
TC	

Distributed

Computing:
From Principles to Pervasive, Grid and Cloud Computing

Agenda

•  Principles of Distributed Computing
–  Frédéric Le Mouël, (3*2h)

•  Pervasive Computing
–  Frédéric Le Mouël, (4*2h)

•  Cloud Computing
–  Julien Ponge, (4*2h)

•  Grid Computing
–  Yves Caniou, (4*2h)

05/01/12 INSA Lyon 2

Successful lecture ?

•  No mystery to succeed in research
–  Read books -> knowledge
–  Ask questions -> interactions
–  Criticize -> ideas

•  Research evaluation
–  Exam, 2h
–  Ideas, method to answer a new problem

05/01/12 INSA Lyon 3

Who am I

•  Frédéric Le Mouël
–  Associate Professor, INSA de Lyon, CITI Lab
–  Researcher, INRIA, Amazones Team
–  Topics: Middleware, OS, Java/OSGi, Mobile/

Pervasive Computing, Ambient Intelligence,
Autonomic Computing

frederic.le-mouel@insa-lyon.fr @flemouel
http://www.le-mouel.net

05/01/12 INSA Lyon 4

DC Principles : Outline

•  Introduction
–  What is Distributed Computing ?
–  Why distributing ?
–  What are the problems in distributing ?

•  From theory …
–  Distributed Algorithms: Byzantine problem

•  Synchronizers, Logical clocks, etc.
•  Graph colouring, Mutual exclusion, Consensus, Self-

stabilization, etc.

–  Complexity
05/01/12 INSA Lyon 5

DC Principles : Outline

•  … to practice

–  Architectures
–  Message Passing
–  Message-Oriented Middleware (MOM)

05/01/12 INSA Lyon 6

What is Distributed Computing ?
« Distributed computing is a field of computer science that studies
distributed systems. A distributed system consists of multiple
autonomous computers that communicate through a computer
network. The computers interact with each other in order to
achieve a common goal. A computer program that runs in a
distributed system is called a distributed program, and distributed
programming is the process of writing such programs »
[wikipedia/DC] [Andrews 2000] [Ghosh 2007]

05/01/12 INSA Lyon 7

What is Distributed Computing ?

05/01/12 INSA Lyon 8

Autonomous
Computers

Networks

Programs

What is Distributed Computing ?

05/01/12 INSA Lyon 9

One Computer
Several Processors

Communication
Buses

Threads

What is Distributed Computing ?

05/01/12 INSA Lyon 10

One Computer
Several Processors

Communication
Buses

Threads

Memory

Parallel

Shared Memory

Parallel computing ≈
tightly-coupled form
of distributed
computing

Distributed computing
≈ loosely-coupled
form of parallel
computing

What is Distributed Computing ?

05/01/12 INSA Lyon 11

Autonomous
Computational
Entities / Nodes

(with their
own memory)

Communication
through

Message Passing

Process

What is Distributed Computing ?
« Distributed computing is a field of computer science that studies
distributed systems. A distributed system consists of multiple
autonomous computers that communicate through a computer
network. The computers interact with each other in order to
achieve a common goal. A computer program that runs in a
distributed system is called a distributed program, and distributed
programming is the process of writing such programs »
[wikipedia/DC] [Andrews 2000] [Ghosh 2007]

05/01/12 INSA Lyon 12

What is Distributed Computing ?

05/01/12 INSA Lyon 13

Common Goal ?

Process =
Memory zone split in
•  Data segment
•  Code segment
•  Execution flow
   (stack, heap, etc.)

What is Distributed Computing ?

05/01/12 INSA Lyon 14

Goal = Physical
Data Sharing

D

D D

D D

D D Process =
Memory zone split in
•  Data segment
•  Code segment
•  Execution flow
   (stack, heap, etc.)

D

D

D D

What is Distributed Computing ?

05/01/12 INSA Lyon 15

Goal = Physical
Data Sharing

D

D D

D D

D D Process =
Memory zone split in
•  Data segment
•  Code segment
•  Execution flow
   (stack, heap, etc.)

D

D

D D

k replicas upon n nodes

What is Distributed Computing ?

05/01/12 INSA Lyon 16

Goal = Physical
Code Sharing

C

C C

C C

C C Process =
Memory zone split in
•  Data segment
•  Code segment
•  Execution flow
   (stack, heap, etc.)

C

C

C C

What is Distributed Computing ?

05/01/12 INSA Lyon 17

Goal = Temporal
Synchronization
of Computation H

L K

M N

F G Process =
Memory zone split in
•  Data segment
•  Code segment
•  Execution flow
   (stack, heap, etc.)

