
Distributed Computing: From
Principles to Pervasive Systems

Frédéric Le Mouël

Who am I ? – FLM

  Frédéric Le Mouël (frederic.le-mouel@insa-lyon.fr)
–  Associate Professor – INSA Lyon
–  Researcher – INRIA Rhône Alpes
–  http://perso.citi.insa-lyon.fr/flemouel/ @flemouel

  Research at CITI Laboratory / INRIA Amazones Team
–  Middleware, Component- and Service-Oriented Programming and

Architectures, Pervasive Systems, Ambient Intelligence, Adaptation

  Teaching at Telecommunication Department
–  Modeling and Software Engineering, Middleware, Object-Oriented

Programming, Java, Dynamic Web, Pervasive Systems

How to succeed in this lecture ?

  No mystery: Reading !
– Two books
– ~5-10 reference publications

  To acquire
– Background
– Critical sense

First part: Definitions and Concepts

Pervasive ≠ Peer-to-Peer ?

  Different application domains

  Common aspect:
– Both are Highly Dynamic Systems
– Devices, Data, Applications appearance/removal
– Distance is different

•  Pervasive Systems ð Proximity
•  Peer-to-Peer Systems ð Large-scale

How to build such systems ?

  Common goal:
– Building an application respecting user’s needs

and adapted and adapting to these highly
changing environments

ðWhich are the base blocks on such development
and runtime lifecycle ?

Middleware

(examples:
Models,

Dev Toolkits,
Architecture,
Simulators,

etc)

Lifecycle

User’s needs

Application

(examples:
Information
Systems,
Location
Systems,

etc.)

Hardware

(examples:
Devices:

PDA, mobile
phones,

laptops, etc
Networks:

802.11*, etc)

 Pervasive or P2P Dynamism

Development

Deployment
Runtime

Specific Specific Generic
(reusable)

Middleware

Middleware

Model

Architecture

Toolkit Framework

Application Hardware

Design Development Runtime

Middleware

  Model, Architecture, Framework and Toolkit
concepts
– Transversal concepts (not only linked to

middleware)

ðDetailed in this lecture in terms of
middleware for Distributed and Pervasive
Systems

Definition: Framework

  “A software framework is a reusable design for a
software system (or subsystem). This is expressed
as a set of abstract classes and the way their
instances collaborate for a specific type of
software.” [Johnson 1988]

  “A framework is a set of cooperating classes that
make up a reusable design for a specific class of
software.” [Gamma 1995]

  Classes ð System base blocks
  Specific class of software ð Skeleton of application

family

Definition: Toolkit

  “A toolkit is a set of related and reusable
classes designed to provide useful, general-
purpose functionality. An example of a toolkit
is a set of collection classes for lists,
associate tables, stacks and the
like.” [Gamma 1995]

  Lists, etc ð Implementation of base blocks

Definition: Model

  “Metamodeling is the construction of a collection of
"concepts" (things, terms, etc.) within a certain
domain. A model is an abstraction of phenomena in
the real world, and a metamodel is yet another
abstraction, highlighting properties of the model
itself.” [Wikipedia, OMG 2001, Schmidt 2006]

  Abstraction ð Characteristics of the system
  Phenomena ð Behavior of the system
  Properties ð Deterministic behavior, guarantees ?

Definition: Architecture

  “The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships between them.” [Len 2003]

Summary

Application

Application Family
Framework

Business
Code

Predefined
Code Toolkit

Architecture

Component
Service, etc.

Model

Next step

  Frameworks, toolkits, architectures, models
for:
– Pervasive systems
– Peer-to-peer systems

Bibliography
  Johnson, R. E. and B. Foote (1988). “Designing reusable classes”.

Journal of object-oriented programming 1(2): 22-35
  Pree, W. (1994). “Meta patterns - a means for capturing the essentials of

reusable object-oriented design”. in M. Tokoro and R. Pareschi (eds),
Springer-Verlag, proceedings of the ECOOP, Bologna, Italy: 150-162

  Gamma, E.; Helm, R.; Johnson, R. and Vlissides, J. (1995). “Design
Patterns”. Addison Wesley Professional Computing Series.

