are, mostly dedicated to static version of multi-level
problem where the problem parameters do not change [30]. They are also hardly
useful for real-size problems. Mainly they lack robustness, scalability and adap-
tation to dynamic systems. As a consequence, these methods and especially
exact ones have been restricted to relatively small instances.

6.2 Application to a multi-level distribution system

Minor changes were conducted to make the proposed approach able to tackle
the multi-level facility location problem. The main characteristic of the multi-
level problem is that a facility at a given level represents a demand for the higher
level. To take into account this specific point the attraction is modified so as
a facility at a level n is attracted at once by the demands of the level n-1 and
the facilities of the level n+1 (see Figure 5). As for the repulsion behavior it
remains unchanged. Figure 5 shows a problem with 3 levels, the lowest level
presents the demands. It illustrates the attraction and the repulsion in a multi-
level problem. To sum up, each agent is repulsed by the agents of the same level
and attracted to the agents of the immediately inferior and superior levels.

The previous model is applied to a 2-levels distribution system. In this
system the lowest level corresponds to the Demands, level 1 coincides with
the Depots and the highest one with the Factories. Each demand is assumed
to obtain its product from a depot or a distribution center, which is in turn
supplied by a factory or a manufacturer. The distribution of products between
the various levels is ensured by several vehicles. The evaluation is based on a
global fitness obtained according to the fitness of each level. This one is the
same fitness considered in the formula 1 (sub-section 2.3). Table 2 details the
obtained results for different configurations (various number of demands, depots
and factories). In this example, demands are randomly distributed over a 2D
Euclidean space. Figure 6 illustrates the evolution of agents locations during
the optimization process. It corresponds to the second configuration presented
in Table 2. Obviously, the agents repartition after 100 iterations is better than
that presented after 10 iterations. This observation is confirmed by the fitness
values.

7 Discussion
The previous computational study allows to point up some observations on

the proposed approach. Indeed, the obtained results are globally satisfying
considering the fitness criterion. It is obvious that while adopting this field-
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based approach for an NP-hard problem we did not expect to rival the exact
methods. But, the multiagent approach has various assets that motivate our
choice, these ones are listed below.

Environmental dynamics are adaptively taken into account in that any change
in the system may update influences emitted and perceived by the agent. These
perturbations that tend to influence the facilities locations can be, for instance,
a new facility or demand entering the system, or at the contrary removing a
facility or a demand from the system. Generally, the existing solutions for facil-
ity positioning [30, 16] are not easily adaptable for the environment dynamics
and the possible perturbations. They, inevitably, need to re-adapt their algo-
rithms. At the opposite, our self-organizing approach will immediately adapt
the facilities locations.

An important advantage of the proposed approach is its reusability. In sec-
tion 6, it has been applied to the multi-level location problem without changing
the agents’ behaviors. The approach presents self-adaptation abilities facing
these important changes in the environment characteristics and constraints im-
plied by the multi-level problem [23].

The proposed approach is able to solve a wide range of location problems
in a robust and flexible way (as seen in sections 5.2 and 6). Robustness and
flexibility arise because even if facilities (agents) are added or removed these ones
can achieve their goal without changing their behavior. Moreover, The proposed
approach promotes self-organization and self-adaptation. The agents activities
are automatically adapted to the environmental dynamics which is reflected
in a changing force representation, without forcing the facilities to re-adapt or
change their behavior. Figure 7 illustrates the robustness and the adaptability
of the proposed approach. Tests were conducted on the 50-customer problem.
To disturb the system the demands number is modified. Until 100 iteration 50
customers are considered (Figure 7(a)), the fitness clearly converges to a stable
state (Figure 7(b)). Then from the iteration 101 the number of demands is
increased to 70. This change has an immediate impact on the fitness curve.
The fitness shows a peak, then it decreases and converges to a stable state. The
same results are expected when the demand number is decreased, the fitness
decreases and converges to a stable state.