J

I

B A

(A || B) < (F || G) < (H || K || L || M || N) < I < J

What is Distributed Computing ?
« Distributed computing is a field of computer science that studies
distributed systems. A distributed system consists of multiple
autonomous computers that communicate through a computer
network. The computers interact with each other in order to
achieve a common goal. A computer program that runs in a
distributed system is called a distributed program, and distributed
programming is the process of writing such programs »
[wikipedia/DC] [Andrews 2000] [Ghosh 2007]

05/01/12 INSA Lyon 18

What is Distributed Programming ?
« Computer programming (often shortened to programming or coding)
is the process of designing, writing, testing, debugging, and
maintaining the source of computer programs. This source code is
written in one or more programming languages. The purpose of
programming is to create a program that performs specific operations
or exhibits a certain desired behaviour. »
[wikipedia/CP]

Distributed Programming:

 Designing = Distributed Algorithms
 Writing = Programming Languages/Frameworks for Distribution
 Testing, debugging, maintaining = Distributed OS/Middleware

05/01/12 INSA Lyon 19

Section 2: From theory …

Section 3: … to practice

DC Principles : Outline

•  Introduction
–  What is Distributed Computing ?
–  Why distributing ?
–  What are the problems in distributing ?

•  From theory …
•  … to practice

05/01/12 INSA Lyon 20

Why distributing ?

05/01/12 INSA Lyon 21

Application
truly

geographically
distributed

D

Producer

Consumer Consumer

Why distributing ?

05/01/12 INSA Lyon 22

Performance
gain in
•  computation
•  storage

Speedup
Sn = T1 / Tn

Efficiency
En = T1 / (n * Tn)

Tn: execution time on n nodes
[Eager 1989]

Computing Intensive:
Seti|Folding@Home

Data Intensive:
Facebook, Google

D

Why distributing ?

05/01/12 INSA Lyon 23

Robustness:
to guaranty
fault-tolerance in
•  computation
•  storage

D

D D

D D

D D

D

D D

No Single Point
Of Failure (SPOF) :
other nodes can
execute/host the
same task/data
executed/hosted on
the failed node

D

What are problems in distributing ?

05/01/12 INSA Lyon 24

Dynamic Topology:
the structure of the
system is not know
in advance and can
change during
execution

D

D D

D D

D D

D

D D

Number of nodes

Number of links

Links characteristics

D

What are problems in distributing ?

05/01/12 INSA Lyon 25

Byzantine Faults:
•  Omission

Failures
•  Commission

Failures

D

D D

D D

D D

D

D D

D

What are problems in distributing ?

05/01/12 INSA Lyon 26

Byzantine Faults:
•  Omission

Failures
•  Commission

Failures

D

D D

D D

D D

D

D D

•  Crash Failures
•  Failing to receive

a request
•  Failing to send a

response

2

What are problems in distributing ?

05/01/12 INSA Lyon 27

Byzantine Faults:
•  Omission

Failures
•  Commission

Failures

3

2

•  Processing a
request incorrectly

•  Corrupting local
state

•  Sending an incorrect
or inconsistent
response to a
request

1+1 ?

4
1+1 ?

3

%

D

What are problems in distributing ?

05/01/12 INSA Lyon 28

Decision-making:
each autonomous
node has an
incomplete view
of the system that
leads to uncertain
decisions

D D

D D

D

D D

One-hop View

OK

?

?

OK

For scalability
reasons, trade-off
required between
optimal decision
and performance
[Hayashibara 2002]

D

What are problems in distributing ?

05/01/12 INSA Lyon 29

Problems typically
depends on the
application
domain

D

D D

D D

D D

D

D D

Section 4:
Pervasive Computing

Section 5:
Cloud Computing

Section 6:
Grid Computing

D D

D

DC Principles : Outline

•  Introduction
–  What is Distributed Computing ?
–  Why distributing ?
–  What are the problems in distributing ?

•  From theory …
–  Distributed Algorithms:

•  Graph colouring, Mutual exclusion,
•  Consensus, Byzantine fault-tolerance, Self-stabilization

–  Complexity

05/01/12 INSA Lyon 30

DC : Theory

•  Theoretical Computer Science
–  Computational Problem:

•  An entity (human-being or other) asks a question (Input)
•  A computer performs some computation
•  The computer produces an answer (Output)

05/01/12 INSA Lyon 31

DC : Theory

•  Theoretical Computer Science
–  Computability Theory:
⬄ Which problems are computational ?
⬄ Which problems can be solved using a

computer ?
⬄ Which problems can be designed by an

algorithm and executed by Random Access
Machine or a Universal Turing Machine ?

05/01/12 INSA Lyon 32

DC : Theory

•  Theoretical Computer Science
–  Computational Complexity Theory: How efficient is

the algorithm that solves the problem ?