  OMG (2001). “Model Driven Architecture (MDA) document”. Architecture
Board ORMSC.

  Len, B.;Clements, P.; Kazman, R. (2003). “Software Architecture In
Practice, Second Edition”. Boston: Addison-Wesley, p. 21-24.

  Schmidt, D.C. (2006). “Model-Driven Engineering”. IEEE Computer 39
(2).

Pervasive Systems

Introduction

New vision
for Information Technologies

  Working Environment
– Before: a virtual environment where you log in,

execute applications and then log out
– Now: a physical environment where you are

always connected to execute tasks

Before:
Room full with a computer

Electronic
Numerical
Integrator

and Computer
(ENIAC)

1946

© Computer Science History

Now: Room with
several visible devices

Access Control
 Firewall

Home Gateway

Internet

Wired backbone
For example Ethernet

Home Control

Wireless infrastructure
For example WLAN

Personal network
For example Bluetooth

Home control network
For example Powerline

Tomorrow: Everyday life
full of invisible appliances

Motivation

  Today
– Computers
–  Internet wired connection

  Tomorrow
– Every object will be smart (Embedded

processors + memory)
– Wireless connection (802.11*, Bluetooth, etc. +

Internet New Generation, IPv6)

Pervasive Environments

  [M. Weiser, 1991]
– « A new way of thinking about computers in the

world, one that takes into account the natural
human environment and allows the computers
themselves to vanish in the background »

– « The most profound technologies are those that
disappear . They weave themselves into the
fabric of everyday life until they are
indistinguishable from it »

Pervasive Environments

  [M. Satyanarayanan, 2001]
– « One saturated with computing and

communication capability, yet so gracefully
integrated with users that it becomes ‘a
technology that disappears’ »

Pervasive Environments

  [NIST, 2001]
– « Pervasive computing is a term for the strongly

emerging trend toward: numerous, casually
accessible, often invisible computing devices,
frequently mobile or embedded in the
environment, connected to an increasingly
ubiquitous network infrastructure, composed of a
wired core and wireless edges »

Pervasive Sub-topics

  Interconnection of 3 technological domains:
– Smart Interfaces
– Pervasive Devices, Embedded Systems
– Ubiquitous Communication, Connectivity

Smart Interfaces

Ubiquitous
Communication

Pervasive Devices
Embedded Systems

Distributed
System

Mobility
Management

Ubiquitous
Management Mobile System

Pervasive System

Context
Management

System view
of a Pervasive System

  Adapted from [Saha & Mukherjee, 2003]

© [Laforest]

Definitions

  Ubiquitous
–  Accessible from everywhere

  Mobile
–  Which integrates mobile devices

  Context-awareness
–  Which takes into account the execution environment

  Pervasive
–  Which associates ubiquitous, mobility and context-

awareness

Pervasive System Properties

  Scalability
  Invisibility
  Context-awareness
  Smartness
  Pro-action

Scalability

  Management of a great amount of
–  Devices
–  Applications
–  Users

  Performance

Ø  Development of systems, middlewares, models,
applications that are independent and can resist to
a high number of devices, users, etc.

Example: Web Server scalable ?

Invisibility

  Transparency for human beings
  Minimal intervention of human beings

Ø  Adaptation to environment changes
Ø  Self-learning

  Example: auto-configuration of gateway

Context-awareness

  Virtual representation of the physical environment
  Perception of changes of the environment

Ø  Environment model
Ø  Environment monitoring

  Examples :
–  User Profile, Application Meta-data, Self-descriptive

Devices
–  Temperature, Location Sensors

Smartness

  Smart = showing mental alertness and calculation
and resourcefulness [wordreference.com, Merriam-Webster,
dictionary.com]

  “Intelligent” use of perceived changes

Ø  Reaction and/or anticipation model (rules, etc.)
Ø  Inference motor

  Example: Smart House - Power reduction by switch
on/off the lights

Pro-action

  Ability to interact, “disturb” the user in order to suggest a
better action

!  To balance with invisibility !

