Number of ordre: 2014-ISAL-?7?? Year 2014

THESIS

SECURITY AND SELF-HEALABILITY ENFORCEMENT OF
DYNAMIC COMPONENTS IN A SERVICE-ORIENTED
SYSTEM

defend at
L’INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

for the degree of
DOCTOR OF PHILOSOPHY

Ecole doctorale : INFORMATIQUE ET MATHEMATIQUES
submitted at 28 February 2014

By
Yufang DAN

Defend at 14 May 2014 before the commission of exam
JURY

Directeurs Stéphane Frénot Professeur INSA de Lyon
Nicolas Stouls Docteur INSA de Lyon
Rapporteurs Lydie du Bousquet Professeur Université Joseph Fourier

Gael Thomas HDR Université Pierre et Marie Curie
Examinateurs loannis Parissis Professeur Université Pierre-Mendés-France
Frédéric Dadeau Docteur Université de Franche-Comté

This thesis is prepared at Centre d’Innovation en Télécommunications et Intégration de
Services (CITI),
INSA de Lyon - INRIA Rhone-Alpes

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Acknowledgement

First and the foremost, i would like to express my sincere gratitude to my
advisors Prof. Stephane Frenot and Dr. Nicolas Stouls for their support and
trust. They are most responsible for helping me complete this thesis as well as
the challenging research that lies behind it. Their wide knowledge and their
logical way of thinking have been of great value for me. They were always
there to meet and talk about my ideas, to proofread and mark up my papers,
and to ask me good questions to help me think through my problems. With-
out their encouragement, constant guidance, all their tolerance and patience, i
could not have finished this thesis. I would like to give special thanks to Dr.
Nicolas Stouls who has spent very much precious time to discuss my work
and to help me analyse the existed problems and so on during the three years
and a half.

I take this opportunity to thank the jury members for spending their pre-
cious time to read and review this thesis, for taking a long trip to attend this
defence, and for giving me valuable comments. I am grateful for the financial
support of the CSC through UT-INSA project.

I would also like to thank my dear colleagues at CITI laboratory for kindly,
professional sharing the experience on their study and work, i had a very
happy time in CITI for three years and a half. I specially would like to thank
administrative staffs at CITI for their instant support whenever I asked for one.

Next, must thank my dear neighbour, Danielle ROCHE, you are really like
my family and my best friend in French, you let me felt i live at here like in my
country, even though my french sentences sometimes were not clear, you are
always there support me for my everything.

The last but not the least, I would like to extend my special gratitude to my
big family: my mother, father, sister, brother-in-law and my husband. Their

1ii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

unconditional support has always helped me to bounce back whenever i felt
low.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Abstract

Dynamic service-oriented architectures (D-SOA) focus on loosely coupled client-
server interactions where both of them can appear and disappear at runtime. Our goal
is to design monitoring systems for these architectures. Since classical monitoring sys-
tems are statically injected into the monitored services, they can not properly handle
the runtime services’ lifecycle. Moreover, when a service is substituted by a new one,
other services may still use the old reference. This reference is kept in memory as a
stale reference which induces some forbidden behaviors.

This thesis contributes to design a monitoring system with resilient dynamicity
that monitors services usage and is able to deal with stale references usage. This goal
is achieved in three steps.

Firstly, by considering the dynamicity of SOA systems in an open environment,
we design a corresponding dynamic monitoring approach. We identify two key prop-
erties of the loosely coupled monitoring system: dynamicity resilience, i.e., after the
unregistration of a service, its interface monitor and its current state are kept alive in
memory and transferred to a new loaded service; comprehensiveness, i.e., the imple-
mentations of the monitored interface can’t bypass the monitor observations.

Secondly, to avoid stale references usage, we propose a client-side safe service
usage (SSU) layer to automatically handle them. If a used service disappears, then the
SSU layer can either transparently substitute it or throw an exception to the client. This
SSU layer is based on a transactional approach which aims to preserve the coherence
of active services.

Thirdly, we propose to integrate both approaches into a new monitoring system
(NewMS). The NewMS inherits the principles of both systems: dynamicity resilience,
comprehensiveness and fault tolerance. It can dynamically monitor service usage and
transparently handle stale references of dynamic SOA systems.

All the three propositions are implemented on OSGi-based platform. We develop
a simple application that simulates an Airline Reservation system, which is monitored
by our monitoring systems. We also develop various automata to handle the dynamic-
ity of the Airline Reservation system in the NewMS. Our results demonstrate that the

time cost of our monitoring systems is close to one of classical monitoring systems.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Résumeé

Les architectures dynamiques orientées services (D-SOA) se concentrent sur les
interactions client-serveur a couplage faible, o1 les deux peuvent apparaitre et dis-
paraitre a I’exécution. Notre objectif est de concevoir des systémes de surveillance
pour ces architectures. Comme les systemes de surveillance classiques sont statique-
ment injectés dans les services surveillés, ils ne peuvent pas gérer correctement le
cycle de vie des services d’exécution. En outre, quand un service est remplacé par un
autre service, d’autres services peuvent toujours utiliser I'ancienne référence. Cette
référence vers un service absent, lorsqu’elle est gardée en mémoire, peut induire des

comportements non désirés.

Cette thése contribue a la conception d’un systéme de surveillance de "utilisation
des services, qui soit résistant a la dynamique de la plateforme et qui soit en mesure

de faire face a I'utilisation des références obsoletes. Ce but est atteint en trois étapes.

Tout d’abord, en considérant le caractere dynamique des systemes SOA dans un
environnement ouvert, nous concevons une approche de monitoring résistant au la
dynamique de la plateforme. Nous identifions deux propriétés clés du systeme de
surveillance a couplage faible: résilience a la dynamicité, c’est-a-dire qu'un moniteur
d’interface et son état sont maintenus en mémoire et transférés a un nouveau service
lors de la disparition d'un service utilisé, et exhaustivité, c’est-a-dire qu’un service

surveillé ne peut pas contourner les observations du moniteur.

Ensuite, pour éviter 1'usage de références vers des services qui ne sont plus actifs,
nous proposons un service de sécurité coté client (SSU Layer), qui permet de traiter ce
probléeme de maniere transparente. Si un service utilisé disparait, la couche SSU peut
soit substituer le service de maniére transparente, soit lever une exception pour avertir
explicitement le client. Cette couche SSU est basée sur une approche transactionnelle

qui vise a préserver la cohérence des services actifs.

Enfin, nous proposons d’intégrer les deux approches dans un nouveau systeme
de surveillance (NewMS). Les NewMS hérite des principes des deux systémes précé-
dents: la résilience a la dynamicité, 1’exhaustivité et la tolérance aux fautes. Il peut
dynamiquement surveiller 1'utilisation de services et traiter les références obsoletes

de maniére transparente.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Ces trois propositions sont implémentées dans la plateforme OSGi. Nous avons
développé une application simple qui simule un systeme de réservation de place, qui
est monitoré par notre systemes. Nous avons également proposé différentes spécifi-
cations pour ce systeme. Nos résultats démontrent que le cotit d’observation de notre
moniteur est proche du colit d’'un monitor classique, ne prenant pas en compte les

problématiques liées a la dynamique.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Contents

Acknowledgement iii
Abstract v
Résumé vii
Acronyms 1
1 Introduction 3
1.1 Dynamic Service-Oriented Architecture Overview 4
1.2 Motivations e 5
1.3 Contributions 6
14 Organizationofthesis 8
2 Background and state of the art 11
2.1 Background 11
211 WebServiceso 12
2.1.2 OSGiFramework 13
213 AspectJtechnology 17
2.2 Monitoringsystems o o e 18
2.2.1 Properties classifications L o000 18
222 Hard-coding oo 20
2221 Java Modeling language(JML) 21
2222 Spec#Programming system 21
223 Soft-coding o 22
2.2.31 Enforcement Monitor 23
2232 JavaMOP 23
2233 LarvaTool, 24
2234 Monitoring of webservices 25

X

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

2.3

24

224 Agnostic-coding oL Lo

2241 Loggingsystem

2242 LogOssystem
Self HealabSystems
23.1 Faulttoleranttechnology
2.3.2 Self Healable systemsin D-SOA
233 StalereferencesinOSGi
234 Dealing with Dynamicity in OSGi

Summary

A Monitoring Framework for Supporting Services” Dynamicity

3.1
3.2
3.3

34

3.5

3.6

Introduction L
Example
Contributions L
3.3.1 Proposition of a generic architecture
3.3.2 Considering dynamic primitives
3.3.3 General property description,
3.3.3.1 Property Described from Service Side Point of View

44
45

3.3.3.2 Property Described from Service Interface Point of View 46

3.3.3.3 Property Described from Client Point of View
OSGiLarva — A monitoring tool forOSGi
3.4.1 Property description of OSGilLarva.

3.4.1.1 Using dynamic primitives in OSGiLarva system

3.4.1.2 OSGiLarva automata: syntax and semantics

3.4.1.3 Properties description language of OSGiLarva.

3.414 Verification example through OSGiLarva automaton . .
342 Implementation

3421 LogOssystem

3422 LarvaTool

3.423 Adapted both LogOs and Larva systems
3.4.3 Registration of a service providing specification
Evaluation
3.5.1 Monitoring cost by using a proxy (OSGiLarva VS Larva)
3.5.2 OSGilLarva efficiency (OSGi VS OSGilLarva)
3.5.3 Overhead associated to getting the callerid

Summary

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

47

4 A Safe Service Use Layer to Deal with Dynamic Service Disappearance 73

41 Introduction 73
42 Example 75
43 Contributions e 77
4.3.1 Fault tolerant technology as a fundation 77
43.2 Safe OSGi Service Reference - Single service 78
4321 ProxyIndirection 79
4322 Proxy Requirements and Functionalities 79
433 Generalizing to the Invocation of Multiple services 80
43.3.1 Requirements and Assumptions 80

4.3.3.2 Invocation Atomicity — a Correctness Hypothesis in a
Multi-Processed System 81
4333 Discussion 000 82
44 Implementation — A safe service use layer for OSGi 82
4.4.1 Configurable Service Proxy References 82
4411 OVerviewo i e 82
4412 Usage i e 84
442 Transactional Block and Service Execution 85
4421 Overview e 85
4422 Usage 86
45 Summary e 88
5 A Dynamic Monitoring System with Fault Tolerance 91
51 Introduction 91
52 NewMS genericexpression 92
521 New property events fromSSU layer 93
522 OSGilarva translationtoNewMS 93
52.3 Example of automata translation 95
524 [Expressiveness gainso oo 96
5.3 Implementation-OSGiLarva-SSU++ 97
54 Summary e 99
6 Conclusions and Perspectives 101
6.1 Conclusions e 101
6.2 Perspectives e 103
References 105
List of publications 115

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

List of Figures

Roles and interactions in XML-Web service for implementing a SOA . . 12
OSGiframework 14
OSGi Bundlelifecycle 15
Invariant property described by an automaton 19
Larva system in a softwaresystem 24
AOP crosscut analysis approach 26
Dynamic SOA system supporting service substitution 39

Example of scenario with dynamically monitored system supported by

exampleinFig. 3.1 o 40
Example of a property associated to examplein Fig. 3.1 41
Proposed abstract architecture for monitoring system 42
Possible point of view for properties 45
Property description: service implementation point of view 46
Property description: service interface pointof view 47
Property description: client pointof view 48
OSGiLarva implementation 49
Monitoring of servicesusage 56

An OSGiLarva property description file with the global keyword asso-

ciated to two interfaces properties and FOREACHCLIENT keyword 57
An OSGilLarva clients-side automaton of the airline reservation 58
EVENTS description in an OSGiLarva property 59
Processing of LogOs system works for system based on OSGi framework 61
EVENTS description in a Larva property file 62
VARIABLES description in a Larva property file 62
STATES description in a Larva property file 63
TRANSITIONS description in a Larva property file 63
Generic larva property file with two properties of two types 64
xiii