05/01/12 INSA Lyon 33

DC : Theory

•  and Distributed Computing ?
–  Computational Problem:

•  An entity (human-being or other) asks a question (Input)
•  Several computers perform some computations and

interactions
•  These computers produce an answer (Output)

05/01/12 INSA Lyon 34

DC : Theory

•  and Distributed Computing ?
–  Computability Theory:
⬄ Which problems are computational ?
⬄ Which problems can be solved using a network

of computers ?
⬄ What is the concurrent or distributed equivalent of

a sequential general-purpose computer ?

05/01/12 INSA Lyon 35

DC : Theory

•  and Distributed Computing ?
–  Computational Complexity Theory: How efficient is

the concurrent or distributed algorithm that solves
the problem ?

05/01/12 INSA Lyon 36

Speedup
Sn = T1 / Tn

Efficiency
En = T1 / (n * Tn)

Tn: execution time on n nodes
[Eager 1989]

« An algorithm is an effective method
expressed as a finite list of well-
defined instructions for calculating
a function. […] In simple words an
algorithm is a step-by-step procedure
for calculations. » [wikipedia/AL]

05/01/12 INSA Lyon

DC : Algorithm ?

37

« A distributed algorithm is an algorithm designed to run on
computer hardware constructed from interconnected
processors » [wikipedia/DA]

05/01/12 INSA Lyon

DC : Distributed Algorithm ?

Paxos Consensus Protocol [Lamport 1998]

38

DC : Byzantine Generals Problem

All problems comes from … interconnected processors,
truly ?
« Two armies, each led by a general, are preparing to attack a fortified city.
The armies are encamped near the city, each on its own hill. A valley
separates the two hills, and the only way for the two generals to
communicate is by sending messengers through the valley. Unfortunately,
the valley is occupied by the city's defenders and there's a chance that any
given messenger sent through the valley will be captured. Note that while the
two generals have agreed that they will attack, they haven't agreed upon a
time for attack before taking up their positions on their respective hills. »

05/01/12 INSA Lyon 39

DC : Byzantine Generals Problem

05/01/12 INSA Lyon 40

Attack ! Attack !

OK

DC : Byzantine Generals Problem

05/01/12 INSA Lyon 41

Attack !

FAIL!

DC : Byzantine Generals Problem

05/01/12 INSA Lyon 42

Let’s attack at 3pm ?

FAIL!
?

DC : Byzantine Generals Problem

05/01/12 INSA Lyon 43

Let’s attack at 3pm ?

FAIL!

ok

?

No solution to the problem [Akkoyunlu 1975]
and can even be more complex: n generals, traitors, etc.

Solution to generate BFT protocols [Guerraoui 2010]

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Synchronizers
–  Logical Clock
–  Clock Synchronization

–  Atomic commit
–  Replication

05/01/12 INSA Lyon 44

Time is also a data !

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Mutual exclusion
–  Graph colouring

•  Decision-making
–  Leader election
–  Consensus

05/01/12 INSA Lyon 45

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Synchronizers

–  « A Synchronizer is an algorithm that can be used
to run a synchronous algorithm on top of
asynchronous processor network » [Awerbuch
1985]

•  Alpha/Beta/Gamma synchronizer

05/01/12 INSA Lyon 46

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Synchronizer : Alpha Synchronizer

–  In round r, the synchronizer at p sends p's
message (tagged with the round number) to each
neighbor p' or no-msg(r) if it has no messages.
When it collects a message or no-msg from each
neighbor for round r, it delivers all the messages.

– Allow to model simplified “ideal network”
05/01/12 INSA Lyon 47

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Logical Clock is a mechanism for capturing

chronological and causal relationships in a
distributed system

•  Lamport timestamps
•  Vector clocks
•  Version vectors
•  Matrix clocks

05/01/12 INSA Lyon 48

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Logical Clock: Lamport timestamps [Lamport 1978]

–  A process increments its counter before each event in that
process;

–  When a process sends a message, it includes its counter value
with the message;

–  On receiving a message, the receiver process sets its counter to
be greater than the maximum of its own value and the received
value before it considers the message received.

05/01/12 INSA Lyon 49

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Logical Clock: Lamport timestamps [Lamport 1978]

	

05/01/12 INSA Lyon 50

DC : Classic
Distributed Algorithms

•  Data validation è Probability
–  Clock Synchronization: Internal clocks of different

computers differs because of the clock drift

•  Trivial algorithms in a centralized approach [Cristian
1989] [Gusella 1989] :
–  P requests the time from S
–  After receiving the request from P, S prepares a response and

appends the time T from its own clock
–  P then sets its time to be T + RTT/2

05/01/12 INSA Lyon 51

DC : Classic
Distributed Algorithms

•  Data validation è Probability
–  Clock Synchronization: Internal clocks of different

computers differs because of the clock drift

•  In a distributed network, Marzullo's algorithm [Marzullo
1984] is an agreement algorithm used to select sources
for estimating accurate time from a number of noisy time
sources
–  A refined version, “the intersection algorithm” is used in NTP

