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Abstract—Vehicular Cloud Computing (VCC) exploits re-
sources at vehicles, such as computing, storage and internet
connectivity to provide services for applications supporting dif-
ferent ITS (Intelligent Transportation System) services. Current
Vehicular Cloud (VC) systems allow Consumer Vehicles (CVs) to
discover and consume offered services by nearby mobile cloud
servers (vehicles). However, to consume the required services,
the CVs must first select the most suitable service provider,
given that each of providers is characterized by specific features,
limitations and prices. To the best of our knowledge, no work
to date addresses the critical question of how to select the best
provider fitting the quality of services and costs requirements of
the consumer vehicles. Similarly, Provider Vehicles (PVs) should
adjust the provided services’ features and prices under certain
conditions such as the rate of consumers’ requests which makes
this issue even harder. In this paper, we propose GSS-VC as a new
distributed game theory-based approach to manage the service
provisioning in vehicular cloud. Our approach takes into account
the benefit of each player and allows the CVs to find the most
suitable PV based on the probability interaction between them.
Simulation results are carried out using urban mobility model and
illustrate the effectiveness of the proposed approach to answer
the raised questions: what is the best condition under which the
CVs may request the PVs for services? and how to select the
best service with respect to the CV preferences? Results from
extensive simulations on up to 1,500 vehicles show that GSS-
VC is a an efficient and reliable service selection scheme while
achieving high QoS.

Keywords—Vehicular Cloud, Provider Vehicles, Consumer Ve-
hicles, Service Selection, Game Theory.

I. INTRODUCTION

Over the last decade, the wide deployment and evolution
of cloud-based solutions have motivated research community
to study the benefits of migrating to other cloud-inspired
environments, such as Vehicular Clouds (VCs) [1] [2] [3]. Re-
cently, Vehicular Cloud (VC) has emerged as a new landscape
of mobile cloud computing, aiming to provide wide-range
of on-demand applications, including, weather information,
road conditions, parking availability, advertisements, storage
of videos or music files [4] [5].

A smart vehicles can act as a client of a service as well
as a provider, thanks to the many available on-board resources
including powerful computers, sensors, radar devices and wire-
less communication devices allowing it to perform relatively
high computing and storage. Therefore, such advanced in-
vehicle resources enable provider vehicles to offer a variety of
services ranging from Network as a Service (NaaS) to provide

Internet access to other vehicles, STorage as a Service (STaaS)
for vehicles that may need additional storage to run their
applications, going through COoperation as a Service (COaaS)
to perform a specific task such as vehicle health monitoring,
to INformation as a Service (INaaS) and ENtertainment as a
Service (ENaaS) [4] [6] [7].

We rely on a VC system model and architecture to, on
one hand, allow Provider Vehicles (PVs) to rent out their
services and resources to other vehicles, and, at the same time,
enable Consumer Vehicles (CVs) to discover and consume
PVs’ services. VCs can be operated in; (i) a stationary mode,
say for parked vehicles to offer their services in a cloud
environment [1] [3]. Such examples are traffic jams, vehicles
parked at an airport or any other parking lot. (ii) On the move
mode, a rather challenging case where vehicles offer their
services while moving.

However, It is an issue for consumer vehicles to discover
provider vehicles, aquire information about the offered ser-
vices, and request them for services of interest, given different
PV can offer services which differ in quality and cost. The
CVs must first select the most adequate provider in order to
consume the required service, given that each provider has
specific features, limitations and prices. However, to the best of
our knowledge, no work to date addresses the critical question
of how to select the best PV which meets the requirements
of the Consumer Vehicle (CV) in terms of Quality of Service
(QoS) and costs? Specially, with the mobility and intermittent
connectivity of vehicles impacting the obtained QoS, thus,
resulting in an increased latency as well as reduced reliability.
Another challenge is that the PVs should adjust the provided
services’ features and prices based on both, the offered QoS
parameters, and the external cloud conditions such as the rate
of CVs’ requests which is challenging to address in a highly
dynamic vehicular network.