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

3.20
3.21
3.22
3.23

3.24

3.25

3.26

4.1
42
43
4.4

51
52
53
54

5.5
5.6

Structure of an OSGi bundle providing properties
Comparing time cost of a static example with OSGiLarva and Larva
Comparing cost ratio of a static example with OSGiLarva and Larva
Comparing time cost of the case study example with and without OS-
GiLarva (simple method in serviceside)
Comparing cost ratio of the case study example with and without OS-
GiLarva (simple method in serviceside)
Comparing time cost of the case study example with OSGiLarva but
with or withoutclientld
Comparing cost ratio of the case study example with OSGiLarva but
with or withoutClientId

Stale reference occurs in Dynamic SOA system
Example of scenario with Exception to handle stale reference
Example of scenario with service substitution

Transaction diagram for multiple services

Generic architecture of the dynamic synthesized monitoring system . . .
Generate NewMS automata from OSGiLarva automata(Algorithm 1) . .
Compose(l1, l2): composes two new lists of transitions (Algorithm 2) . .
A translation example from an OSGiLarva automaton to NewMS au-
tomaton indicating algorithmsteps,
Translate an OSGiLarva automaton A to a NewMS automaton A’

Implementation of the dynamic synthesized monitoring system

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

68
68

69

69

70

71

75
76
77
81

92
94
95

96
97

AQOP

API

DSL
D-SOA
EJB

FSM
IPOJO
IDS
JavaMOP
JBI

JML
JSON
JSON-WSP
JVM

LTL
NewMS
OSGi
OSGiLarva
PTLTL
PVS
REST
SOA

SSU

STM

™
UDDI
WSDL
XML

Acronyms

Aspect-Oriented Programming

Application Programming Interface
Domain-Specific Language

Dynamic Service-Oriented Architecture
Enterprise Jave Bean

Finite State Machine

Inject Plain Old Java Objects

Intrusion Detect Systems

Java Monitoring-oriented Programming

Java Business Integration

Java Modeling Language

JavaScript Object Notation

JavaScript Object Notation Web-Service Protocol
Java Virtual Machine

Linear temporal logic

OSGiLarva-SSU++ Monitoring System

Open Services Gateway initiative

a Monitoring system with dynamicity resilience
Past Time Linear Temporal Logic

Property Verification System

Presentational State Transfer

Service-Oriented Architecture

Safe Service Usage

Software Transactional Memory

Transactional Memory

Universal Description, Discovery and Integration
Web Services Description Language

Extensible Markup Language

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction

Service-Oriented Architecture (SOA) is a software design approach which enables to
build complex architectures made of independent services linked together at runtime.
Each provided service is viewed as a single execution process, registered in a reposi-
tory and linked with clients at runtime to manage requests. Most of the time the client

is bound to the service, until it decides to release the service link.

In a stateless model, the client has no memory from previous calls. And the pre-
vious context is send over the link at each method call. In a stateful model, both the
link and context data are automatically maintained between the client and the service.
In the stateful case the client is bound to the service and if the service stops, the client

must also stop.

In a stateful communication, information is slotted between the client and the
server. During this period, neither the client nor the server can be changed. Although
it works fine for instant transaction that consider client and server as fixed or stable
point, we consider that when context is changed regularly in a mobile environment

for instance, both server and client may be changed during stateful communication.

In dynamic SOA(D-SOA), client and server work together to agree on communica-

tion and data exchange protocols. Most of the time, they "know" each other and work

3

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

4 Dynamic Service-Oriented Architecture Overview

in a closed-environment. When considering a dynamic SOA system, client and ser-
vices working on a stateful basis in an open-environment should have more guaran-
tee between them. Therefore, this thesis proposes an analysis of the kind of guarantee
client should expect from services and services from clients in an open-environment
based on D-SOA.

In the following sub-sections, we first give an overview of D-SOA in Section 1.1.
Then, the technical challenges for guaranteeing clients behaviors as expected at run-
time in dynamic SOA-based systems are presented in Section 1.2. We give an overview
of the main contributions of this thesis in Section 1.3. Finally, in Section 1.4, the orga-

nization of this thesis is presented.

1.1 Dynamic Service-Oriented Architecture Overview

SOA is composed of a large number of autonomous and self-contained services. Each
functionality of an application is a service [72, 94]. A service in SOA-based architecture
comprises service interface, service implementation and service contract. Service in-
terface exposes the abstract functionality of services. Service implementation provides
underlying business logic and data for fulfilling the specified functionality in the ser-
vice interface. Service contract specifies service’ functionality, binding protocol type
and constraints for client service; it is also standard-based and platform independent
and stored in a service repository [62].

Dynamic SOA (D-SOA) architecture consists of dynamic and loosely coupled ser-
vices. The services’ life-cycles can be dynamically managed remotely at runtime be-
cause of the loosely relation between client and service. For instance, services may
appear and disappear dynamically in a regular basis without affecting the other ser-
vices” execution. D-SOA framework has some rules for informing the corresponding
service about the changed service life-cycle state (start or stop) or helping client to find
a more suitable service implementation than the current used one.

Since services are un-associated and loosely coupled, services” interaction enables
the invoking-side service to request server some functionalities through a repository
that exposes appropriate contracts. Subsequently, the invoking-side service is bound
to the service and is allowed to invoke methods through service interface as long as
its contract types match. Moreover, some services can be composed together for be-
coming a new service with different functionalities at runtime and arriving at a new
granularity level.

Due to these characteristics (loosely coupled, reusable, re-compose with different

granularity levels), SOA has attracted more and more attention of large-scale firms

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction 5

and wide areas. For example we can cite: RFID system based on SOA [73], Radioactive
waste management domain [29], Data Mining field [103], Bio-medical data manage-
ment [96], Cloud computing [26]. There are also different approaches to implement
SOA among of the two families: web services and other more local approaches such
as OSGi [1]. This last one is the object of our study and will be deeply introduced in
Section 2.1.

In this thesis we focus on OSGi framework. It is usually used in 24/7 systems,
where the system is not restarted when a service appears or disappears. This frame-
work is targeted to embedded systems such as cars, ADSL boxes, or network systems.
In such systems, web services cannot be used either due to the lack of connectivity,

network limited bandwidth, or for efficiency reasons.

1.2 Motivations

Service-oriented architecture (SOA) is focused on loosely coupled client-server through
public interfaces. The client usually requests service access through a repository. Sub-
sequently, the client is bound to the service and is allowed to invoke methods as long
as the interface types match. In dynamic SOA, each service invocation must be con-
sidered as a complete context switch since potentially new services may appear and
others disappear at runtime, even if these services are stateful. This dynamic activity
should have as few consequences as possible at the client side.

From a dynamic SOA point of view, dealing with loose coupling and dynamic
issues of services are a real challenge today. Firstly, binding a client to a service is a
matter of interface matching because of services loose coupling, but, neither the client
nor the service has any guarantee that the other part behaves as expected. Secondly,
every system implementing dynamic SOA faces the problem of deprecated references
caused by the services mobility. Since a deprecated service reference potentially leads
to a "null pointer reference" or to a wrong result, it can result in a system crash.

The objective of this thesis is not only to identify whether the behaviors from client
are authorized or not in a dynamic SOA system. It is also to enhance the fault-tolerant
characteristic of dynamic SOA system while service disappearance. The last but not
least, in this thesis, all services may be regarded as stateful services in this kind of
system. For achieving these goals, we check two cases:

First, it’s important to continuously ensure the clients authenticity and the valid-
ity of the activities carried out after interface matching for most systems. Each time a
client makes a request to a server, a formally specified constraint can be checked to en-

sure that the client is authorized to perform that call. So, a runtime monitoring system

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

6 Contributions

can be used to check such behaviors in D-SOA systems. There exists some traditional
runtime monitoring approaches for checking the specific behaviors of client accesses
to a service. These approaches involve static mapping and monitoring of services,
but there is a constraint from these monitors when a service disappears or a new one
dynamically appears, these monitors can’t continue monitoring the new replaced ser-
vice without restarting system. This thesis defines a runtime monitor with resilience
to dynamicity and comprehensiveness for dynamic SOA. In the light of such an objec-
tive, we explore the possibility of continuously monitoring new services request from
clients without system reboot.

Second, in consideration of the valid state of service references in a dynamic SOA
system, dealing with services dynamicity is important. A service reference is a spec-
ified pointer of client obtained to use its service in this system. So, we can propose
some client side tools to aid the running dynamic SOA system. When service disap-
pears, its system can still work or throw an exception. We can use these tools to add
some codes at client side for fetching a new service reference as soon as a new ser-
vice is available to replace the disappeared one. The client needn’t to restart after this

service substitution and it also avoids stale reference usage.

1.3 Contributions

In this thesis, the main contributions are listed as follows:
A dynamic monitor approach for monitoring a dynamic SOA system at runtime

in an open environment is proposed:

e This dynamic monitoring approach inserts monitors at the point of client-server
binding rather than "statically” at compile-time or loading-time. This approach
can make dynamic mappings from monitor to service or method during run-
time even if services appearance or disappearance, since the monitor has the
same life-cycle with the monitored service interface rather than service imple-

mentation;

o This kind of monitor can check behaviours of clients using services and the other

behaviors related to this service cannot bypass the monitor observations;

e Property description of this monitor is a composite of interface side property
(i.e., Class-Property) and client side property (i.e., Instance-Property). These
properties of this monitor can respective check the behaviours of each client us-
ing the service through its monitored interface with each client ID. The interface

side property is the entrance of the monitor;

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction 7

¢ An implementation of this monitor is realized by OSGiLarva system which de-
scribes method call events as well as OSGiLarva framework events in the prop-

erty description;

e The monitor system also can monitor a complex system with multiple service
interfaces and check the atomicity use of services. These interfaces properties
can be described in the context of "global" respectively. They are distinguished

by their interfaces name.

e This monitor generates a record and outputs to users or managers at runtime
who can take some necessary measures to the monitored software system at the

time of a particular state reached.

A " safe service use" layer at client side is proposed for enhancing self-healing

capability of service usage in a dynamic SOA system.

e This layer is aware of stale references. It takes two steps at runtime for clients to
prevent the use of stale references without requiring clients re-start and without
modifying external services: if there is an new service for replacing the disap-
peared service, automatic make a service substitution for clients, else send a

stale reference exception to clients.

e This layer uses transaction approach to ensure service coherent using at run-
time. When a disappeared service is being used, the execution block rolls back

and reverts all parameters values related to executed methods in it.

Finally, another dynamic monitoring architecture is proposed, which integrates
the proposed OSGiLarva system and the SSU layer. It's used to monitor the secure of
services usage and avoid the use of stale references of a dynamic SOA system in an
open environment.

This proposed monitoring architecture named NewMS compensates the lack of
OSGiLarva system by three ways:

e Itis aware of stale references usage and handle it by SSU layer.

o It allows to express more precisely the properties. For instance, it is possible to
consider the processing procedure of stale references.

e We designed an algorithm to automatically translate any OSGiLarva property
into NewMS property.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

8 Organization of thesis

1.4 Organization of thesis

This thesis is structured in five main chapters:

In Chapter 2, we first introduce the background knowledge of this thesis like web
service architecture, OSGiLarva framework and some traditional monitor approaches
usually used Aspect] technology. Then we survey the existing monitoring systems and
classify those monitoring systems into different categories according to the bindings
styles to the monitored systems. Finally, we survey the used approaches which tried
to enhance the self-healable of services in dynamic SOA systems and control stale
references using at runtime.