[Mills 2006]

05/01/12 INSA Lyon 52

DC : Classic
Distributed Algorithms

•  Data validation è Probability
–  Clock Synchronization: intersection algorithm

05/01/12 INSA Lyon 53

[wikipedia/MA]

DC : Classic
Distributed Algorithms

•  Data validation è Probability
–  Clock Synchronization: intersection algorithm

05/01/12 INSA Lyon 54

[wikipedia/MA]

DC : Classic
Distributed Algorithms

•  Data validation è Probability
–  Clock Synchronization: intersection algorithm

05/01/12 INSA Lyon 55

[wikipedia/MA]

DC : Classic
Distributed Algorithms

•  Data validation è Probability
–  Clock Synchronization: depending on network topology

•  CS-MNS: Clock Sampling Mutual Network Synchronization is
suitable for distributed and mobile applications [Rentel 2005]

•  Reference broadcast synchronization is often used in wireless
networks and sensor networks. An initiator broadcasts a
reference message to urge the receivers to adjust their clocks
[Ganeriwal 2003] [Maroti 2004]

•  PTP: Precision Time Protocol is used in measurement and
control systems in local area networks and can achieve sub-
microsecond accuracy [IEEE 1588]

05/01/12 INSA Lyon 56

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Atomic commit

–  An atomic commit is an operation where a set of
distinct changes is applied as a single operation. If
the atomic commit succeeds, it means that all the
changes have been applied. If there is a failure
before the atomic commit can be completed, the
"commit" is aborted and no changes will be
applied.

05/01/12 INSA Lyon 57

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Atomic commit : two-phase algorithm

•  The coordinator sends a query to commit message to all cohorts
and waits until it has received a reply from all cohorts.

•  The cohorts execute the transaction up to the point where they
will be asked to commit. They each write an entry to their undo
log and an entry to their redo log

•  Each cohort replies with an agreement message (cohort votes
Yes to commit), if the cohort's actions succeeded, or an abort
message (cohort votes No, not to commit), if the cohort
experiences a failure that will make it impossible to commit.

05/01/12 INSA Lyon 58

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Two-phase algorithm

–  Pb: blocking algo
A single node will continue to
Wait even if all other sites have
failed
If the coordinator fails permanently,
some cohorts will never resolve
their transactions

05/01/12 INSA Lyon 59

DC : Classic
Distributed Algorithms

•  Three-phase
algorithm
[Skeen 1983]

05/01/12 INSA Lyon 60

[wikipedia]

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication :

« Replication is the process of sharing information so as to ensure
consistency between redundant resources, such as software or
hardware components, to improve reliability, fault-tolerance, or
accessibility. It could be data replication if the same data is stored
on multiple storage devices, or computation replication if the same
computing task is executed many times. A computational task is
typically replicated in space, i.e. executed on separate devices, or it
could be replicated in time, if it is executed repeatedly on a single
device. » [wikipedia/R]

05/01/12 INSA Lyon 61

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication : two kinds

–  Active replication : each request is executed on
each replica and each of these modifications are
transferred to all replica

–  Passive replication : each request is executed on
a single replica and this modification is transferred
to all replica (master-slave)

05/01/12 INSA Lyon 62

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication : three algorithms models

–  Transactional replication (active/passive) :
transactions on replicated data in accordance with
ACID properties (atomicity, consistency, isolation, durability)

–  (slow, on copy-guaranty)

05/01/12 INSA Lyon 63

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication : three algorithms models

–  State machine replication (active) : deterministic finite
state machine, atomic broadcast, distributed
consensus

–  (mid-fast)

05/01/12 INSA Lyon 64

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication : three algorithms models
–  State machine replication (active)

05/01/12 INSA Lyon 65

Paxos Consensus
Protocol [Lamport
1998]

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication : three algorithms models
–  Virtual synchrony (active/passive) : process group,

checkpoint, multicast

–  (fastest, less rigourous)

05/01/12 INSA Lyon 66

DC : Classic
Distributed Algorithms

•  Data validation è Order
–  Replication : three algorithms models
–  Virtual synchrony (active/passive)
–  Virtual synchrony (active/passive)

05/01/12 INSA Lyon 67

[Défago 2004] 	

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Mutual exclusion
–  Graph colouring

•  Decision-making
–  Leader election
–  Consensus

05/01/12 INSA Lyon 68

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Mutual exclusion (Mutex) : algorithm to avoid

simultaneous use of a common resource. This piece
of code in which a process access a common
resource is called a critical section.