In this paper, we model the interaction between CVs and
PVs in a vehicular cloud network by enabling CVs to select the
best PVs, and vice-versa, allowing PVs to gain appropriately
from the CVs based on their QoS and costs. To do so, we
propose GSS-VC, a Game theory-based approach for Service
Selection in Vehicular Cloud, as a new distributed game-
theoretic approach to manage on-demand service provisioning
in vehicular clouds. GSS-VC takes into account the gains and
costs of both, the consumer and the provider vehicle in order
to obtain Nash Equilibrium as the solution between the CVs
and PVs. Additionally, it considers key QoS parameters such
as the data throughput and delay for successful responds to CV



requests as well as their incurred cost of service provisioning.
Results from extensive simulations on up to 1,500 vehicles
show that GSS-VC is a an efficient and reliable service
selection scheme while achieving high QoS. The contribution
of this paper are as follows:

e We propose GSS-VC as the first distributed model
of inter-vehicle relation for service provisioning in a
vehicular cloud, catering the challenge of mobility and
intermittent connectivity.

e  We exploit game-theory to consider jointly the QoS
parameters and costs for both, service provider as well
as consumer vehicles towards a Nash-Equilibrium as
a solution.

e We validate the proposed GSS-VC by performing
extensive simulations using up to 1, 500 vehicles, 180
road in a 9 km? area where each road is of 1 km?.

The reminder of this paper is organized as follows. The
related work is discussed in Section II. In Section III, we
describe the proposed game-based approach dealing with the
interactions between PVs and CVs. Section IV presents the
numerical results with their appropriate analysis. Finally, Sec-
tion V concludes the paper along some insights into future
directions.

II. RELATED WORK

The service selection problem is widely studied in cloud
computing where existing approaches can be categorized into
two groups; (i) MCDM-based (Multiple Criteria Decision
Making) techniques which consist of the comparison of several
service providers by evaluating and aggregating their qual-
ity criteria [9] [10] [11]. The most popular MCDM tech-
niques used for the selection problem are Analytic Hierar-
chy Process/Analytic Network Process (AHP/ANP), outrank-
ing, MAUT, and Simple Additive Weighting (SAW) [8]. (ii)
Optimization-based techniques which find the best services
for the clients, which maximize or minimize one or several
criteria. Several optimization techniques are applied to resolve
the service selection problem such as dynamic programming,
integer programming, greedy algorithm, etc [12] [10] [13].

As a specific class of Cloud Computing, the Mobile Cloud
Computing (MCC) combines Cloud Computing and wireless
networks such as 3G and Wi-Fi [14] [15]. The goal is to offload
high computation tasks from resource limited mobile devices
to the distributed cloud environments. However, wireless net-
work characteristics, users mobility and the resources limits
in terms of computational power and battery consumption
introduce new complexities in order to satisfy QoS needs
of mobile users. Proposed works in this context address the
challenge of how the mobile users can efficiently make use of
cloud service by optimizing the resource utilization and their
QoSs [14] [15] [16].

Although the above studies shed the light on how to select
the most suitable cloud service, they can not be directly applied
in the high mobile vehicular cloud in which the topology of
the network varies fast over time due to the high mobility of
vehicles which may affect services’ QoS such as the latency
and the reliability.

In vehicular cloud context, as we mentioned before, pro-
posed works focus on systems and architectures which aim at
facilitating service discovering and consuming operations [3]
[4] [6] [7] (8] [9] [10] [11]. To manage on-demand service
provisioning, the authors in [17] [18] propose a negotiation
system between provider and consumers. This system assumes
a network of static vehicles and it is based on negotiation
interaction through a trusted third party which is also in charge
to control misbehavior of participants and to guarantee the
payment operation. However, this system requires n X n X
n communication model and hence it includes more delay
which has a significant impact since the consumers in this
systemare charged by the amount of time the service is used.
In conclusion, there exists no successful solution, to the best
of our knowledge, to solving the service selection problem in
vehicular clouds, while vehicles are on the move, thus catering
high mobility and intermittent connectivity.