In Chapter 3, a dynamic monitoring approach for monitoring services usage in
dynamic SOA systems for open environment is proposed. In this chapter, we express
the architecture model for a dynamic runtime verification tool and consider some dy-
namic primitives. In order to implement this dynamic monitoring approach, we select
two systems: LogOs systems and Larva system. We adapt and integrate both sys-
tems together as a dynamic monitoring system to support OSGi’s dynamicity, and
we call this tool OSGiLarva system. Moreover, for monitoring the behaviours of each
client with its ID using services through different service interfaces, we analyse the
situations and propose an upgrade property description with some new rules based
on Larva property description language. Finally, we make quantitative benchmark
tests to compare the OSGiLarva with a closed tool Larva and compare the monitored
system with/without OSGiLarva system, and then analyse their performance.

In Chapter 4, a safe service use layer at client-side is proposed to enhance fault-
tolerant characteristics of services according to the service disappearance in dynamic
SOA systems. Firstly, we select a fault-tolerant technology (proposed in Chapter 2)
to make software systems being more fault tolerant. Secondly, we give two parts to
analyse the theoretical contributions of the SSU layer: (i) give requirements and poli-
cies for single service with a safe OSGi service reference, for instance, automatically
enable service substitution and replay a part of the last comment or throw an stale ref-
erence exception to clients after a service unregistered, (ii) generalizing requirements
and policies to the invocation of multiple services, for instance, automatically enable
service substitution and re-execute its transaction block when a stale reference is used.
From these theoretical contributions, we implement a SSU layer tool in the context of
the OSGi environment.

In Chapter 5, we propose another new dynamic monitoring architecture (i.e., NewMS)
applied to monitor services usage without stale references in dynamic systems for
open environment. Since this NewMS is composed by the OSGiLarva system and the

SSU layer, it still inherits the main principles from both tools. We show the new cases

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction 9

possible thanks to this integration and we express the more precise NewMS proper-
ties.

In Chapter 6, we summarize the main findings of this thesis, the conclusion that
can be drawn and some possible extensions of the work covered in this thesis are

discussed.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

10 Organization of thesis

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art

In this chapter, we first give a introduction of the thesis background about the ap-
proach of SOA. In the rest, we make a survey of state of the art of monitoring tools
which monitor software at runtime and finally we present the fault-tolerant capabili-

ties of services in D-SOA systems.

2.1 Background

Due to the loosely coupled, reusable and re-composition characteristics of services,
SOA are attracting more and more attention of large-scale firms. By the way, sev-
eral approaches implementing it appeared. Among of them, Web Service architecture
and OSGi framework are well-known and meeting different markets’ needs. Another
technology, Aspect-oriented programming, is used by some related works to aid the
runtime verification systems. In this section, we will give details about Web services
and OSGi framework, then give the reasons why our research focuses on OSGi frame-
work in this thesis. Aspect] technology will be introduced at the end of this section.

11

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

12 Background

2.1.1 Web Services

Web Services is one of implementations of SOA. It is a piece of code available on the
network with the properties to be self-described and self-contained. It supports in-
teroperability among different machines with concrete business functions over a net-

work.

As shown in Fig. 2.1, there are three roles in web service framework [71]: Service
provider, Service repository and Service consumer. Service Provider provides service
implementations to realize specified service interfaces. Different service providers can
develop different implementations for a same service interface to support the rapid
service upgrading. These service implementations are independent. A role of service
repository (e.g., services integration and deployment) is to manage all services from
service providers. Service consumer can send messages to find a service from Service
repository. If the consumer obtains a reply about the requested service, it can bind
with this requested service implementation from service provider and can use it. The

concrete service implementation is transparent for service consumer.

2. Query
Service . 1. Publish
- Ry el Services
- WwsbL with WSDL
SOAP

- messages

4. Request Services

SETEE pased on WSDL o, Service
Consumer provider

P
5. Provide Services based
on WSDL

Figure 2.1: Roles and interactions in XML-Web service for implementing a
SOA

There existed many markup languages used in web services designing, for ex-
ample: JSON, JSON-WSP, REST and RESTful, XML-SOAP. JavaScript Object Nota-
tion(JSON) [97] which is a light-weight markup language for interchanging data on
the web. JSON-WSP (JavaScript Object Notation Web-Service Protocol) [?] is a web

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 13

service protocol through JSON to describe, request and response services. Represen-
tational State Transfer (REST) [43] is a set of constraints and rules of architecture ap-
plied to the development of web services. It’s also a resource-oriented architecture.
A RESTful web API [81] is a web API implemented using HTTP and REST princi-
ples. XML-SOAP standard is exploited to describe, publish, find, match and configure
web services [54, 101]. In this thesis, we propose to focus on the most used approach:
XML-SOAP. We will then explain how to use it in Web services.

Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP)
and services Universal Description, Discovery and Integration (UDDI) are three cru-
cial platform elements in XML-SOAP Web Service architecture, which are also pre-
sented in Fig. 2.1. WSDL and SOAP are described based on XML format. WSDL [3]
is used to describe web service information: transport type (e.g., SOAP), web service
interface methods, parameters and web service URL. It is used to publish and request
service. SOAP [4] is a service transfer mechanism in Web service architecture. It's used
to exchange structure information of web service with other systems through HTTP.
It avoids information conversion among different protocols. UDDI [40] is a registry
center of services Universal Description, Discovery and Integration. It is used for
registering new services with WSDL file through SOAP/HTTP protocols. It is like a
yellow page of WSDL files. Service consumers can find registered services with WSDL
files from UDDI through SOAP/HTTP protocol in heterogeneous and distributed en-

vironments.

Finally, Web services are taken as deals between enterprise internal and external,
B2B and B2C businesses and so on. For example, in [29], a framework based on SOA
concept and web service technology is proposed to manage a radioactive waste pack-
age record management system with three-tier. In [20], legacy systems’ interactive
functionality is exposed as web service by a wrapping approach to a system based
on SOA. This solution made these legacy and heterogeneous systems become inter-
connected and interoperable over network. In [103], authors proposed a data mining
service with data mining algorithms. This kind of service is taken as a web service
for non-expert data miners in SOA. In [49], web services are designed based health
care services in a SOA system. This kind of health care system can improve the qual-
ity of decision making and timely alert generation for doctors, caregivers and elderly

people.

Except for Web Services, OSGi framework also is an important implementation
approach of SOA. We will give its details in the following section 2.1.2.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

14 Background

2.1.2 0SGi Framework

OSGi services platform specification is created by the OSGi alliance in 1999. It defines
a management model of a Java application life-cycle hosted in a virtual machine [9].
It has some APIs to manage the software components life-cycle from anywhere over
network. The platform allows a remote loading and dynamic deployment of appli-
cations by its open specification in its environment while remaining independent of
the system on which it is installed. OSGi services can run on different devices from
very small to very big. Different service consumers, providers, developers, vendors
can work well together on this platform specification. This framework implements a
complete and dynamic component model based on a layered architecture.

This framework [3] consists of six main layers as shown in Fig. 2.2.

Application/Bundles
Services
\Service Registry

Security

‘ Life cycle

‘ Modules
‘ Java virtual machine

‘ Operating system

Hardware

Figure 2.2: OSGi framework

1. Bundle layer: Bundle is the basic concept of the OSGi platform. It is the only unit
of modularization and consist of a set of Java classes (packages, services), con-
figuration files and other resources (e.g., images, sounds, etc.). This layer will
work with all of the other layers. In each bundle, there are at least two methods:
BundleActivator.start(BundleContext) and BundleActivator.stop(BundleContext).
If the framework need to start this bundle, the former method have to be called.
This method is used to register services or to assign any resources needed by this
bundle. The later method is called when the framework need to stop this bun-
dle. When this bundle is stopped, this bundle can’t call any framework objects

and it can not be called by any bundle until it started again.

2. Service layer: It offers a set of functionality for the publication, the discovery
and the binding to Java objects, as well as the notification on the changes that
occur on the services in the environment. A service is a normal Java object that

is registered under one or more java interfaces by the service registry layer of

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 15

OSGi framework. The service is a solution is offered by the platform to avoid
the tight binding between components. The binding can be done by using a

service reference instead of a service object itself.

3. Service registry layer: This layer’s API is used to manage services about Ser-
vice registration, Service tracker and Service Reference generation. Bundle is used
to register object by Service registration. The client services search the service
registry with service reference to look for the matched objects. When a tool of ser-
vice tracker is used in this service registry, it can listen the tracked service’s Ser-
viceEvents (e.g., Unregistering, Registered, Modified and Modified_ Endmatch)

and obtaining and releasing service.

4. Life cycle layer: life cycle management for bundles provided by OSGi frame-
work as some APIs can remote manage bundles start, stop, update, install and
uninstall without requiring reboot. A bundle’s normal life cycle is shown in Fig
2.3. The Starting and Stopping are middle states in a OSGi bundle life cycle. For
example, when command "start" is executed, the bundle state is tranferred from
"Resolved" to "Active". When command "stop" is executed, the bundle state is
transferred from "Active" to "Resolved". It provides remote management for

bundles with dynamicity.

5. Modules layer: A modularization module is defined for Java in this layer. The
modularization module specifies encapsulation and declaration of dependency
relationships among bundles: How a bundle can import and export code? What

is the order among bundles export and import? [9].

6. Java virtual machine layer: It manages Java class-loading for multiple bundles.
In local OSGi framework, multiple bundles run in a single JVM for sharing bun-

dles and coordinating with other bundles.

From above introduction and consideration of each layers collection, we know
that OSGi framework with its service registry provide a lightweight model to publish,
find and bind services inside its JVM. This framework supports the characteristics of
Service-oriented architecture. The life cycle layer provides APIs to bundles for manag-
ing services in module layer. These characteristics enable this framework to become a
dynamic SOA approach. OSGi Service platform is being used widely: Home automa-
tion based on OSGi platform [63, 6, 100]; Vehicle industries adopted OSGi platform
for supporting different vehicle manufacturers services. Moreover, it supports remote
call vehicle service for unmanned vehicles [26, 78]; Desktop PCs, Servers (High-end
Servers, including mainframe), Nokia and Motorola drove an OSGi technology stan-

dard for the next generation of smart phones [23, 57, 92].

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

16 Background

STARTING

ACTIVE
Uninstall |
UNINSTALLED 1 STOPPING

Figure 2.3: OSGi Bundle life cycle

INSTALLED

Resblve Update

Uninstall RESOLVED

Web service architecture is a popular implementation approach of SOA over net-
work, while OSGi is a dynamic components model based for dynamic SOA. Here are

main differences between web services architecture and OSGi framework:

1. Service view: Web services architecture would not typically be able to have the
full view of the system, i.e., one can either observe the client or the server but
not both. OSGi framework can reason about the full picture by also taking into
consideration the OSGi framework events such as registration of services, ser-
vice requests by different clients, etc. This is possible because OSGi framework

provides remote and dynamic life-cycle management functionality.

2. Service messaging speed: There are different service transport mechanisms on
both approaches. The local OSGi services communicate with each other just like
general java invocations. All web services communicate with each other need
to use SOAP binding with HTTP/TCP/UDP protocols. OSGi service methods
are called at a thousands of times speed greater than the web service calls.

3. Service disappear at runtime: OSGi framework avoid the "null reference pointer"
associated to the disappearance of a service without using "Service tracker".
When a service has been loaded by a service consumer, this service consumer
can invoke its service methods after it is unregistered. But for Web services, this

invocation induces a null reference pointer at runtime.

4. Considering cost: All local OSGi bundles run in a single JVM for sharing and
coordinating with the other bundles. This minimizes the memory footprint and
improve performance. Because of this point, it provides almost zero cost among

inter applications communication that is introduced in [8].