Ø  Context, environment evaluation
Ø  Several contexts (past, current, future)
Ø  Disturbance model to evaluate the cost/gain between

Invisibility/Pro-action

  Example: Information filtering/classification -> Spam

Bibliographie

  M. Weiser « The computer for the twenty-first century », Scientific
American, sept 1991:94-104

  M. Satyanarayanan « Pervasive computing : Visions and challenges »,
IEEE Personal Communications, aug. 2001:10-17

  National Institute of Standards and Technology « Pervasive Computing
Program », Pervasive Computing 2001

  D. Saha & A. Mukherjee « Pervasive computing : a paradigm for the
21st century », IEEE Computer journal, march 2003:25-31

  F. Mattern. « Ubiquitous & Pervasive Computing: A Technology-driven
Motivation », Summer school on ubiquitous and pervasive computing,
2002

  F. Laforest « Cours Systèmes d’Information Pervasifs », Master Mastria,
INSA de Lyon, 2007

Pervasive Systems

Middleware

Middleware

Middleware
Application’s
Constraints

Hardware’s
Constraints

User’s
Constraints

Environment’s
Constraints

Offers

Demands

Hardware’s constraints

  Autonomy ï Battery
  Limited resources (CPU, memory, screen,

etc.)
– Power ó/ Battery, energy dissipation
– Capacity ï Weight, size

  Low impact robustness ï Weight, size
  Low security confidence ï Easy access, lost

Environment’s constraints

  Mobility / Nomadism
– Transmission signal

•  Connections / disconnections
•  Variable signal strength

ð Interferences, cells scope
– Services availability

•  Different quality of service

ð Devices appearance / removal

User
and Application’s constraints

  User’s constraints
– User Profile
– QoS required

  Application’s constraints
– Power demand
– Storage demand

Distributed
System

Mobility
Management

Ubiquitous
Management Mobile System

Pervasive System

Context
Management

System view
of a Pervasive System

Coda

•  File system
–  Hoarding mode (connected)

•  Loading
•  Prefetching

–  Emulating (disconnected)
•  Local work
•  Logs

–  Write disconnected (weak
connection)

•  Loading
•  Reconciliation

Distributed
System

Mobility
Management

Ubiquitous
Management Mobile System

Pervasive System

Context
Management

System view
of a Pervasive System

Definition

  [Salber,Dey,Abowd 99]
– « Environmental information or context covers

information that is part of an application’s
operating environment and that can be sensed
by the application. This typically includes the
location, identity, activity and state of people,
groups and objects. »

Context data

  4 axes
– User

•  Profile, preferences, location, etc.
– Application

•  Size, format, encoding, langue, versions, etc.

– Hardware
•  Screen size, resolution, color depth, memory, etc.

– Network
•  Bandwidth, signal strength, etc.

Context modeling

  3 approaches
– Attribute/Value
– CC/PP Extension
– Ontology

Attribute/Value Pairs

  Context = pairs (attribute, value)
–  User= Toto
–  Localisation = CITI

  Pairs are independent

+ Easy
- Consistency
- Poor semantic expressiveness

CC/PP Extensions

  Composite Capabilities / Preferences Profile (W3C)
–  Hardware and User
–  RDF file
–  Context = Extensions proposal

+ Standard
- Extensions =>
 Complex, hard to read

CC/PP example:
XML file

<?xml version="1.0"?>

<!-- Checked by SiRPAC 1.16, 18-Jan-2001 -->

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:ccpp="http://www.w3.org/2000/07/04-ccpp#">

 <rdf:Description rdf:about="HWDefault">

 <rdf:type rdf:resource="HardwarePlatform" />

 <display>320x200</display>

 <memory>16Mb</memory>

 </rdf:Description>

</rdf:RDF>

Ontology

  Model of
– Class
– Classes relationships
–  Instances

+ Semantically expressive
+ Large-scale environments
- Complex, ontology matching

Ontology example

  Exemple CoOL [Strang & al. 03]
<instance xmlns=http://demo.heywow.com/schema/cool
xmlns:a=http://demo.heywow.com/schema/aspects
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<contextInformation>
<entity system="urn:phonenumber">+49-179-1234567</entity>
<characterizedBy>
<aspect name="GaussKruegerCoordinate">
<observedState xsi:type="a:o2GaussKruegerType">367032533074</

observedState>
<units>10m</units>
</aspect>
<certaintyOfObserver>90</certaintyOfObserver>
</characterizedBy>
</contextInformation>
</instance>