III. GSS-VC: AFULLY DISTRIBUTED APPROACH

Service selection of a CV requires wireless connections
with all PVs which may offer the desired service. For a
better balance of offer and demand, service selection scenario
requires the interaction between the most important actors, CV
and PV. In this section, we formally study this interaction
by the use of a game theory that represents one of the
most important tools for studying behaviors and strategies of
interacting actors. The main idea of the proposed game model
is that the two sides of the system (PV and CV) should have a
monetary gain by participating in service selection operation.
We first describe the proposed model that involves the major
characteristics of PV (i.e. offered service features such as
response time and service price) and the CV request (i.e. the
service required). We then provide the payoff matrix related
to PV and CV. We finally predict the behavior of both PV and
CV based on the Nash equilibrium concept [19].

A. Game Description

In our approach, we consider two players representing the
main actors in the service selection scenario: Players = {PV,
CV}. The CV can perform two actions which are consuming a
service from the PV or not, this will depend on both the QoSs
and the price proposed by the PV. Besides, the PV has also
two actions which are offering the service to the CV or not. It
is clear that the CV prefers to have good quality resource at a
low price whereas PV will define the price based on its QoSs.
Therefore, both, CV and PV will choose the appropriate action
in order to maximize their respective gain. When no player can
increase its own gain, there will be a stable state, achieved with
a help of a Nash Equilibrium which we used to determine the
future behaviors of both players. In our approach, we represent
each service by a number of data packets which must be
exchanged between a PV and a CV with respect to the service
type. We consider four PVs’ quality parameters for the service
selection problem:

1) Data Throughput (¢prs): the gpry represents the
number of delivered data packets in a given time
period by a PV and it is measured in data packets
per second.

2)  Successful Execution Ratio (¢sgr): it is the prob-
ability that a CV’s request is correctly responded by
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a PV within the maximum expected time. The ¢sgr
value is calculated as, gspr = %, where N(s) is
the number of times that a PV’s service s has been
successfully consumed, and K is the total number of
invocations for the service s.

Execution duration (¢gp): defined as the expected
delay in seconds between the moment when a request
is sent and the moment when the results are received.
It is calculated as qgp = Tprocess(S) + Trrans(S),
meaning that the ggp of a service s is the sum
of the processing time (Iprocess) and transmission
time (T7,qns). We note that the Ir,..,s 1S determined
according to the required quantity of service s by a
CV and the PV’s Data throughput.

Execution Price (gzp): The service price which we
represent as the price per data packet.

B. Payoff Matrix

In this subsection, we present the payoff matrix of the game
between the CV and PV (see TABLE I), where p and 1 — p
are the probabilities with which the PV decides an action if it
is offering or not offering a service. Similarly, ¢ and 1 — g are
the probabilities with which the CV player decides whether it
is consuming or not consuming the service.

The payoff equation of each player is as follows:

where,

X11=Nx*qegp — (¢qep + 4seRr), (D
Y11 =N —(¢ep + N *qep + qser), @)
X12 = —N xqgp, (3)
Yio=-M=xN, 4)

_ 0, Busy
X = { —L+«N=xggp Otherwise, ©)
Yo1 = =N, (6)
Xog =0, (N
Yoo =0, (8)

N is the number of required data packets by the CV
which represents the service s.

M: is the number of unsuccessful attempts to deliver
a service to the CV. The PV accepts to deliver the
service but the CV refuses to consume.

L: is the number of times that the PV rejects CV’s
demand. The CV wants to consume but the PV refuses
to offer it.

In order to have normalized payoffs, each quality parameter
(variable) is standardized with no unit. Hence, each payoff
equals to a score with no unit. For example, the price of a
service qpp is normalized by a standardized price Max(qgp)
(i.e. ggp=(Real(¢pp) / Max(qgp)).

TABLE I: Payoffs Matrix of both palyers PV and CV.

PV /CV Consuming | Do not consume
Offering (X111, Y11) (X12, Y12) p
Do not offer | (X271, Yo1) (X22, Ya22) 1-p
q 1-gq

TABLE II: Simulation Parameters.