For the sake of these differences between Web services and OSGi approaches.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 17

OSGi framework interested us to make a research. In this thesis, there are some things
needing to pay more attention because of loosely coupled and dynamic treats [61, &]
in OSGi-based systems: dynamic monitoring services usage with validate service ref-
erences.

At the end of background part, we introduce Aspect] technology because of some

related monitoring tools using it (section 2.2).

2.1.3 Aspectd technology

There exists some close related works using Aspect] technology. Among of these,
enforcement monitor [58], Larva [32], JavaMOP [/5] and a dynamic monitoring system
[102] are described in section 2.2. So, we briefly introduce Aspect] technology in the
background.

Aspect-Oriented Programming(AOP) [60] is a programming paradigm. It uses
cross-cutting approach to get common behaviors from the internal of packaged objects,
and then encapsulate the common behaviors into a reusable model which is named as-
pect. The common behaviors affect multiple classes and are different with the business
processes of objects, such as authority identification, Logging, transaction process and
so on. The aspect enables the repeat code decreased, lighten the coupling among of
modules and enhance operability and maintainability in a software system.

AOP implementations have some aspect expressions that can encapsulate cross-
cutting concerns for software systems. Aspect] [10, 55] which is the most universally
used AOP language is a seamless aspect-oriented extension to the Java programming
language. It has some expressions to encapsulate the cross-cutting concerns into an
aspect, such as joint point, pointcut, advice, inter-type decleration. The joint point is a class
method from an original system. It is a abstract concept in AOP, it doesn’t need to
be defined. The point cut is a structure to capture the specified set of joint points. It
just creates a link to the target system for observing. The advice specifies the execution
code of point cut. It can give concrete execution logic with some special handling:
before, after and around. The defined point cut will be executed before or after or around
the captured joint point (e.g., class methods). The inter-type declaration is applied to
declare the cross-cutting classes and their hierarchies. Therefore, the pointcut and ad-
vice dynamically handle the program flow at runtime, the inter-type declaration is done
at developing-time. The aspect encapsulates these aspect expressions to form a clear
modularization of crosscutting concerns. The aspect can be separated from target sys-
tem and reused, such as error checking, monitoring, logging and so on [45].

This section 2.1 expresses the background of this thesis. It introduces the imple-

mentation approaches of SOA and makes a comparation to each other. Finally, Aspect]

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

18 Monitoring systems

is used by main of our related works have been presented in Section 2.2. The follow-
ing two sections are state of the arts of this thesis: related monitoring systems(section

2.2) and self-healable of services in dynamic SOA systems (section 2.3).

2.2 Monitoring systems

In this section, we will give a state of the art about a variety of monitors for verifying
static or dynamic systems’ security of services usage.

Once service interface matched, it’s difficult to guarantee safe usage of components
in D-SOA systems. If we use a classical monitoring tool to check and verify some
sensitive behaviors at D-SOA system runtime, service disappearance or appearance
will induce undesirable things for the classical monitoring tool, such as, information
lost, monitor disappearance and so on. Hence, two characteristics that we are thinking
important in a monitoring tool for verifying D-SOA system: resilience to dynamicity and

monitoring comprehensiveness.

o resilience to dynamicity: it refers to the preservation of the behavior flow. In case
the monitored service is substituted, the monitor and its state should be trans-

ferred, meaning that the monitored property cannot be hard-linked to the code.

e monitoring comprehensiveness: it means that we cannot allow services to restrict
what is observable by the monitor. If we want to check a property, we need to

ensure that all the relevant events are monitored.

We propose to classify existing runtime verification approaches according to the
monitor configuration with respect to the monitored software systems. The moni-
tored property may be: manually written inside the code (in section 2.2.2), automat-
ically injected inside the code(in section 2.2.3), kept out of the code (in section 2.2.4)
and monitoring of web service (in section ??). For analyzing resilience to dynamicity
and monitoring comprehensiveness into each of these families, firstly we should give an

explanation about some property description styles.

2.2.1 Properties classifications

Property expressiveness is an important characteristic of runtime verification systems.
In this section, we will give a short properties classification: Invariant property, Behav-
ioral property, Liveness property, Timed property. We will explain these properties on the

following simple example:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 19

public class A{
public boolean aCallable;

int x=1;

public void m(Q){
aCallable=true;

X++;

public void g
aCallable=false;

x==;

public static void main(Stringl[] args){
aCallable=false;
m();
g(O);

1. Invariant property: it’s a property on state variables that have to be true every
time. Depending on the observation granularity, it can be used between instruc-
tions or during each call of method. For instance, let us consider x, which is a
variable of Class A. If we need to check that = is always larger than 0 during
this class running, we need to define an invariant property for this class. This
property can be expressed in this example by some data-oriented property de-
scription languages such as annotation by / * Qinvariant x > 0;/, or such as

an automaton (Fig. 2.4).

Figure 2.4: Invariant property described by an automaton

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

20 Monitoring systems

2. Behavioral property: It specifies some acceptable sequences of method invoca-
tions. For instance, after m() invocation there is always a g() during this example
running, i.e., m() = (Og(). Such kind of sequence is taken as a behavioral prop-
erty description in monitoring system. Finite-state machine(FSM) is the most
usual way to describe a behavioral property. It also could be explained by anno-
tation, but annotations are usually dedicated to invariant properties. If they are
used to express a behavioral property, all related methods must be annotated.
For example, by inserting / « Qrequires aCallable == false; x/ as a precondi-
tion of each method, except for method g(). If any method is missed, there is no

guarantee for the real executed results.

3. Liveness property: It is a more global case of behavioral property. It can not only
specify some fixed sequences of method invocations, but also can specify some

authorized sequences on infinite traces.

For example, if m() is called, then g() will be necessarily called in the future. This
property is expressed on an infinite traces. However, in the case of monitoring
system, it is usual to consider a bounded liveness trace like that there is a limit of
m() execution times before calling g(). Hence, this trace is a live property expres-
sion. If the states are fixed, we can use FSM to describe this sequence. Since the
execution times of m() is not fixed in this liveness sequence (m() can be called 1
time or 2 times or n times before calling g(), all these sequences are correct for
this liveness sequence), we can’t express all these situations in one FSM. If we

use linear temporal logic(LTL) to express this sequence, i.e., O (m() U g()).

4. Timed property: it's a behavioral property with time. For instance, after less than
10 seconds of m() call there is a g() invocation. The usual way to describe timed
properties is a timed automaton. This automaton can express time constraints

inside its conditions.

These forms of property descriptions will be used in the following monitoring

systems discussions in order to describe acceptable behaviors.

2.2.2 Hard-coding

In this category, where properties are manually added at source code at developing
time, we can cite all annotation techniques, like JML (in section 2.2.2.1) and Spec#
(in section 2.2.2.2). In both cases, the monitor is not resilient to dynamic code loading.
Indeed, if a part of the monitored system is substituted, then its monitor is removed,

since it is in-line. However, this approach is interested in the term of comprehensiveness,

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 21

since we can observe anything in the program. A limitation of this approach is the
dispersion of the monitor throughout the code, requiring significant intervention to
write the property or to check that its description is correct. We give some details

about JML and Spec# in the following sections:

2.2.2.1 Java Modeling language(JML)

JML [66, 67, 65, 19] is a specification language for a detailed design of Java modules.
This modeling language is inserted into the java comments of java file. This language

form is like the following annotations:

//@ <JML specification>
or

/*@ <JML specification> @x*/

When Java comment starts with sigh @, this Java comment is translated as JML
annotation. JML [19] is used to describe the behaviors of classes and methods from

which users and/or developers can get the expected functions.

//@ requires descript != null;
public String deleteAtAfterN1(String descript)
{7/ ... %/}

From above codes, we know that "requires" is a JML keyword. It's meaning a
precondition can be defined before the method "deleteAtAfterNI(...)". Before invoke
this method, system need to verify whether the variable "descript" is empty or not. If
the "descript" value is non-null, this method can be executed. In the other case, a JML
exception is thrown by system at runtime.

Since JML annotations are located in Java comment, they can’t impact the compil-
ing codes. When users and/or developers want to compare the actual behavioral from
classes with the JML specifications, the open source JML compiler can be adopted. If
the compared results do not match, the JML exception is thrown during the running
of the java code. Some tools have been built around JML for unit testing [28], runtime
checking [27], light-weight contract checking [22] and system verification [44].

For Dynamic SOA-based systems, these JML annotations are added in it at developing-
time. When a service substituted by a new one, the monitor in the old one won’t ap-
pear in the new one under the situation of without reboot. This specification hasn’t

dynamicity resilience for monitoring like Dynamic SOA-based systems.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

22 Monitoring systems

2.2.2.2 Spec# Programming system

Spec# programming system [15, 16] is a new way to produce high-quality software
by focusing on more cost effective. It consists of C# and Spec# annotation, compiler
and static program verifier. The Spec# static program verifier is called Boogie. It can
generates logical verification properties from Spec# program. These logical verifica-
tion properties are added into the monitored source code level for static verifying. It

focuses on three fields:
e to check non-null types from source code;

o to add pre/post-condition and exception management in method contract to verify

its methods;

e to create expose block in class contract for constraining the data field of object

invariants and class invariants.

JML and Spec# can express invariant properties which are methods granularity.
However, some assertions can be added between each instruction for more deeply
and targeted describing property. By the way, it is possible to encode behavior prop-
erties into them. But it can induce to add precondition before all methods. Spec# and
JML are two close languages to verify original system. Since the Spec# directly adds
its contracts (e.g., non-null type annotation, class and method contract) into C# code
rather than into C# comments, it has larger design space with its specified contracts
than JML to check and test systems. A more complete analyze about these two lan-

guages is given in [16, Section 3: Related work].

2.2.3 Soft-coding

In this category, where properties are injected at compilation time, or load-time, we
can cite Enforcement monitor (in section 2.2.3.1), JavaMOP (in section 2.2.3.2) and
Larva (in section 2.2.3.3). These tools use standalone description of a property and
inject the monitors inside the code by Aspect] technology (in section 2.1.3), but this is
not the same kind of hard-coding (in section 2.2.2).

Advantages of Soft-Coding approach are then the same as in the previous case, but
specifying the monitor is easier, since the description of the property is centralized.
However, these approaches from Enforcement monitor [58], Larva [32], JavaMOP [75]
or a monitor dynamically inserted into OSGi service implementations by Aspect] tech-
nology at runtime [18] are comprehensiveness and only partially resilient to dynamicity;

at best, the tool may inject the property at first-time binding, but once injected, the

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 23

property is hard-coded within the service for the whole execution of the class. We will

give some details about these soft-coding monitoring approaches in the following.

2.2.3.1 Enforcement Monitor

In [58], the monitor is a proxy between a client and a server with the goal of checking
time properties. In order to have sufficient time to check whether an observed timed
property is correct or not, the runtime enforcement monitor focused on adding a fixed
delay between the reception and the forward of input events. This property is sent by
users to the monitor under the form of events sequence with delays which need to be
delayed. If the primitives send to the active monitor and the delays are not the same
with the given timed property, the enforcer will modify the delays by itself. It aims
to make the output timed sequence conforms to the designed property. After that, the
output timed sequence is taken as the input events sequence is sent to target system.

This enforcement monitor is explicitly called by client. It uses Aspectj compiler
to weave these designed primitives into target system [56, 35]. However, it can not
guarantee that all called method are checked through this monitor. Some methods
can also be sub-called by other methods itself, not always by client. In such a way, the
sub-calls are not observed by the monitor. It does not generate any input event and
can not be considered in the enforcement monitor.

This monitor system can express behavioral properties and timed properties. The

granularity of its property description is external methods.