–  Multiple use : locks, reentrant mutexes, semaphores,
monitors, message passing, tuple space

05/01/12 INSA Lyon 69

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Mutual exclusion (Mutex) : different algorithms [Raynal

1986]

–  Dekker's algorithm
–  Peterson's algorithm
–  Lamport's bakery algorithm
–  Szymanski's algorithm

05/01/12 INSA Lyon 70

DC : Classic
Distributed Algorithms

•  Resource
allocation
–  Mutual exclusion

(Mutex) : different
algorithms

–  Dekker's algorithm
in 1965 [E.W.
Dijkstra 2009]

05/01/12 INSA Lyon 71

 flag[0] := false
 flag[1] := false
 turn := 0 // or 1

 flag[0] := true
 while flag[1] = true {
 if turn ≠ 0 {
 flag[0] := false
 while turn ≠ 0 {}
 flag[0] := true
 }
 }
 // critical section
 ...
 turn := 1
 flag[0] := false

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Graph colouring :

« Graph coloring is a special case of graph labeling; it is
an assignment of labels traditionally called "colors" to
elements of a graph subject to certain constraints. In its
simplest form, it is a way of coloring the vertices of a
graph such that no two adjacent vertices share the same
color; this is called a vertex coloring. » [wikipedia/GC]

05/01/12 INSA Lyon 72

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Graph colouring :

–  Multiple use : scheduling,
bandwidth allocation, compilation
register allocation, pattern
matching, Sudoku J (9-coloring on
given specific graph with 81 vertices)

05/01/12 INSA Lyon 73

DC : Classic
Distributed Algorithms

•  Resource allocation
–  Graph colouring : Multi-trials technique allows to break

symmetry efficiently [Schneider 2010] : randomized
fastest algorithm that employs more attempts with
every message exchange

–  Idea : In classical algorithms, every uncolored node
randomly picks an available color and keeps it if no
neighbor (concurrently) chooses the same color. For
the multi-trials technique, a node gradually increases
the number of chosen colors in every communication
rounds.

05/01/12 INSA Lyon 74

DC : Classic
Distributed Algorithms

•  Decision-making
–  Leader election

« Leader election is the process of designating a
single process as the organizer of some task
distributed among several computers
(nodes). » [wikipedia/LE]

05/01/12 INSA Lyon 75

DC : Classic
Distributed Algorithms

•  Decision-making
–  Leader election : different algorithms [Korach

1990]

–  Bully algorithm : higher process ID
–  Chang and Roberts algorithm : UID, token ring
–  Gallager, Humblet, and Spira algorithm
–  Voting System

05/01/12 INSA Lyon 76

DC : Classic
Distributed Algorithms

•  Decision-making
–  Leader election : Gallager, Humblet, and Spira

algorithm [Galager 1983] : « Distributed Algorithm
for Minimum-Weight Spanning Trees »

05/01/12 INSA Lyon 77

A minimum spanning tree (MST) or
minimum weight spanning tree is
then a spanning tree with weight
less than or equal to the weight of
every other spanning tree

DC : Classic
Distributed Algorithms

•  Decision-making
–  Consensus

“Consensus is the problem of task of group
agreement in the presence of faults.”

Consensus has been shown to be impossible to
solve in several models of distributed computing
[Fischer 1985] [Loui 1987]

05/01/12 INSA Lyon 78

DC : Classic
Distributed Algorithms

•  Decision-making
–  Consensus : different algorithms

–  Randomized consensus algorithm [Aspnes 1990]
–  Chandra–Toueg consensus algorithm [Chandra

1996]
–  Paxos consensus algorithms family [wikipedia/

Paxos]

05/01/12 INSA Lyon 79

DC : Classic
Distributed Algorithms

•  Decision-making
–  Consensus: Paxos Consensus Protocol [Lamport

1998]

05/01/12 INSA Lyon 80

DC : Classic
Distributed Algorithms

•  Decision-making
–  Consensus: Paxos Consensus Protocol [Lamport

1998]

–  Quorums: Quorums express the safety properties of Paxos by
ensuring at least some surviving processor retains knowledge of
the results.

05/01/12 INSA Lyon 81

DC : Classic
Distributed Algorithms

•  Decision-making
–  Consensus: Paxos Consensus Protocol [Lamport

1998]

–  Quorums: Typically, a Quorum is any majority of participating
Acceptors. For example, given the set of Acceptors {A,B,C,D}, a
majority Quorum would be any three Acceptors: {A,B,C}, {A,C,D},
{A,B,D}, {B,C,D}. More generally, arbitrary positive weights can
be assigned to Acceptors and a Quorum defined as any subset
of Acceptors with the summary weight greater than half of the
total weight of all Acceptors.

05/01/12 INSA Lyon 82

DC : Classic
Distributed Algorithms

•  Decision-making
–  Consensus: Paxos algorithms family

– … according to conditions : different kind of failures of
(participants: acceptors, etc.), multi-Paxos, cheap
Paxos, fast-Paxos (conflicting or not), BFT-Paxos,
virtual-Paxos, etc.