Parameters Values
Simulation Time 1000 s
Simulation Area 9x9 km?
Transmission Range 500 m

Data Throughput [1, 5] packets/s

Vehicles speed Up to 70 km/h

Consumer vehicles Density (CD) [300-1500] vehicles

PVs density (P) 1/4, 1/3, and 1/2 of CD

Execution Price [10, 100]1$
Request Rate [1-5] Requests
Maximum number of offered services per PV 3 Services
Maximum number of requested services per CV 2 Services

We describe below the set of strategies that could occur
between the PV and the CV.

Strategy combination (Offering & Consuming)

In this case, the PV offers its service and the CV
decides to consume it. X;; represents PV’s gain,
which is equal to the number of sent data packets
multiplied by the price of each packet. On the other
hand, this PV’s gain is affected by both the execution
duration which is a negative criteria, i.e. the lower
the value the higher the quality, and the successful
execution ratio which is a positive criteria, i.e. the
higher the value the higher the quality. The gain of the
CV Y;; relies on the received service in terms of data
packets. This gain is affected by the service price, the
execution duration, and the successful execution ratio.

Strategy combination (Offering & Do not consume)
In this case, the PV wants to sell its service to the CV,
but this latter doesn’t buy (i.e. does not consume). The
CV may refuse to consume because it is not satisfied
by the PV’s QoS or it had consume from another
PV. Here, X, represents the failure of PV in selling
service to the CV, which is the number of sent data
packets multiplied by the price of each packet. In this
case, the CV will be penalized by multiplying its gain
by the number of times that it has refused to consume
from PV. This is represented by Yio.

Strategy combination (Do not offer & Consuming)
In this case, the CV wants to consume, but the PV
decides not to sell (i.e. do not offer). The PV does
not deliver because it is occupied (offers its service
to another CV). If it is not the case, the PV will be
penalized. This penalty is represented by X»; and Ys;
represents the consuming failure of the CV.

Strategy combination (Do not offer & Do not
consume)

In this case, both PV and CV gains will be null since
both neither deliver nor consume the service.



TABLE III: The five top selected Provider vehicles in each time period.

Ranking Off-peak Time Mid-peak Time On-peak Time
CVID PV ID Consuming Offering CV ID PV ID Consuming Offering CV ID PV ID Consuming Offering
Probability Probability Probability Probability Probability Probability

(@ @) (@ @) (@ @
1 287 34 0.86 0.53 698 467 0.77 0.58 309 100 0.65 0.75
2 502 122 0.86 0.53 23 529 0.77 0.58 119 1391 0.65 0.75
3 129 98 0.86 0.53 176 190 0.76 0.59 1487 609 0.64 0.77
4 398 213 0.85 0.55 239 96 0.76 0.59 765 419 0.63 0.79
5 1100 387 0.85 0.55 004 702 0.76 0.59 901 200 0.63 0.79

C. Nash Equilibrium

The utility of Nash Equilibrium (NE) is to predict the future
behavior of the PV and the CV and determine the permanent
state, i.e. each player has an interest in performing the same
action. We use the NE to determine the stage when both PV
and CV do not change their actions, which are respectively
offering and consuming.

Theorem 1: There is a mixed strategy NE {PVplayer
(Offering, px), CVplayer (Consuming, ¢*)} in which the PV
chooses Offering action when the probability p > p+ and the
EV chooses Consuming action when ¢ > ¢x.

Proof:

The mixed strategy of the PV is defined as follows: P =
(p,1 — p), and the expected payoffs of the CV for playing
Consuming action or not are:

e Ucy(Consuming) = Yy xp+ Yo1 x (1 —p) = p
(Y11 — Y1) + Yo
e Ucy (Do not consume)= Yyaxp+Yaox(1—p) = pxYio

The CV will play Consuming action when Ucy (Consuming)>
Ucvy(do not consume). Therefore, we have:

e p > px where px = _Y1Y2With0<p>k<=1

2
Yi1—-Y21 -1

The mixed strategy of the CV is defined as follows: @@ =
(¢,1 — q), and the expected payoffs of the PV for playing
Offering action or not are:

o Upy(Offering) = X171 xq+ X12% (1 —q) = g =
(X11 — X12) + X12
® UPV(DO not Offer): X21 *q+X22*(1*q) = X21 *q

The PV will play Offering action when Upy (Offering)>
Upy (do not offer). Therefore, we have:

. q>q*whereq*:mwith0<q*<:1

As a result, we conclude that when the Consuming action
probability of the CV is above g+ and the Offering action
probability of the PV is above than px, both players do not
change their actions.