2.2.3.2 JavaMOP

Java monitoring-oriented programming (JavaMOP) [24, 25] analyse framework dedi-
cated to the monitoring of Java programmings, which accepts some independent spec-
ification formalisms. It aims at reducing the gap between formal specification and
implementation by integrating them into its original system. It can be used to design
a runtime monitor for developing reliability, security, dependability software. It can
be used to design events’ logics (e.g., FSM, PTLTL, LTL and so on.) in formal speci-
fication against software implementations. The designed specification is compiled by
JavaMOP as Aspect] code, and then is woven into the target implementation system
by any Aspect] compiler (such as ajc) [59].

The property description of JavaMOP can express behavioral properties and live-
ness properties by LTL and PTLTL. However, the LTL expressed live property will
be generated by aspectj technology. The generated monitoring properties consists of
several FSM formulas. There is no expresiveness gain in the monitoring property de-

scription, except easier to write it.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

24 Monitoring systems

2.2.3.3 Larva Tool

Larva [32] is a tool which injects the monitoring code in a Java program to check a de-
scribed property in a Larva script file. This tool which weaves calls interception using
aspect-oriented programming techniques is closed to JavaMOP. Both of them permit
to monitor some behavioral properties, but real-time properties could be expressed
only in Larva. By the way, it can not only describe concrete service methods, but also

control certain dynamic events occurring by timers.

VERIFICATION
A 4 Capturing SYSTEM
spectJ: R
Matching method names | EVENTS (Symbolic
Automaton
Execution)
Geﬁerqting v
\ Generating
Monitored Compiler g,
o
software gls
Compile S
|
Larva:
Events & Property
USER
FEEDBACK
Users’ actions

Figure 2.5: Larva system in a software system

When a monitored software is launched with Larva system(Fig. 2.5), its property
script is compiled by Larva compiler. The Larva Compiler generates two main outputs

from its script:

1. Aspect-oriented code: This code which links the monitoring code with the mon-
itored software that aims to extract the monitored events. It will be statically
injected some calls to the monitored software by using the Aspect] compiler at

coding-time or at compiling-time or loading-time.

2. Java class code: This code is used to verify the extracted events conform to the
designed property. The verification system is outside the monitored software.
Once the designed event is checked, the verification system send the monitored
records to users. It is up to the users to make some necessary actions to the
target system when a monitored record is outputted.

Larva property description can express behavioral properties and timed proper-

ties. Its granularity is on methods(internal and external). Larva and JavaMOP have

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 25

really close characteristics in them. However, Larva performed better with regard to

resources consumed than JavaMOP [33].

2.2.3.4 Monitoring of web services

There are a number of works (e.g., [102, 84, 14, 13]) that support the monitoring of
web services. In [102], a dynamic monitoring framework with its monitoring scenario
model and instrumentation layer is proposed for runtime monitoring SOA Execution
Environment-based systems. In this approach, AOP instrumentation is used. Each
exposed service has an interceptor socket code injected in, and wraps it with a socket.
Each interceptor is taken as a service and is published with its interest and priority.
Once an interceptor is registered, this registration information will be informed to ev-
ery interceptor socket with its wrapped service for comparing interceptor’s attributes
with socket’s. If attributes matched, this interceptor is added in the queue of matching
sockets by its priority. Then the injected monitor can start to monitor the corresponded

service invocation. There also exists some disadvantages:

e Interceptor socket code need to be injected to each exposed service, a socket is
wrapped with this service, even injected into some completely needn’t to be

monitored services.

e This monitor currently just focuses on service invocation rather than specific
invocation parameters or the implemented business logic. For example, it can

monitor invocation rate and error rate.

The monitoring tool [102] can mainly expresses invariant property. And its property
is instruction granularity.

Java Business Integration(JBI) is a kind of Web services model. Since AOP [60] can
deal with crosscutting the aspects of a system’s behavior as separately as possible and
without forcing source code modification, an enrichment of JBI-compliant monitoring
is implemented through Aspect] technology [84]. As shown in Fig. 2.6, the defined
Aspect] pointcuts can be allowed to crosscut the JBI interfaces. Since keeping source
code and class files avoid modification, the authors leverage load-time weaving these
defined aspects by a dedicated java agent. This monitoring instrumentation based on
AOP enrich JBI specification. Hence, this monitor can be a considerable restriction
in the expression of security policies. Aspect] technology can be used to monitoring
program points by its advice(be restricted to these manners: before, after, around), not
the business processes logic. The enrichment of JBI-compliant monitoring can express

invariant property. Its property is instruction granularity.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

26 Monitoring systems

2. Defining the Aspect
pointcuts, which allow
to crosscut the interface

1. Analysis of JBI
specification and

identification of
useful interfaces

3. Testing the
pointcuts on OpenESB
and ServiceMix

4. Analyzing problem of
interfaces and pointcuts

5. Approving
he crosscut

Figure 2.6: AOP crosscut analysis approach

In [14, 13], the authors provided both dynamicity resilience and comprehensive-
ness characteristics (even if these are not explicitly identified as such) by listening to
events from a web service composition engine. Furthermore, in [13], this monitoring
architecture supports both instance monitors and class monitors. The instance monitors
check the behaviors of a single instance of BPEL business process; the class monitors
extract or collect information from the checked behaviors of all instance monitors, it
aims to get synthesized information at class point of view. However, to the best of
our knowledge, no similar monitoring techniques have been proposed for the OSGi
framework. Moreover, the context is not the same, since in a web service context,
we can easily distinguish between callers by their IP address and port number, but
it is impossible to know who is the caller, or which class or software is making the
call. The monitor tool can express behavior properties, liveness properties and timed

properties. Its property is business processes logic granularity.

Indeed, while it is technically possible to use Aspect] to support dynamic class
loading and unloading in OSGi, then the monitored bundle must declare the import of
the Aspect] library inside its Manifest file — an operation which is not really transpar-
ent to the service. Note that this restriction does not exists in Equinoxe implementation
of OSGi (Eclipse). Since some choices would have been done in the configuration of
the framework, requiring to restart the whole framework each time a new service is
installed. Furthermore, if monitors need to be started or stopped at runtime it cannot
be done directly through Aspect] without restarting the service—something which is

undesirable in 24 /7 services.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 27

2.2.4 Agnostic-coding

In this third category, where the monitor is kept out of the code, we include any trace
analyzes approach, such as LogOs system (in section 2.2.4.2) for monitoring OSGi-
based systems, event log-based detection systems and logging systems (in section
2.2.4.1). The main advantage of these approaches is the loose linking between the
property and the monitored system. Hence, if a package is substituted, the monitor
can observe it inside the logs and the monitored properties are still the same for the
whole system. Moreover, the description of the property is located into a single loca-
tion, which facilitates property management.

However, such Agnostic-Coding systems can be bypassed, e.g., intrusion detec-
tion systems and logging systems can only observe what services accept to push. If a
package provides a service without writing sufficient logs, then the monitor does not
have sufficient information to check a event correlation [79]. LogOs system is better
than that both monitoring systems, but we will see that some restrictions remain. In

the following, we will explain each logging system.

2.2.4.1 Logging system

In [12], authors proposed an approach to UNIX security logging. This proposition
used light-weight logging to off-line detect intrusion systems. They derive some em-
pirical data from realistic intrusion experiments, and then use the derived data to com-
pare with the light-weight logging methods which are a few simple methods. It aims
to detect and trace attacks against original systems, for instance, it can be merged into
an intrusion detect systems (IDS) [85]. But there is a precondition, enough data should
be logged to make a better detection the intrusions or others. The event log-based de-
tection system [87] also depends on sufficient empirical event logs of system. And
its analysis depends on 3 years recorded event logs. Therefore, if logged information
is not sufficient, this will affect the detections of logging system and event log-based
detection system.

These logging systems can express behavior properties, liveness properties and
timed properties. It is on methods (internal and external) granularity.

2.2.4.2 LogOs system

LogOs system [47] is a special logging tool based on the OSGi framework, developed
at the CITI Lab during the LISE project [64]. It’s designed to work in a dynamic SOA
context. It can capture all behaviors of invoked service method during runtime, un-

der the condition that the service’s interface is marked by annotation, even its service

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

28 Self Healab Systems

implementation is dynamical unloaded at runtime. As soon as the LogOs bundle is
started, each service registration is observed. LogOs is a transparent logging toolkit for
the service activity inside the OSGi architecture. Thanks to the OSGi hooking mech-
anism, a LogOs proxy is generated for each registered service. Hence, every method
call from the annotated service interface, including parameters and returned values,
are automatically intercepted. For each event captured by a LogOs proxy, a corre-
sponding LogOs event-description is forged and propagated to LogOs. The event-
description is just the service method who is annotated in the corresponding service
interface. Then, the LogOs will record the trace and store it. LogOs system can inter-
cept those specified service methods/parameters based on OSGi framework and store
the logged events.

Since LogOs system’s annotations add in specified service interfaces and its proxy
adds between client and service implementation, LogOs system is separated from ser-
vice implementation. When service implementation dynamic changed at runtime, the
observation mechanism of LogOs system remain unaffected and no communication
with this specified service interface can bypass the added proxy. So, this LogOs sys-
tem has treats of both resilient to dynamicity and comprehensiveness. But in LogOs sys-
tem, there is no verification part to check whether these captured behaviors from the
running system are authorized or not.

LogOs system doesn’t specify concrete behavior properties or liveness properties,
it just give a constraint range to observe. It can observe all action between client using
the annotated services. Its granularity is on external methods.

Finally, in this section 2.2, we gave the background and the state of the art on
the monitoring systems part of this thesis. We know that a dynamic monitoring sys-
tem with resilience to dynamicity and monitoring comprehensiveness is very important for
supporting D-SOA systems. When services dynamic unload or substituted by other
services, the special monitoring tool can restart at the latest event from the old one to
continue monitoring the new one. The dynamicity of D-SOA system doesn’t affect the
dynamic monitoring system’s observation mechanism and properities monitoring.

In the following, we discuss the second part of our state of the art: Self healable

software systems.

2.3 Self Healab Systems

One of our contributions is to deal with dynamic issues of services in dynamic SOA-
based execution environment. Hence, in this section, we will talk about state of the art

of self healable software system. Some approaches and some related techniques(e.g.,

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 29

Fault tolerant technology) are proposed by some authors. Every model implementing
this dynamic SOA-based system faces the problem of deprecated references caused
by the services mobility. The OSGi component framework is one of the several mod-
els implementing SOA and in which stale references have harmful effects. In order
to avoid the harmful effects according to stale references, the fault tolerant approach
may be an useful solution and enhance the self-healable of services. Next we briefly
introduce the occurrence of the stale references and dynamicity management of ser-
vices in OSGi framework, then give the related works which have tried to resolve this

issue.

2.3.1 Fault tolerant technology

A fault tolerant system [69, 51] consists in handling faults in order to system continue
working and getting correct results. Fault tolerant computing can be taken as a sys-
tem’s capability to handle seamlessly error identification and recovery system from
fault state to correct state [51]. It is commonly accepted that a general fault tolerance

system has to go through four stages [95]:

e error detection
e fault location
e reconfiguration

e recovery and continued service

The error detection and fault location is meaning to use monitoring mechanisms
for checking errors and locating faults. Currently there are many tools to deal with
these two stages, for example, Logging analysis [85, 53], runtime monitoring approaches
[36, 82]. The reconfiguration and recovery aims to redesign a correct execution plan for
avoiding the located fault. There are usually three families of treatment to reconfigure

and recover an error [37]:
e to mask the error;
e to roll-forward in the execution until a new stable state is reached;
e to roll-back to the previous stable state and restart the execution from it.

