An Efficient Distributed PKI for Structured P2P Networks

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong
firstname.lastname@supelec.fr

SUPÉLEC, SSIR Group (EA 4039), France

Seattle, US
Security in P2P Networks

Traditional View

- Security is enforced by a central point
- Capacities may be proved by certificates (Certification Authorities)

Specificities of P2P Networks

Dynamic and Collaborative networks without Central Authority

Distributed Certification (Threshold Cryptography)

- Capacities are still proved by certificates
- These certificates are signed collaboratively by members

⇒ Trust that t% of the nodes would not collude
Applications

Admission Control [COPS ’08]
Sybil protection, only genuine members are certified

Misbehaving Nodes Exclusion [I2CS ’08]
Nodes are monitored, misbehaviors are detected and excluded

Secure Naming of Resources
- P2P SIP directory (unique and provable intelligible names)
- P2P DNS system

\Rightarrow Intelligible names, not $h(PublicKey)$
Outline

1. Background
2. Split Operation
3. Refresh operation
4. Analysis and Results
Background
Related Work

Fixed Number [Kong et al., 01]

- Certificate generated by a fixed number of peers \((t, n)\)
- Mainly suits MANETs

Fixed Ratio with a Server [Saxena et al., 03]

+ Certificate generated by a fixed ratio of the peers
- Uses a central counter of the network size
- \((t, n) \rightarrow (t, t) \rightarrow (t', n')\): Robustness problem

Fixed Ratio without any Center (our previous scheme [AIMS 08])

+ Certificate generated by a fixed ratio of the peers
+ Fully distributed scheme, no center
 - Byzantine agreements in groups (20 to 40 peers)
Fixing the Threshold Ratio

- RSA, \(S = (e, m) \)
- \(s \) additive shares \(e_i \)
- Rep on \(g \) peers (sharing group)
- Ratio \(t = \frac{s}{n} = \frac{1}{g} \)
- \(o^e[m] = (\prod o^{e_i}[m])[m] \)

\(t \) enforced by groups size

- \(g_{min} \): minimal size
- \(g_{max} \): maximal size
- \(\frac{1}{g_{max}} < t < \frac{1}{g_{min}} \)
Three main operations

- **Split**: splits a group composed of more than g_{max} members
- **Merge**: merges two groups of less than g_{min} members
- **Refresh**: randomize shares after a split operation

Maintenance relies on byzantine agreements

- Costly when groups are composed of 20 to 40 members
- Peers join and leave: which peers participate?
- Difficult to implement

⇒ Novel maintenance operations without agreements
Split Operation
When a group is composed of more than g_{max} members
Create two shares from one ($e_{i0} + e_{i1} = e_i$)

Split e_i
1. Decide a random value e_{i0}, $e_{i1} = e_i - e_{i0}$
2. Migrate to the new groups e_{i0} and e_{i1}
3. Refresh shares e_{i0} and e_{i1}

Byzantine agreements
- Decide to split
- Decide e_i
Splitting a share, $g_{max} = 6$
Splitting a share, $g_{max} = 6$
Splitting a share, $g_{max} = 6$
Precompute all possible shares

Sharing trees

- Every peer of e_i know the **sharing tree** of e_i.
- The sharing tree of e_i contains all the possible subshares of e_i.
- This tree is implicit and can be calculated from e_i:

 $$e_{x0} = RNG_h(e_x), \quad e_{x1} = e_x - e_{x0}$$

- No need to store the whole tree, only the root.
- Every peer take the same decision without any agreement, at slightly different moments.
Splitting a share without agreements

NodeId = 11

NodeId = 10

NodeId = 0

g > g_{max}

NodeId = 0*

NodeId = 11*

NodeId = 10*

g > g_{max}

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong

Distributed PKI for P2P
Removing agreements

Splitting a share without agreements

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong Distributed PKI for P2P 13/25
Removing agreements

Confidentiality of the shares

Each share must be known in only one sharing group

- \(\frac{1}{g_{\text{max}}} < t < \frac{1}{g_{\text{min}}} \) iff peers know only one share
- After a split, every peer of \(e_i \) know both created shares
 \(e_i = e_{i0} + e_{i1} \)

\(\Rightarrow \) Refresh operation randomizes shares and sharing trees
Refresh operation
Previous scheme

Principle

- After a split, to enforce confidentiality of shares
- Exchange some random value between two shares

Refresh e_x with e_y

1. Decide a random value Δ
2. $e_x \rightarrow e_x + \Delta$
3. $e_y \rightarrow e_y - \Delta$

Byzantine agreements

- Decide/Accept to refresh
- Decide Δ
Refreshing e_{00} and e_{11}
Refresh operation

Previous scheme

Refreshing e_{00} and e_{11}

Peers of e_{00} do not know e_{01} anymore.
Removing agreements

Needs

No Sync

Refresh // Split
Which group?

⇒ Refresh must handle inconsistent groups
Removing agreements

Values are added to the leafs of sharing trees
Removing agreements

Values are added to the leaves of sharing trees
Analysis and Results
Setup

Simulations use PeerSim:
- Up to 100 000 online peers
- Peers are online 10% of the time
- Groups are composed of 20 to 40 members ⇒ Tolerates 20% of attackers
Security: Size of shares

![Graph showing the size of shares vs. the number of peers. The x-axis represents the number of peers ranging from 0 to 100,000, and the y-axis represents the size of shares in bits ranging from 1000 to 1050. The graph indicates a relatively constant size of shares across the range of peers.]
Efficiency: Size of sharing trees

The graph shows the size of sharing trees (in Mbytes) on the y-axis against the number of peers on the x-axis. The theoretical upper bound is also plotted as a horizontal line. The data points indicate a trend where the size of sharing trees increases with the number of peers, approaching the theoretical upper bound as the number of peers grows.
Efficient Distributed PKI

Provided Service
- Cryptographic proof of agreement of a fixed ratio of the nodes
- Ratio is enforced with distributed protocols

Efficiency
- Maintenance is local to one or two groups
- Decisions are local to each node, no byzantine agreements
- Sharing trees remain small

Applications
- Protection from Sybil Attack
- Exclusion of attackers
- Secure naming of resources

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong

Distributed PKI for P2P
An Efficient Distributed PKI for Structured P2P Networks

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong
firstname.lastname@supelec.fr

SUPÉLEC, SSIR Group (EA 4039), France

Seattle, US