IV. PERFORMANCE EVALUATION

In this section, we present the simulation experiments that
we performed to evaluate our GSS-VC approach.

A. Simulation Setup and Parameters

To validate GSS-VC, we use OMNet++ network simula-
tor [20], which provides infrastructure and tools for writing
wired and wireless simulations, and used SUMO mobility
simulator [21] to generate the vehicles mobility traces that we
inputted to OMNet++. We use a Manhattan-based map of 9x9
km? where there are 180 roads of 1 km and 16 junctions.
The main parameters of our simulation are shown in TABLE
II. We vary the Consumer vehicles Density (CD) between 300
and 1500, where three values of PVs density are considered:
one fourth, one-third, and one-half of each level of CD. We
intend to evaluate the performance of GSS-VC in terms of;
1) the efficiency of the service selection in choosing the best
provider and maximizing the service gain of the consumers,
2) the latency of the service selection in reducing the service
selection delay, and 3) the reliability of the service selection
in increasing the successful execution ratio of the service.

During the simulation, each CV plays the game with all
PVs present in its vicinity. It selects then the PV with which
it reaches the highest consuming probability (q). We choose
the following metrics to evaluate our approach:

1)  Probability Convergence (PC): In order to be more
realistic and to study the probability interaction be-
tween PVs and CVs, we simulate our approach in
three different time periods; off-peak times where the
service demand is low (for instance, at night), mid-
peak times where the service demand is medium and
on-peak times when we have a huge demand of ve-
hicular cloud service, for example, during congestion.

2)  Average Service Delay (ASD): measures time delay
before a consumer receives the requested service from
the service provider. This metric is used to evaluate
the delay generated by game model.

3)  Service Gain (SG): It represents the CVs’ gain after
they consume desired services from selected PVs’.
For all schemes, we compute the CVs’ gain using
Y11 which relies on the received service in terms of
data packets, PVs’ prices, the execution duration, and
the successful execution ratio. We then normalized
this value with respect to the top identified services’
QoSs and prices.

4)  Successful Execution Ratio (SER): it measures the
rate of CVs’ requests are being correctly responded
by selected PVs within the maximum expected time.

To assess the performance of GSS-VC, we compared it with
two other service selection schemes: (i) Neutral scheme [18],
it is a simple selection scheme in which a consumer vehicle
selects the first available provider vehicle without any QoS as-
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Fig. 1: Probabilities convergence in different time periods.

pects. (ii) The Negotiation-based service selection [17] which
uses QoS-awareness, and manages a competition between
provider and consumer vehicles through trusted third parties.
This scheme is comprised of three main actors: consumer
vehicles, provider vehicles and trusted vehicles as trusted third
parties. So, at receiving a service request, the trusted vehicles
are responsible for the negotiation the services and for the
search of the best price. To be fair in our simulation and since
these schemes are proposed for static vehicular cloud, we adopt
them to be executed while vehicles are on the move.

B. Results and Discussions

The objective of our simulation study is to find answers
to the fundamental question: when and how the CVs may
select the best service? TABLE III shows the five top selected
provider vehicles and the corresponding consuming and of-
fering probabilities, during the three time periods (off-peak,
mid-peak and on-peak times). We observe that the consuming
probability may reach up to 0.86 in off-peak time. This value
decreases to 0.77 and 0.65 in mid-peak and on-peak times,
respectively. On the other hand, the offering probability is
increasing from 0.53 in off-peak time to 0.58 and 0.75 in mid-
peak and on-peak times, respectively. These results are also

confirmed in Fig. 1 which can be justified by the fact that from
off-peak to on-peak times, the service demand increases, which
causes an increase in the selling price proposed by the PVs.
Therefore, these latter can increase their prices especially when
the number of consumers is important in order to increase their
gain. Hence, the PVs have more interest to offer their services
during on-peak periods than during off-peak hours. In addition,
the decrease of the consuming probability from off-peak to
on-peak times is also due to the increase in demand, which
induces the increase in price. This will oblige the consumers
to consume their services with minimum amount as possible
during these periods or sometimes not to charge. We notice
also that the offering probability decreases and the consuming
probability increases as we increase the providers’ density (P).
The presence of more PVs in the network implies that the
CVs have likelihood to find the most suitable PVs, causing
the probability p to decrease (cf. Figure 1-a, 1-b, 1-c) and the
probability q to increase (cf. Fig 1-d, 1-e, 1-f).