Usually, the mask an error mechanism consists in having redundant information.
There are some redundancy techniques proposed for healing the checked system [50,

, 80]. In [77], a self-assembly system was presented as having the potential to bring

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

30 Self Healab Systems

about self-repair and regeneration: agents can replicate to substitute dead neighbors
and thus even recreate the entire structure that may be lost. The Recovery-oriented
computing research project [80] at UC Berkeley is also employing the fault tolerant
technology to achieve the isolation of faulty components and provide redundancy

techniques for fault safe online recovery.

For the roll-forward mechanism, the fault tolerance system will continue its exe-
cution until a stable state happened. Then the fault tolerant system handles its faults
and the running system continues the execution. Finally, the roll-back mechanism
is meaning that: before a fault occurring, the fault tolerance system stores all the re-
quired actions to be able to go back to a stable state after a fault occurring. This system

can be re-executed with correct configurations for self-healing.

2.3.2 Self Healable systems in D-SOA

An existing approach for self-healable system is to use a D-SOA framework and to
consider service substitution as a roll-back mechanism [37]. When considering the
problem of services substitution, a complementary objective consists in achieving the
substitution without any modification of the client code. Classical solutions are mainly
considering this problem and can be grouped in three main categories [39]: abstraction-
based approach, adapter-based approach and hybrid solutions combining the first
two. The idea behind abstraction-based approach is to define higher level abstractions
that stands for concrete services, and the client applications access to the alternative
concrete service instead of access directly to the provided service. On the contrary,
in the adapter-based approach, the client applications access directly to the concrete
service through an adapter. Finally, the hybrid approach can reduce the complexity of

the service number increased.

Whatever the approach used, the first part of the substitution is focused on finding
a new service that can be used in place of the unavailable one. In [76], the authors pro-
pose an algorithm and mismatch trees to find incompatibilities in interfaces level and
protocols level respectively. Checking the compatibility between all available services
can be time-consuming, and at the same time impact the ongoing business process.
Some approaches reducing this complexity have been proposed. The main idea is to
gather available services into groups of services offering the same functionalities [46]
[39] [89] each client application is bounded not only to one service, but to a group of
services. In SIROCO [46] framework using semantic annotations in SA-WSDL lan-
guage in order to categorize services into OWL ontology. In [39], the authors propose

to group available services for the substitution in groups called profiles. In [59], these

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 31

authors proposed a common interface(namely Open Service Connectivity OSC) to col-
lect web services and dynamic binding of web services. In this work, web services
substitution has two steps: collects functionally-similar web services into communi-
ties and makes client applications connect to web services communities using OSC
driver.

After finding the right service, substitution can now be realized that is the second
part. To realize a substitution is to reconfigure the system so that client services could
keep working by using the new service. In [17], authors propose an algorithm for
CORBA service reconfiguration, that involves a passive link to the unavailable service
and an active link to the new service, while keeping the application consistency and
with a few execution disruption. In the case of stateless services, it is straightforward.
But for stateful services, it is more complex. One should restore the state of the substi-
tuted service. In SIROCO [46] framework, there is a registry system, where a service
can register its current internal state and thus make a checkpoint. When a service fail,
the framework try to manage the new service in order to set its internal state in the
late one of the previous service. A synchronization mechanism has been presented in
[98]. The configuration manager provides a runtime kernel which provides a message
repository for messages that has been sent by components.

Almost all the aforementioned approaches are server-side and do not tackle state-
ful services. For stateful services substitution, one should implement a transaction
mechanism to restore the state of the substituted service. Transactional memory pro-
vides more powerful support for this lock-free style of programming. Massalin and Pu
[74] use this instruction for lock-free list manipulation in an operating system kernel.
In [56], transactional memory is introduced with a support of a multiprocessor archi-
tecture to make lock-free synchronization. Lock-free data structures can avoid com-
mon problems: Priority inversion, Convoying, Deadlock. This method performs bet-
ter than the locking-based data structures. Verification the correctness of transactional
is also an important step during the transaction memory. So, Cohen et al [30] provided
a mechanical proof of the soundness of the verification method and studied safety
properties in situation where transactional code has to interact with non-transaction
memory accesses. In [53], authors present the first approach to verify STMs under
relaxed memory models with atomicity of 32 bit loads and stores, and read-modify-
write operations. They use FOIL to automatically check the correctness of STMs under
this model. [70] proposed an algorithm tracks object visibility at runtime by multiple
threads are automatically guarded by transactions. Programmer allowed to use TM
and needn’t to explicitly manage whether objects are accessed transactionally or not.

In this section, we presented the classical approaches having tried to do service dy-

namic substitutions with stateful or state-less services at sever-side. It makes services

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

32 Self Healab Systems

become more autonomic in D-SOA systems. Since, service providers can make any
assumptions on provided services with the objective that service substitution can be
done without any consequence on the client side, service references may become stale
during clients using after service unloaded. This performance issue caused by the ser-
vice dynamicity of D-SOA systems. So, we explain the stale references of OSGi-based

systems and its resolutions in section 2.3.3 and section 2.3.4.

2.3.3 Stale references in OSGi

The OSGi platform allows a remote loading and dynamic deployment of applications.
A service is a running java implementation, whose interface is available in an open
repository and using a reference of service instead of a service object itself. But, this
reference also has a drawback: the referenced service can be stopped and its depen-
dencies deprecated at the moment of its use, leading to a stale reference. A stale refer-
ence is a reference to a service that is no longer available, either because of the bundle
offering that service has been stopped or the service associated has been unregistered
[9]. Client bundles may not be aware of the disappearance of the service or service ref-
erences are deprecated at runtime. We are focusing on the case of a mobile platform
with OSGi that can discover or lose connection to some service providers. In such a
case, a service requested by a client can be lost while in use.

Writing safe code for handling OSGi service references boils down to properly
listening to the OSGi service registry and tracking which services are in, and which
services are out. This also requires that each call to a service in a client code makes
extra steps. That is effectively going to invoke a method on a service whose reference
is not staled. This is not easy as it seems, as concurrency is involved. Indeed, a thread
may be invoking a service while another one is un-registering it. This easily defeats
guarded accesses to a service reference if no intrinsic locks or fine-grained re-entrant
read /write locks are being used.

To illustrate this, let us consider a class that is part of the core OSGI API: org.osgi.util.tracker.ServiceTracker.
Briefly, this class handles the service appearance and disappearance tracking logic
based on a set of service interfaces and filters. It can be used to fetch one or multiple
service references at a given instant. It is widely recommended to use it when deal-
ing with the OSGi service layer. Nevertheless, it does not handle concurrency and
multi-thread OSGi bundles may use stale references or throw exceptions when taking
advantage of it. The following piece of code, part of a demo OSGi bundle activator,
throws a java.lang.NullPointerException because guarded access to a service reference
is not correct in this concurrent setting. Moreover, when calling two times the ser-

vice, you can get two different services, which can generate errors in case of stateful

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 33

services.

public void start(BundleContext bc) throws Exception {
publisher = new Thread () {
public void run() {
while (true) {
ServiceRegistration registration =
bc.registerService (

HelloService.class.getName (),
new HelloServiceImpl (),
null) ;

registration.unregister () ;

}
+s
publisher.start () ;

final ServiceTracker st = new ServiceTracker(
bc,
HelloService.class.getName (),
null);

tracker.open();

invoker = new Thread() {
public void run() {
while (true) {
if (st.getService() != null) {
((HelloService)st.getService()).hello("World!");
((HelloService)st.getService()).hello("Second!");

}
};

invoker.start () ;

Indeed, the publisher thread continuously publishes and removes a service, while
the invoker thread continuously invokes it using the indirection of a service tracker. A

race condition causes the NullPointerException to be thrown.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

34 Self Healab Systems

The following piece of code is the same one, but the got service reference is stored
in memory. The guarded access to a service reference may become staled during both
calls in this concurrent setting. But it guarantees that the used service in both calls is

the same one.

public void start(BundleContext bc) throws Exception {
publisher = new Thread () {
public void run() {
while (true) {
ServiceRegistration registration =
bc.registerService (

HelloService.class.getName (),

new HelloServiceImpl (),

null);

registration.unregister ();

}
3
publisher.start ();

ServiceReference sr = bc.getServiceReference (HelloService

.class.getName ());

invoker = new Thread() {
public void run() {
while (true) {
HelloService hs=(HelloService) (bc.getService(sr));
if (hs != null) {
hs.hello("World!");
hs.hello ("Second!") ;

}
};

invoker.start ();

From this code block, we know that the publisher thread continuously publishes

and removes a service too, while the invoker thread continuously invokes it. A race

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 35

condition causes the current used service reference becoming stale reference. The hello()
method is invoked at the second time through the reference of the unregistered ser-
vice.

This observation stresses out the fact that OSGi service references need to be ma-
nipulated carefully: it is easy to run into race conditions when multiple threads exe-
cute running concurrently, and it is easy to perform a method invocation on a reference

that throw a NullPointerException by using service tracker or became stale.

2.3.4 Dealing with Dynamicity in OSGi

When a bundle becomes unavailable, all the references to objects it provided should
be released to allow garbage collector to do its work correctly. In [48], we have an
example of a case in which the substitution process fails because of a mishandling of
stale references. The stale references should then be tracked and destroyed. Many
approaches have been developed to detect and when possible delete these stale ref-
erences. OSGi specification released some advises to use ServiceFactory Interface or
Indirection mechanism in service object implementation in order to limit the conse-
quences of stale references. In [48], by using Aspect Oriented Programming tech-
niques, the authors propose a tracking stale references tool named Service Coroner
that helps to find stale references for developed or maintained OSGi applications, and
apply it in two cases study. Others approaches such as using Service Binder [21] or
IPOJO [42] suggest to separate functional and non-functional aspects, by describing
the services dependencies management information in meta data XML files and merge
the both at the run time. Each of these approaches tackles a particular case of the stale
references problem, but a general solution is not yet provided. An alternative solution
is the use of a proxy [7], instead of a service references. The proxy manages load-
/unload of services and the client services do not longer keep a reference to a likely

disappeared service and the problem of stale reference is then avoided.

2.4 Summary

From above all, we introduced the background of this work and we explained our rea-
sons to focus on OSGi framework. However, in order to monitor the communications
of services usage without stale references in D-SOA systems, we try to use classical
monitoring systems to monitoring it. We listed some related works of classical mon-
itoring systems in the first part of state of the art. They have their advantages and
disadvantages. But they are not enough to satisfy the dynamicity of services in D-

SOA systems. In addition, the fault tolerant technology may be an useful approach to

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

36 Summary

enable services’ self-healable in dynamic SOA-based system ease development. We in-
troduced some classical solutions to deal with the stateful /stateless services dynamic
substitution in D-SOA-based systems without any consequence on the client. It makes
services more autonomic and dynamicity. But the stale references and the null pointer
exception will occur at runtime in D-SOA systems because of service dynamicity, for
instance, in OSGi-based systems. Since client doesn’t know whether these things hap-
pened or not, they can lead to incorrect results or even system crash. There are some
approaches tried to handle the dynamicity in OSGi. But it’s not complete to solve
these issues.

Therefore, we will give our propositions to monitoring the communications of ser-
vices usage and enhance the fault tolerance of dynamic SOA-based systems in chapter
3 and chapter 4 respectively. Chapter 5 is a final contribution merging the first two
systems.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for

Supporting Services” Dynamicity

Service-Oriented Architecture is an approach where software systems are designed
in terms of a composition of services. OSGi is a Service-Oriented Framework ded-
icated to 24/7 Java systems. In this Service-Oriented Programming approach, soft-
ware is composed of services that may dynamically appear or disappear. In such a
case, classical monitoring approaches with statically injected monitors into services
cannot be used. In this chapter, we propose a dynamic monitoring approach dedi-
cated to local SOA systems, focusing particularly on OSGi. Firstly, we define two key
properties of loosely coupled monitoring systems: dynamicity resilience and comprehen-
siveness. Next, we propose the OSGiLarva tool, which is a implementation targeted
at the OSGi framework. Finally, we present some quantitative results showing that
a dynamic monitor based on dynamic proxies and another based on aspect-oriented
programming have equivalent performances. These propositions were presented in

[35, 34].