05/01/12 INSA Lyon 83

DC Principles : Outline

•  Introduction
–  What is Distributed Computing ?
–  Why distributing ?
–  What are the problems in distributing ?

•  From theory …
–  Distributed Algorithms: Byzantine problem

•  Synchronizers, Logical clocks, etc.
•  Graph colouring, Mutual exclusion, Consensus, Self-

stabilization, etc.

–  Complexity
05/01/12 INSA Lyon 84

DC Complexity

•  5 aspects of distributed computing system
complexity [Ranganathan 2007] :
–  Task-Structure Complexity,
–  Unpredictability,
–  Size Complexity,
–  Chaotic Complexity
–  and Algorithmic Complexity

05/01/12 INSA Lyon 85

DC Complexity

•  Task-Structure Complexity
–  Cyclomatic complexity (CC) is:

CC = E - N + p
where E = the number of edges of the task graph
N = the number of nodes of the task graph
p = the number of connected components

05/01/12 INSA Lyon 86

DC Complexity

•  Task-Structure Complexity
–  Cyclomatic complexity (CC) mesures the decision

points

05/01/12 INSA Lyon 87

CC=9-9+1=1 CC=24-20+1=5

DC Complexity

•  Unpredictability
–  Entropy H of the system

–  Higher the entropy of the system, the more difficult
to predict

–  k different states with probabilities p1, p2, etc
–  log2(1/pi) the surprisal factor

05/01/12 INSA Lyon 88

DC Complexity

•  Size Complexity
–  Traditionally, the size of a distributed system is measured by

the number of nodes, devices, services, applications or other
components.

–  In addition, a distributed system may have high cognitive
complexity if users need to be aware of a large number of
concepts in order to use the system. A concept is any logical
item of knowledge defined or used by the system. A concept
includes abstract notions like file-types, security policies,
context information, device characteristics and QoS
parameters. A large number of concepts contributes to
greater difficulty in understanding the system as a whole.

05/01/12 INSA Lyon 89

DC Complexity

•  Chaotic Complexity
•  Chaotic Complexity refers to the property of

systems by which small variations in a certain part
of the system can have large effects on overall
system behaviour.

•  Chaotic complexity makes it difficult to understand
systems. It often results from a lack of modular
design and from a number of inter-dependencies
between different parts of the distributed system.

05/01/12 INSA Lyon 90

DC Complexity

•  Chaotic Complexity
•  An important factor contributing to chaotic

complexity is coupling between different
components.

–  Components are data coupled if they pass data through
scalar or array parameters.

–  Components are control coupled if one passes a value that
is used to control the internal logic of the other.

–  Components are common coupled if they refer to the same
global data.

–  Components are content coupled if they access and change
each other's internal data state or procedural state.

05/01/12 INSA Lyon 91

DC Complexity

•  Chaotic Complexity : measuring coupling
between components is fan in - fan out
complexity
–  Count of the number of data flows into and out of a

component plus the number of global data
structures that the component updates.

Complexity = Length * (Fan-in * Fan-out)2
Length is any measure of length such as lines of
code.

05/01/12 INSA Lyon 92

DC Complexity

•  Cognitive Algorithmic Complexity : Halstead’s
measures [Halstead 1977]

n1 = the number of distinct operators
n2 = the number of distinct operands
N1 = the total number of operators
N2 = the total number of operands

05/01/12 INSA Lyon 93

DC Complexity

•  Cognitive Algorithmic Complexity : Halstead’s
measures [Halstead 1977]

Program length (N) = N1 + N2
Program vocabulary (n) = n1 + n2
Program Volume (V) = N * (log2 n) . The program
volume measures the information content of a program
or the size of implementation of an algorithm.

05/01/12 INSA Lyon 94

DC Complexity

•  Cognitive Algorithmic Complexity : Halstead’s
measures [Halstead 1977]

Difficulty (D) = (n1/2) * (N2/n2) . The difficulty of a
program is also related to the error-proneness of the
program.
Effort (E) = D * V . The effort to implement or
understand a program is proportional to the volume and
to the difficulty level of the program.

05/01/12 INSA Lyon 95

DC Complexity

•  Algorithmic Complexity
–  The traditional definition of the complexity of an

algorithm is in terms of its time and space
requirements or its relation to Turing machines or
universal computers

–  A simple example is the use of an O(n2) algorithm
for sorting (like insertion-sort or bubble-sort) as
opposed to an O(n.log n) algorithm (like quick-
sort).