In order to consume with less cost and maximize their
profit, it is a good strategy to encourage CVs consuming during
off-peak times at the night for instance. So, the PVs have to
choose the right pricing policy to balance between offer and
demand.
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Fig. 2 depicts the Average Service Delay (ASD) of GSS-
VC, Negotiation scheme and Neutral mode while varying
both consumer and provider densities. It shows that Neutral
mode achieves a low ASD compared to the other schemes.
The Neutral mode selects the first available nearby service
provider to handle a consumer request while the consumers
must first play a game or negotiate with the providers in GSS-

VC and Negotiation-based schemes, respectively. However, the
latency introduced in GSS-VC and Negotiation-based schemes
improves the service gain and the successful execution ratio
compared to the Neutral mode (cf. Fig. 3). In addition, we
remark that the ASD increases as we increase the Consumer
Density (CD) which can be justified by the increasing number
of requester vehicles when CD increases. Nevertheless, it



decreases (ASD) as we increase the provider density (P). The
presence of more providers implies that a consumer has a
likelihood of being answered by these PVs, causing ASD to
decrease.

Fig. 3 compares the gain and the successful execution
ratio of the services between GSS-VC, Negotiation-based and
Neutral mode. As we can see, both GSS-VC and Negotiation-
based schemes generate almost the same performances which
are higher than that of the Neutral mode. As we mentioned
before, a consumer vehicle in the Neutral mode selects the
first available nearby service provider. As the provider’s QoSs
and prices are unpredictable, a consumer can find a provider
with lower QoSs and higher price which reduces both the gain
and the successful execution ratio of the requested service.
On the other hand, GSS-VC and Negotiation-based are QoSs
aware and a service provider should propose an acceptable
and reasonable offer to the consumer if he wants to provide
the service. For instance, the service gain in our scheme (GSS-
VC) is determined with respect to the received service in terms
of data packets, service price, the execution duration, and the
successful execution ratio. We also notice that the gain and
the successful execution ratio of the services decrease when
we increase the CD and they increase as we increase the
PVs density (P). As explained for Fig. 2, these results are
mainly due, on one hand, to the increasing number of requester
vehicles when CD increases which causes the gain and the
successful execution ratio of the services to decrease, on the
other hand, to the presence of more providers which causes
the gain and the successful execution ratio of the services to
increase.

Therefore, we can deduce that GSS-VC enables consumer
vehicles to select the most suitable provider vehicles and at the
best moment thanks to its game-based model. When compared
to the other schemes, we also deduce that GSS-VC improves:
(1) the efficiency of the service selection in terms of choosing
the best provider and the obtained service gain. (ii) The latency
of the service selection in terms of the service delay. (iii)
The reliability of the service selection in terms of successful
execution ratio.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new distributed service se-
lection scheme for vehicular cloud called GSS-VC. GSS-VC
focuses on the interaction between consumers and providers
in vehicular cloud in order to enable consumers selecting
the best providers. To study this interaction, we formulated
a game model and with the help of the Nash Equilibrium
(NE), we evaluate the interaction probability between CVs
and PVs for three time periods (off-peak, mid and on peak
times). We validated the performance of GSS-VC throughout
simulation experiments and have compared them with those of
Neutral mode and Negotiation-based schemes. The simulation
results show that GSS-VC enables consumer vehicles to select
the most appropriate provider vehicles as it improves the
efficiency, the latency and the reliability of the service selection
operation. As future work, we aim to secure the service
selection process in order to deal with rational/selfish providers
which indicate untrustworthy QoSs and prices.
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