37

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

38 Introduction

3.1 Introduction

As stated in Chapter 1, we know that services are loosely coupled and client invokes
service methods as long as this service interface matched in SOA-based system. Mon-
itoring a critical system based on D-SOA is a challenge. Many runtime monitoring
tools exist, but their properties are injected into the monitored system at coding time
(JML [19] and Spec# [15]) or at loading time (enforcement monitor [55], Larva [32]
and JavaMOP [75]). It means that when a monitored service based on D-SOA system
disappears or replaced during runtime after bindings, its monitored property is also
removed from system if the monitored system is not restarted. Moreover, these works

don’t consider the expression of properties in terms of framework events.

In this chapter, our proposal is to bring a dynamic approach to runtime monitoring
systems through inserting monitors at the point of client-server binding rather than
"statically" at compiler-time or loading-time. This means that both the service bind-
ings and the behavioural monitoring bindings are dynamic and loosely coupled, thus
supporting service substitution. This approach would preserve behavioural moni-
toring states across different service versions and check that both versions are be-
haviourally compatible.

Another major concern in a highly dynamic context, where the implementation of
an interface may be substituted, is to ensure that no implementation, or part thereof,
can bypass the monitoring framework. Note that if this could happen, the monitor
would not be able to detect any malicious code which might be executed. Moreover,
what can be concluded about a system’s observation if some events could have been
missed? Our aim is to enable the monitoring system to be fully active, even if the

service provider ignores it.

In this context, we conjecture that a dynamic runtime monitor must have two sig-
nificant traits: dynamicity resilience and comprehensiveness which are introduced in sec-
tion 2.2 and reminded in section 3.3.1. Note that we are not assuming that every
service behaves as expected, but only that if an authorized service is to be checked for
a particular property, then no event of the service behaviour can bypass the monitor
observations. For this reason, the architecture relies on a generic event-interception
mechanism and a dynamic, loosely coupled, wiring mechanism for automaton verifi-

cation.

The contribution of this chapter is a generic approach as well as a tool based on
OSGi. In this tool, the verification logic of the automaton is handled by an adapta-
tion of the existing monitoring tool Larva [32]. Finally, the introduction of dynamicity

to the monitor also increases the scope of properties we are able to address. Thus,

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 39

we introduce some dynamic primitives in the property description language in or-
der to make it possible to describe behavioral properties, where the registration/un-
registration of a service are expressible events. Furthermore, we also adapt the life
cycle of properties, since, under different circumstances, the monitor state might need
to be preserved or reset when the underlying service is substituted.

Section 3.2 is a case study showing some requirements of this proposition. Sec-
tion 3.3 expresses the architectural model for a dynamic runtime verification tool and
takes into considering some dynamic primitives. Section 3.3 introduces our OSGi ref-
erence implementation and describes our modifications of the Larva specification lan-
guage in order to consider dynamicity. We also analyse the property discription with
different interface numbers suit for OSGiLarva. Section 3.5 illustrates the OSGiLarva

tool by some quantitative results. Finally, Section 3.6 shows our initial conclusions.

3.2 Example

In order to ease the understanding of our contribution, we give an example of a dy-
namically monitored system conforming to our proposition. Let us consider an em-
bedded client on a mobile device based on a dynamic SOA platform, which needs to
communicate with a distant system according to a particular protocol Fig. 3.1. Let two
services S1 and Sy provide an identical interface to access the distant system through
different media: S using a WiFi connection, and S» using a 3G connection. With such
a configuration, we can consider that each time the WiFi connection goes down, the

system unregisters S, effectively switching the client onto Sy, and vice-versa.

Interface:

Auth();
Request Lock(); access Sub-
SomeUse(); g

System
UnLock();
UnAuth();

Figure 3.1: Dynamic SOA system supporting service substitution

Moreover, we consider that the use of the distant system requires that the client

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

40 Example

is authenticated with the service and that some system actions have to execute atom-
ically. Such requirements correspond to any typical secured system supporting con-
current access by transactions.

In such an example, the possibility of service substitution is crucial. We then pro-
pose, in Fig. 3.2, an example of an execution scenario that has to be supported by the

system. In this scenario, the service S is substituted by Sy during the atomic part of

the run.
Service
Client Interface S; S, Sub-Sys Manager
—getService(Interface) > getService(Interface) —— |
«¢—getService(Interface)— < ‘ getService(Interface) '
———Auth() |
<« Auth() |
Lock()—" \'—’7Lock(
l— Lock) /" 44— Lok}
— ~SomeUse(})’ > SomeUse() b
- ——SomeUse() | — ¢ someuse————
< ah UnReg(Servicel)—/
- getService(Interface) » | getService(Interface) | —p
«— tService(Interface)—— |
@—getService(Interface)— getService(Interface
Auth() S

< Auth() a

SomeUse()—" > SomeUse()»
<« SomeUse()—|— < SomeUse() |

Unlock() % _UnLock() »|
.« ——Unlock()— —[4—unLock()—
— —UnAuth()— 1 p

<« UnAuth()

Figure 3.2: Example of scenario with dynamically monitored system sup-
ported by example in Fig. 3.1

In another part, we can describe the correct use of the system in some property and
check it by monitoring at runtime. For instance, the two following properties express
the expected behavior, described earlier: (i) the client is locally authenticated on the
service before using it, and (ii) the concrete use of the sub-system requires that the
client opens the lock and closes it after use. In this example, one would like to ensure

that the execution described in Fig. 3.2 is correct with respect to these properties. Such

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 41

verification and the description of the property itself are the main contributions of this

Chapter.
Lock()/////,»f"“
Auth()
T /" UnLock() / | SomeUse()
A sl e 'UnReg()
k UnAuth() _Auth()
~ UnReg() @
Ge;[wSref\r)irce()
A. Client-side: instance property
Lock()
@ gomeuseg
\ Unfock()
clock\timéfﬁétimerout\timer.reset()

B. Interface-side: class property

Figure 3.3: Example of a property associated to example in Fig. 3.1

These properties can be described by a couple of automatons (Fig. 3.3), but with
a different interpretation of each. The local authentication automaton (Fig. 3.3.A) is
maintained in case of service substitution and should be instantiated for each distinct
client using the system. In the following, we will call such properties as Instance-
Properties as they are instantiated on a per object basis; in this case a client. On the
contrary, the management of the atomic use of the sub-system (Fig. 3.3.B) needs to be
centralized and shared by all clients. Even if a service is removed and substituted,
we would want to keep the current state of the sub-system in memory. In the follow-
ing, we call such properties Class-Properties because its lifetime spans throughout the
system’s life cycle and is not bound to a particular entity.

In summary, our proposition is to provide a monitoring framework, which is able

to monitor such properties by listening to method calls and OSGi framework events

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

42 Contributions

in a dynamic, resilient, and comprehensive manner.

3.3 Contributions

In the first part of this section, we describe an abstract architecture of a monitoring
system model supporting specific features of dynamic SOA systems, and we discuss
its characteristics. In the second part, considering the dynamic primitives from the dy-
namic SOA system. At the end, we give a general property descripton in our monitor
model for monitored system from three point of view: server side, client side, service

interface side.

3.3.1 Proposition of a generic architecture

Our proposition consists in dynamically inserting a monitoring proxy in front of each
service, and executing monitors in some autonomous services (Fig. 3.4). When a ser-
vice usage event occurs, a notification is sent to each associated monitor, which checks
the event against its property.

An interesting advantage of using a dynamic proxy over Aspect], is that we can
start or stop the monitoring of a property without restarting the service. Indeed, since
the proxy is bound upon a service request, this can be handled easily, while Aspect]
aspects are bound at least at class load-time, requiring to restart the service.

Since services are treated as black boxes from the running environment’s point
of view, such an architecture is designed to consider only properties of their external
interface. This corresponds to properties expressing the normal authorized use of a
service. However, since we are considering dynamic systems, we also want to con-
sider dedicated framework events, such as unregistration of a service or getting a new
service. In this approach, we will then focus on behavioral properties.

Since several clients can be running simultaneously within the framework, the
scope of properties should not be restricted to the use of a single client. We consider
the possibility of adding a monitor in front of several client. By considering both the
monitoring of Instance-Properties and Class-Properties, we enable the possibility of
simultaneously checking both local as well as global properties on the system.

In order to enable properties expressed in terms of method call events and frame-
work events (requests, registration, unregistration, etc.), we need to capture both kinds
of events — the ones between the client and the service, and some events from the ser-
vice registration system. To inject a monitor between a service and a client using it,
we adapt the framework in order to make this invisible both to the client and the ser-

vice. Two interesting characteristics of this approach are that it does not change the

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 43

Monitor

Invocation
Event

Proxy Server

Service

Get Unregistration Service
Service Registration

Framework
Event

Proxy /]

/

Service
Management
System

\—/

Figure 3.4: Proposed abstract architecture for monitoring system

binary signature of the service and that neither the service, nor the client, are aware
of a potentially running monitor. By adding another proxy in front of the service
management system of the framework, we are notified of requests for getting service

references.

Fig. 3.4 describes the abstract architecture. In the following, we delve deeper into

our two main principles.

Resilience to Dynamicity Since the monitoring system is externalized in an au-
tonomous service, monitors are separated from the code. When changes occur in the

framework, the observation mechanism and its properties remain unaffected.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

44 Contributions

Comprehensive Monitoring One of the main concepts of dynamic SOA is to have a
framework which allows dynamic loading and unloading of loosely coupled services.
Since the framework is in charge of providing an implementation to each service re-
quest, the framework can add a proxy between the client and the service to observe
their communications. This observation is comprehensive and no communication can

bypass this proxy.

3.3.2 Considering dynamic primitives

A monitor is started when a monitored service is registered in the framework. From
this moment, each event related to this service (e.g., service method invoking, service
loading etc.) is propagated to this monitor. Since we are in a dynamic framework,
dynamic events can occur, e.g. un-registration an registered service, or loading a reg-

istered service. We propose to introduce the four following primitives:

e REGISTER: this event occurs when a new service implementation is registered
on the framework. It means that a client can now get this service reference at
any time. If another implementation is already registered, it shares the same

interface property.

e GETSERVICE: this event occurs when a client is asking for a service. It can lead
to two situations: client gets a service or the client does not get any service. If a
client couldn’t get a service from the server, it means that there is no registered
service corresponding to the client request. We introduce the NOGETSERVICE

event to handle this case.

o UNGETSERVICE: this event occurs when a client releases a loaded service. Each
client can release its service object respectively and this service also exists in

memory for other clients load and use.

o UNREGISTER: this event occurs when a service is unregistered. The created
service object is then considered as destroyed. However, if clients still use this

service, these actions are considered as perhaps no longer safe or functional.

3.3.3 General property description

This part discusses the property description language and focuses on the scope of
the property description, mainly induced by the location of its associated monitor.
Indeed, since we are not in a system with one client and one service, we could have

many clients using many services at the same time. In such a case, the location of the

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 45

monitor can change the point of view of the property and hence its expressiveness.
As general point of view for property description, it can be defined with at least three
possibilities (e.g., Fig. 3.5): (i) client point of view, (ii) service implementation point of

view and (iii) interface point of view.