05/01/12 INSA Lyon 96

DC Complexity

•  Algorithmic Complexity
–  The traditional definition of the complexity of an

algorithm is in terms of its time and space
requirements or its relation to Turing machines or
universal computers

–  A simple example is the use of an O(n2) algorithm
for sorting (like insertion-sort or bubble-sort) as
opposed to an O(n.log n) algorithm (like quick-
sort).

05/01/12 INSA Lyon 97

DC Complexity

•  Algorithmic Complexity
–  In distributed algorithms, another resource in

addition to time and space is the number of
computers

–  More attention is usually paid on communication
operations than computational steps

05/01/12 INSA Lyon 98

DC Complexity

•  Algorithmic Complexity
–  The complexity measure is closely related to the

diameter D of the network
–  « longest shortest path »

05/01/12 INSA Lyon 99

D=3 D=4 D=5 D=7

DC Complexity

•  Algorithmic Complexity
–  Diameter D of a graph : a graph's diameter is the largest

number of vertices which must be traversed in order to travel
from one vertex to another when paths which backtrack,
detour, or loop are excluded from consideration

05/01/12 INSA Lyon 100

D=3 D=4 D=5 D=7

DC Complexity

•  Algorithmic Complexity
–  The complexity measure is closely related to the

diameter D of the network

–  Any computable problem can be solved trivially in
a synchronous distributed system in approximately
2D communication rounds: simply gather all
information in one location (D rounds), solve the
problem, and inform each node about the solution
(D rounds).

05/01/12 INSA Lyon 101

DC Complexity

•  Algorithmic Complexity
–  The complexity measure is closely related to the

diameter D of the network
–  Goal : if the running time of the algorithm is much

smaller than D communication rounds, then the
nodes in the network must produce their output
without having the possibility to obtain information
about distant parts of the network. In other words,
the nodes must make globally consistent decisions
based on information that is available in their local
neighbourhood.

05/01/12 INSA Lyon 102

DC Principles : Outline

•  … to practice

–  Architectures
–  Message Passing
–  Message-Oriented Middleware (MOM)

05/01/12 INSA Lyon 103

DC Principles : Outline

•  … to practice

–  Architectures
–  Message Passing
–  Message-Oriented Middleware

•  .. in the field of
–  Pervasive Computing è Frédéric Le Mouël
–  Cloud Computing è Julien Ponge
–  Grid Computing è Yves Caniou

05/01/12 INSA Lyon 104

Bibliography
[Andrews 2000] Andrews, Gregory R. (2000), Foundations of Multithreaded, Parallel, and
Distributed Programming, Addison–Wesley, ISBN 0-201-35752-6
[Awerbuch 1985] Baruch Awerbuch (1985), Complexity of Network Synchronization, Journal of
the ACM, vol 32, n 4, p 804-823
[Eager 1989] Eager, D.L.; Zahorjan, J.; Lazowska, E.D. (1989), "Speedup versus efficiency in
parallel systems", Computers, IEEE Transactions on , vol.38, no.3, pp.408-423, March, doi:
10.1109/12.21127
[Ghosh 2007] Ghosh, Sukumar (2007), Distributed Systems – An Algorithmic Approach,
Chapman & Hall/CRC, ISBN 978-1-58488-564-1
[Hayashibara 2002] Naohiro Hayashibara, Adel Cherif, Takuya Katayama (2002), "Failure
Detectors for Large-Scale Distributed Systems" , 21st IEEE Symposium on Reliable Distributed
Systems (SRDS'02), p 404
[Lamport 1998] Lamport, L. (1998). « The Part-time Parliament ». ACM Transactions on
Computer Systems, 16(2):133-169. First appeared as DEC-SRC Research Report 49, 1989
[wikipedia/AL] Algorithm, http://en.wikipedia.org/wiki/Algorithm
[wikipedia/DA] Distributed Algorithm, http://en.wikipedia.org/wiki/Distributed_algorithm
[wikipedia/CP] Computer Programming, http://en.wikipedia.org/wiki/Computer_programming
[wikipedia/DC] Distributed Computing, http://en.wikipedia.org/wiki/Distributed_computing

05/01/12 INSA Lyon 105

Bibliography
[Cristian 1989] Cristian, F. (1989), “Probabilistic clock synchronization”, Distributed Computing
3(3):146-158.
[Gusella 1989] Gusella, R.; Zatti, S. (1989), "The accuracy of the clock synchronization achieved
by TEMPO in Berkeley UNIX 4.3BSD", Software Engineering, IEEE Transactions on (IEEE) 15
(7): 847–853
[Ganeriwal 2003] Ganeriwal, S., Kumar, R., Srivastava, M. (2003). "Timing-Sync Protocol for
Sensor Networks.", The First ACM Conference on Embedded Networked Sensor Systems
(SenSys), p. 138-149
[Maroti 2004] Maroti, M., Kusy, B., Simon, G., Ledeczi, A. "The Flooding Synchronization
Protocol.", Proc. Of the Second ACM Conference on Embedded Networked Sensor Systems
(SenSys). 	