The main limitation of the proposed approach is that it inherits the dis-
advantages of the potential fields techniques: the local minima. These ones
represent, for us, interesting possible locations which evolve to acceptable so-
lutions considering the fitness-time ratio. An other limit can be quoted, it is
shared by most of the problem-solving heuristics: the dependence of the ini-
tial solution. Indeed, the computational study presented above showed us that
the quality of the final solutions depends on the initial solution or the initial
positioning of agents.
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8 Conclusion

This paper has presented a self-organizing multiagent approach for the con-
tinuous location problem. The proposed model relies on a set of reactive agents
with neither cognitive abilities nor a representation of the global system. The
problem and its constraints are represented through the agent’s environment.
Facilities, which are modeled as reactive agents, move according to their local
perception. They interact to reach a global optimization goal. The interac-
tions between agents and their environment, which are based on the artificial
potential fields approach, allow to locally optimize the agent’s location. Fur-
ther more, demands induce attractive forces and the proximity between agents
generates repulsive ones which are constraints propagated between agents. The
agent’s behavior is then defined as a combination of these two kinds of opposite
influences. The optimization of the whole system is the outcome of a process
of agents self-organization. Then, the system converges to a global stable state
corresponding to a set of local equilibrium in the environment. The relevance
of the approach has been shown through several assets and an empirical study
conducted on three case studies.

Future works will be devoted first to a deeper computational study based
on larger problem instances. Second, the convergence of the proposed approach
and the solutions emergence will be studied. We are also interested in the
dimensioning problem, indeed, since every new facility generates a supplemen-
tary positioning cost we are trying to optimize the already considered objective
function while using the minimal number of facilities. Our problem can be so
formulated: how to maximize the demand covering with the minimal number
of facilities? To do that, we are thinking about merging the eco-solving method
with our APF-based approach. Finally, we are trying to enrich our approach
by using Holonic MultiAgent Systems (HMAS) to deal with multi-level location
problems. The use of HMAS will allow to exploit and control the emergence of
solutions.
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Table 1: Test values for the 50-customers problems

n=>50 (50-customers benchmark)

m Optimal Agent TS best PROJ
best best
values solutions solutions solutions
2 135.5222 0.58 0.00 0.00
3 105.2139 2.10 0.00 0.00
4 84.1536 3.61 0.00 0.00
5 72.2369 4.18 0.00 0.00
6 60.9713 4.11 0.00 0.00
7 54.5020 3.12 0.00 0.25
8 49.9393 2.07 0.00 0.72
9 45.6884 2.37 0.79 0.91
10 41.6851 2.96 1.77 2.40
11 38.0205 2.41 5.83 1.57
12 35.0551 2.66 7.84 0.61
13 32.3067 4.93 2.22 3.33
14 29.6559 3.73 6.35 5.65
15 27.6282 1.97 9.06 5.33
16 25.7427 2.77 8.98 5.44
17 23.9900 4.05 9.62 5.75
18 22.2851 3.97 8.73 2.97
19 20.6399 4.97 10.15 2.91
20 19.3560 3.40 6.34 3.63
21 18.0826 4.31 6.40 1.34
22 16.8220 6.21 5.18 5.34
23 15.6136 4.60 11.74 4.34
24 14.4431 8.24 9.64 0.37
25 13.3016 11.86 9.64 2.00
Av. 3.96 5.01 2.29

Table 2: Experimental results of 2-levels distribution system

Demand Depot Factory  Best found

(level 0) (level 1) (level 2) solution
100 10 1 TATT, T2
100 20 2 5869,9
200 10 1 13839,45
200 15 2 11284,58
200 20 4 10513,04
500 10 2 35860,98
500 20 4 25468,75
500 50 6 19600,98
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Captions of the figures
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: Attractions lead the agent to the weighted barycenter of demands.

: Repulsions between agents A and B lead them to keep away.

: The evolution of the facilities positioning for the Belfort bus-network.
: The fitness convergence; a test with 143 bus-stops.

: A 3-levels problem.

: Agents location for iterations 10 and 100.

: The system adaptability facing an increased number of demands.

Fig. 1: Attractions lead the agent to the weighted barycenter of demands.
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Fig. 2: Repulsions between agents A and B lead them to keep away.
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(a) Random initialization of the bus-stop agents (b) Execution final result
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Fig. 3: The evolution of the facilities positioning for the Belfort bus-network.
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Fig. 4: The fitness convergence; a test with 143 bus-stops.
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Fig. 5: A 3-levels problem.
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Fig. 6: Agents location for iterations 10 and 100.
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Fig. 7: The system adaptability facing an increased number of demands.
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