I Interface i
] side |
{ Client | property !
|oside 1 Lol
! property | H
o » Inter |
XL face | ~_
[Client |
| side | [Sérvice |
| property | | side |
””””” Lproperty |

Figure 3.5: Possible point of view for properties

Next, we will give the details about the property description from the three points

of view of monitored system:

3.3.3.1 Property Described from Service Side Point of View

If the designer describes a property with this point of view, shown in Fig. 3.6, he/she
considers the use of a single service [99]. It is easy to consider some behavioral de-
pendence in some parallel uses by multiple clients. However, since we are consider-
ing automaton-based properties, it is not obvious how to distinguish between clients
within the property. Moreover, it is complex to consider the use of multiple implemen-
tations of an interface simultaneously, with potentially some communication between
them.

For the dynamical part, it is not intuitive to describe and use the fact that a new
implementation of the same service interface has been loaded on the platform. More-
over, it seems to be complex to share property memory between implementations of
the same interface. Hence, if a service is substituted, there is no means of keeping its
property in memory, with its internal state, and to map it on another implementation
designated to continue the started work.

Advantages:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

46 Contributions

Figure 3.6: Property description: service implementation point of view

e Simplicity to describe behaviors of each service implementation without the
need to make the link with other possible implementations.

o In case of stateful services, with a different memory address space for each im-

plementation, it is very easy to describe the system.
Disadvantages:
o Complexity to describe shared memory between services.

e Impossibility to describe a generic behavior for each client, since we cannot dis-

tinguish between clients.

3.3.3.2 Property Described from Service Interface Point of View

In this point of view, we consider what can be done through a service interface, is
showing in Fig. 3.7. It is easy to describe the global use of any implementation of this
interface by any client, but not to make distinction between clients or between used
implementations.

By its nature, such a property is not directly associated to a service and thus de-
scribes a property shared by all implementations. Note that it is easy to consider the
loading or unloading of a service implementation, even if it is a substitution, willing
to keep the current state of the property.

Since our property description language is automaton-based, the only manner to
consider parallel use of many clients is to make some composition between the prop-

erty and itself. However, such technique leads to a combinatorial explosion of the

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 47

automaton size. Moreover, it limits the maximum number of clients and services,

since we need to have this information to make the composition.

i Interface 3
| side |
| property |

b Inter |
— 7| face | -

Figure 3.7: Property description: service interface point of view

Advantages :

e Easy to make a description of the authorized uses, with a global point of view
e Easy to consider loading/unloading of implementations

¢ Possibility to share a single property state between service implementations
Disadvantages :

e Risk of the shared property description size explosion if we want to describe the

concurrent behaviour of several clients.

e Impossibility to describe a generic behavior for each client, since we cannot dis-

tinguish between clients

3.3.3.3 Property Described from Client Point of View

This third possibility considers that each client has its own instance of the property
(Fig. 3.8). Hence, it is easy to describe the correct use of a service from one client point
of view and to consider as many parallel uses as we want, without any combinatorial
explosion.

Moreover, it is easy to describe the use of multiple services by a single client and
the behavioral dependence in case of concurrent use of services. In case of substitution

of a service, this approach can be resilient, since the property is attached to the client.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

48 OSGiLarva — A monitoring tool for OSGi

| Inter | -
»

‘ l =
[Client |

i side
| property |

Figure 3.8: Property description: client point of view

However, in case of the simultaneous use of a single service by several clients, if there
is some interactions between these usages, it is more complex to describe it.

Advantages :

Easy to make a description of a particular client authorized usages

Easy to consider loading/unloading of implementations

Possibility to share a single property state between several service implementa-

tions

No risk of size explosion of the shared property, since it cannot be described
Disadvantages :
e Complexity of describing global behavior including several clients

Hence, these three point of views are complementary. If each one of them is used
alone to describe property for dynamic SOA systemes, it’s not enough. In section 3.4.1,
we describe our choice of property in the light of the three types in the monitoring
system for OSGi-based systems.

In the next section, we present our monitoring tool implementation based on OSGi

framework.

3.4 0OSGiLarva — A monitoring tool for OSGi

We propose a concrete implementation of the described monitor system model in the

context of the OSGi framework: OSGiLarva (Fig. 3.9). In our tool, we use Java mech-

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 49

OSGilLarva

f Instance Property | Larva Property checking | Class Property
A8 Pd

. Interface
. Invocation Invocation
\\\\ Event Event

Implementation

Lngﬁc
Dynamic
Proxy

4

Client '(Service

Service
Get Service Unregistratio

Ngb\lzrameworww ‘

Reques
Service

Service Registration

Framework
Event

OSGi Service
Management
System

v

Figure 3.9: OSGiLarva implementation

anisms in order to generate a proxy between each client and service. This proxy is
dynamically generated from a framework proxy, hooked onto the OSGi framework,
and listens to all framework events such as the introduction of a new service or the
requesting of a service by a client.

This implementation integrates two existing tools introduced in Chapter 2.2: Larva
[32] and LogOs [47]. Larva tool belongs to soft-coding and LogOs system belongs to
agnostic-coding. We use LogOs as a hooking mechanism to observe services” inter-
actions. Larva is a compiler which generates a verification system expressed in Java
language. We will use an adaptation of Larva to verify property events which are
transferred by LogOs.

We describe the monitor implementation with following parts: We first introduce
the property expressiveness with dynamic primitives of OSGiLarva system and then
explain the OSGiLarva property description language. Next, we present our OSGi-
Larva implementation with both LogOs and Larva systems. Finally, we describe how

the registration process of a service under OSGi will take into account an existing

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

50 OSGiLarva — A monitoring tool for OSGi

property monitor to insert it between the service consumer and the service itself.

3.4.1 Property description of OSGilLarva

The OSGiLarva description language is originally based on the Larva property de-
scription language. We adapted it in order to support more dynamicity. This adapta-
tion is done through three extensions. The first one is the introduction of framework-
event primitives (i.e., section 3.3.3) and a property as a composition of Class-Properties
and Instance-Properties in the property description language. The second one expresses
the syntax and semantics of OSGiLarva automata. The last one describes a complete

OSGilLarva property in OSGiLarva property description language.

3.4.1.1 Using dynamic primitives in OSGilLarva system

Larva uses as input a property description language based on automata, extended by
timers, variables and actions. In the property itself, the user defines the set of sym-
bols used in the automata. These symbols are events which, in the original version
of Larva, are defined in terms of method names. We thus propose to use the dy-
namic primitives, described in Chapter 3.3.2 in the events definition in order to enable
framework-event : Register, UnRegister, GetService, NoGetService. UngetService isn’t
included among them, since it requires that the client uses some interfaces of the OSGi
framework to capture UngetService operation. To use the UngetService and GetSer-
vice of the interface ServiceFactory is a part of our future work. Currently, we just
focus on the other events which corresponds to the event-descriptions generated by
the adapted LogOs version. So LogOs needs to register some listeners on the frame-
work.

Event GETSERVICE is obtained by using an OSGi FindHook instance, registered
in the OSGi framework. When registered, such object is called each time a service is
obtained. Originally, this mechanism was defined in order to make a filter on services
obtained as a result of getService call. Indeed, the getService method accepts as
an input a description of the expected service and returns an array of corresponding
service implementations among the available ones. The FindHook mechanism has
been introduced in order to allow service filtering (i.e., to hide some services). Note
that LogOs also uses this mechanism to ensure that, if a service is monitored, every
calls to this service are necessarily done through a proxy, and never directly.

REGISTER and UNREGISTER events are obtained by registering an OSGi EventHook
with the service management system. An object implementing the EventHook class

and registered in the framework is called each time the service management system

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 51

observes a modification, such as new incoming service, a service un-registration, or a
service property modification.

In each of these cases, an event descriptor is forged by LogOs and sent to the Larva
monitor. Larva treats such events like all other events. Hence, the event descriptor
is compared to the list of events the monitor is listening to, and, if the property is
expecting this kind of event, it triggers upon it.

In front of advantages and disadvantages of approaches to express properties
(described in Section 3.3.3), we propose to consider properties as a combination of
two kind of properties for OSGiLarva, associated to two point of views: client-side
and interface-side. These two points of view in our monitor are respectively called
Instance-Property and Class-Property. We propose to not consider the service point
of view, since in typical use of OSGi, if multiple services implement a single interface,
the framework favours the use of the same implementation by all clients. Moreover,
from our experience, we conjecture that properties are typically client side, since an in-
terface property cannot consider the concurrent use of services by many clients with-
out a state explosion. Finally, to have the possibility to add a centralized property,
interface properties can be useful to express some shared constraints such as lock-
ing/unlocking systems.

Since our contribution is based on the Larva description language [31], chosen
for its closeness to our requirements, we mainly orient our proposition according to
Larva and adapt it in order to support more dynamicity. In Larva, properties are
described by automatons, where a single script file can contain several automatons.
Moreover, Larva provides in its language the possibility of defining parametrized au-
tomatons which can be instantiated using event parameters, through the FOREACH
keyword. We exploit this characteristics in order to use properties composed by two

parts (Instance-Property and Class-Property):

e Instance-Property: If a property is defined as an Instance-Property, then each
time a new client accesses the interface, a new instance of the property is gener-
ated and added inside the monitor. When the client terminates, the associated
instance of the property can also be removed. Hence, while such properties
are still resilient to service implementations” dynamicity, they are intentionally
not resilient to clients” dynamicity. The framework events are useful to describe

each client’s fact state and behaviors.

e Class-Property: This case corresponds to a centralized property, meaning that
several clients using a particular interface will share the same Class-Property.

Such property is more resilient to dynamicity since a Class-Property can be kept

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

52 OSGiLarva — A monitoring tool for OSGi

in memory until the associated interface is unloaded. As such it is not associ-
ated to a particular user’s interaction or a particular service implementation,
and can thus be used, for instance, to express some centralized locking/un-
locking mechanisms. It’s necessary to describe method calls in Class-Property.
The framework events which will be described in Instance-Property for each ac-
cessed client are useless in Class-Property. However, if several implementations

are used concurrently, then they would probably need to be synchronized.

Next, we present our adapted Larva property description language structure in
the context of OSGiLarva for making more dynamicity.

3.4.1.2 O0OSGilLarva automata: syntax and semantics

In this section, we propose to formally define OSGiLarva properties in terms of correct
and bad execution traces. An execution trace is error ending if and only if, it makes the
property automaton reaching a bad state (defined in the property). An execution trace
is correct, if all reached states of the automaton are only non-bad states.

Instance properties and Class properties are similar in there definition. They differ
only by their life-cycle. We then firstly define what is a property with its syntax and
semantics before to zoom in their particularities.

We define the structure of a property by an automaton, and then we define what
means crossing a transition. Finally, we make the semantic association between a

property and the set of its correct, or bad execution traces.

Definition 1 (OSGiLarva property automaton) An OSGiLarva property automaton is a
8-tuple A = (S, so, B, V, v, X1, X, 0) defined by:

o S: a finite set of states’ names;

o so: the name of the initial state of the system (so € S);

e B: anon-empty finite set of bad state names (B C S);

o V': a set of variables names, defined in the property;

e wvg: a set of variables initializations of A;

e X)s: a finite set of events names, associated to call of methods;

e Xp: a finite set of events names, associated to framework events. Y = {Register,
GetService, NoGetService, UnRegister};

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 53

e §: a transition function defined by § : S — X — [Prop,, x Acty x S|, where the first
S characterizes the starting state, ¥ = ¥y U X, X is the set of all possible events (i.e.,
method calls or framework events), Prop,, is the set of propositional conditions based on
variables from V', Acty is the set of actions based on variables from V and the last S
characterizes the reached state.

A transition ¢ from § is defined from a starting state to an ending state and with
three annotating elements: an ev