Synthesis

+ - +
Ontology

- + +
CC/PP

- + -
Attribute /

Value

Conflict
Management

Easiness Expressiveness
and powerful

Distributed
System

Mobility
Management

Ubiquitous
Management Mobile System

Pervasive System

Context
Management

System view
of a Pervasive System

Ubiquitous Management

  Ways of accessing everything everywhere

  2 steps
– Discovery
– Communication/Dissemination

•  Data results
•  Software itself

Service Discovery Protocols

  Service search
– Where are the services ?
– Where to store this knowledge ?

Service Discovery Protocols

  2 implementation approaches
– Service registry: centralized
– Flooding: distributed

  Different search criteria
– Location
– Semantic
– Mobility

Service Registry

  Organized set of available services
  Set provided by a dedicated host

  Examples:
– SLP
– Jini
– Salutation

SLP registry: centralized data

  Service Location Protocol: Agent based
  Service Agent: the provided service
  Directory Agent

– Registers the SAs in a LDAP registry
– Multicast

  User Agent: the requester of the service
– Multicast request

Jini registry: centralized soft
  Sun Jini: Java based
  Service provider

–  Identity and group broadcast
–  Renew registering

  Jini registry:
–  Stores RMI interface, proxy to service provider
–  Leasing mechanism, limited lifetime storing

  Service requester
–  Lookup request, receives proxy and location
–  Direct RMI proxy use

Salutation registry:
neighbours decentralization

  Each host:
– Stored a subset of available services

  Service provider:
– Registers in local registry
– And in neighbours registries

  Service requester:
– Lookup in local registry
– Then broadcasts to neighbours registries

UPnP: flooding discovery

  Universal Plug and Play: Industrial
consortium

  Each host
– Available service list
– Zero conf (DHCP, autoIP, multicast DNS)
– Communication (point-to-point, streaming)
– Automatic discovery

•  Multicast: XML messages, Arrival ANNOUNCE,
Services available OPTIONS

Bluetooth registry:
geographic service location

  Each host: SDP server
– Stored local available services (service record:

services attributes, class with unique UUID)
  Service provider:

– Registers in local registry
  Service requester:

– UUID lookup
– Broadcast lookup for navigating into neighbours

registries

Multi-layers clusters: geographic
and semantic discovery

  Hosts grouping according to proximity
– Geographic: direct routing (single hop)
– Semantic: providing similar services

•  Ontology-based

Clusters niveau 1
Clusters niveau 2

Multi-layers clusters: geographic
and semantic discovery

  Service request:
– Lookup in the closest cluster

•  Level 1: direct access or same service
•  Level 2: 2 hops or same category service
•  Level 3, etc.

Mobile Services Lookup

  During use, services can move
– User mobility
– Load balancing

  3 accessing approaches
– Location server
– Poste restante
– Repeaters

Mobile service discovery:
location server

  Location server:
– Stores pairs (service/location)
– Each service warns the server of its location

changes
  Service requester:

– Asks the location server for the service location
– Directly accesses to the service

Mobile service discovery:
Poste restante

  Static proxy:
– As the same service interface
– Used as Poste restante for the service
– The Service periodically reads and answers its

messages
  Service requester:

– Asynchronous communication
– Send a message to the service
– Proxy interception

Mobile service discovery:
Repeaters

  Service provider:
– Generates a repeater on each host it is leaving
– A repeater knows the next location of the service
– A repeater forwards the messages to the next

service location
  Service requester:

– Sends its request to a service at its last known
location

  Several service moving: Repeaters chain

Distributed
System

Mobility
Management

Ubiquitous
Management Mobile System

Pervasive System

Context
Management

System view
of a Pervasive System

Adaptation
Management

M
iddlew

are
A

pplication

Adaptation Management

  Dynamic adaptation

  Adaptation can focus:
– The user interface (close to application)
– The data
– The Services