[Marzullo 1984] K. A. Marzullo. Maintaining the Time in a Distributed System: An Example of a
Loosely-Coupled Distributed Service. Ph.D. dissertation, Stanford University, Department of
Electrical Engineering, February 1984.
[Mills 2006] Mills, David L.. Computer Network Time Synchronization: The Network Time
Protocol. Taylor & Francis / CRC Press. ISBN 0849358051
[Raynal 1986] Michel Raynal: Algorithms for Mutual Exclusion, MIT Press, ISBN 0-262-18119-3

05/01/12 INSA Lyon 106

Bibliography
[Akkoyunlu 1975] E. A. Akkoyunlu K. Ekanadham, R. V. Huber, Some constraints and tradeoffs
in the design of network communications, Proceedings of the fifth ACM symposium on
Operating systems principles SOSP’75
[Défago 2004] Défago, X., Schiper, A., and Urbán, P. 2004. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv. 36, 4 (Dec. 2004)
[IEEE 1588] "IEEE 1588 Systems". National Institute of Standards and Technology (NIST)
[Lamport 1978] Lamport, L. (1978). "Time, clocks, and the ordering of events in a distributed
system » Communications of the ACM 21 (7): 558–565
[Rentel 2005] Rentel, C.; Kunz, T. (March 2005), A clock-sampling mutual network time-
synchronization algorithm for wireless ad hoc networks, "A clock-sampling mutual network
synchronization algorithm for wireless ad hoc networks", IEEE Wireless Communications and
Networking Conference (IEEE Press) 1: 638–644, doi:10.1109/WCNC.2005.1424575
ISBN 0-7803-8966-2
[Skeen 1983] Skeen, Dale; Stonebraker, M. (May 1983). "A Formal Model of Crash Recovery in
a Distributed System". IEEE Transactions on Software Engineering 9 (3): 219–228. doi:10.1109/
TSE.1983.236608
[wikipedia/MA] Marzullo’s Algorithm - http://en.wikipedia.org/wiki/Marzullo%27s_algorithm
[wikipedia/R] Replication - http://en.wikipedia.org/wiki/Replication_(computer_science)

05/01/12 INSA Lyon 107

Bibliography
[Chandra 1996] Chandra and Toueg. Unreliable failure detectors for reliable distributed systems.
JACM 43(2):225–267, 1996.
[E.W. Dijkstra 2009] Cooperating Sequential Processes, manuscript, 1965, retrieved in 2009
[Schneider 2010] Schneider, J. (2010), "A new technique for distributed symmetry breaking",
Proceedings of the Symposium on Principles of Distributed Computing (SOSP)
[Galager 1983] R. G. Gallager, P. A. Humblet, and P. M. Spira (January 1983). "A Distributed
Algorithm for Minimum-Weight Spanning Trees". ACM Transactions on Programming
Languages and Systems 5 (1): 66–77.
[Korach 1990] Ephraim Korach, Shay Kutten, Shlomo Moran (1990). "A Modular Technique for
the Design of Efficient Distributed Leader Finding Algorithms". ACM Transactions on
Programming Languages and Systems 12 (1): 84–101.
[Aspnes 1990] James Aspnes. Time- and space-efficient randomized consensus. Journal of
Algorithms 14(3):414–431, May 1993. An earlier version appeared in Ninth ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, August 1990, pp. 325–331.
[wikipedia/GC] Graph coloring - http://en.wikipedia.org/wiki/Graph_coloring
[wikipedia/LE] Leader election - http://en.wikipedia.org/wiki/Leader_election

05/01/12 INSA Lyon 108

Bibliography
[Fischer 1985] Fischer, Michael J. ; Nancy A. Lynch; Michael S. Paterson (April 1985).
« Impossibility of Distributed Consensus with One Faulty Process » Journal of the ACM 32 (2):
374–382
[Guerraoui 2010] Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, Marko Vukolic: The next
700 BFT protocols. EuroSys 2010: 363-376
[Loui 1987] Loui, M. C.; Abu-Amara, H. H. (1987). "Memory requirements for agreement among
unreliable asynchronous processes". In Preparata, F. P.. Advances in Computing Research. 4.
Greenwich, Connecticut: JAI Press. pp. 163–183.
[Halstead 1977] Halstead, M. Elements of Software Science, Operating, and Programming
Systems Series Volume 7, Elsevier, 1977.
[Ranganathan 2007] Anand Ranganathan, Roy H. Campbell « What is the complexity of a
distributed computing system? » Complexity, Vol. 12, No. 6. (2007)
[wikipedia/Paxos] Paxos Algorithm - http://en.wikipedia.org/wiki/Paxos_algorithm

05/01/12 INSA Lyon 109