Data adaptation

  Data adaptation: modification of data to
respect the display rules of a target terminal

  Adaptation location:
– On the client (not for light-client)
– On the server (heavy-server)
– On a active proxy network (load balancing,

consistency to implement)

Adaptation
according to data type

  Text source
–  Format conversion (html -> txt, doc -> pdf…)
–  Summary
–  Traduction
–  Compressing/uncompressing
–  Vocal synthesis

  Image source
–  Format conversion (jpeg -> png)
–  Modifications of resolution, colours number, depth…
–  Compressing/uncompressing (e.g. semantic jpeg or raw

zip)

Adaptation
according to data type

  Audio source
–  Format conversion
–  Textual synthesis or vocal recognition
–  Compressing/uncompressing (e.g. semantic MP3 or raw

zip)

  Video source
–  Format conversion (resolution, nb images/sec)
–  Spatial Decomposition/recomposition (zoom…)
–  Compressing/uncompressing (e.g. semantic MPEG4 or

brute zip)

Content adaptation operators

  Coding (Wav->MP3)
  Format (HTML ->WML)
  Modality replacement (image by descriptive text)
  Selection (size selection of images)
  Integration (multi-servers data)

Documents adaptation by
WebServices

  [Berhe, Brunie 2004]
  WebServices-based adaptation architecture

– Local Proxies
– Content Proxies
– Content Servers
– Adaptation Service Proxies
– Adaptation Services Repository
– Profile Manager

Documents adaptation by
WebServices

  4 profile types:
–  Document

•  Physical meta-data (type, size, format…)
•  Storage meta-data (versions, repartition…)
•  Semantic meta-data (keywords…)

–  Client : user and terminal CC/PP
•  User : language, interests…
•  Terminal : hardware (screen size, memory...) and software (available,

versions,…)

–  Network
•  Latency, bandwidth …

–  Service
•  WSDL : adaptation type, media type, performance, cost...

Documents adaptation by
WebServices

  Local proxy
–  Receives user requests
–  Calculates the client profile
–  Sends the request to content proxy
–  Compares the answer profile with the client profile
–  Deduces an adaptation plan and applies it
–  Integrates adapted received data
–  Collaborates with other local proxies for cache

management

Documents adaptation by
WebServices

  Adaptation plan
–  Determines the adaptation constraints: attributes

conditions
–  Determines the adaptation operators needed
–  Selects an optimal adaptation strategy
–  Looks for adaptation services that can realize the needed

adaptation operators
–  Negotiates with the adaptation services (costs,

performances)
–  Uses selected adaptation services

Documents adaptation by
WebServices

  Notion of adaptation path
– Sequence of adaptation operators that verifies

the constraints
– The path can be balanced by costs,

performances…
  Notion of adaptation graph

– When several adaptations can be applied in
parallel on a subset of data (eg. image et meta-
data on images – DICOM format)

Bibliographic references -
Content adaptation

  E. Mory et al. Adaptation de contenu multimédia aux terminaux mobiles.
RTSI - ISI n° spécial systèmes d ’information pervasifs n°9, 2004,
Hermès: 39-60

  G. Berhe, L. Brunie, LIRIS Adaptation de contenus multimédia pour les
systèmes d ’information pervasifs RTSI - ISI n° spécial systèmes
d ’information pervasifs n°9, 2004, Hermès: 39-60

Services adaptation

  Services adaptation have generally 3 parts
[Cremene 04]:
– Modifiable part: the adaptable service
– Monitoring part: continuous evaluation of the

service and its context
– Control part: definition of reconfiguration orders,

according to the service logic

Adaptation
in reflexive systems

  Reflexivity
–  Ability of a system to represent itself, to monitor itself and

to act on itself
–  Meta level that describe the components of a system

  Introspection
–  System property allowing to know its internal state.

Allows to reason and take decision about itself

  Intercession
–  System property allowing to change its behaviour by

modifying its own functionality

Adaptation
in reflexive systems

  Adaptation targets
–  Entity (methods, objects, components, services…)
–  Link between entity (links between base entities and/or

between base and meta entities)
–  Set of entities

  Adaptation moment
–  Compilation : code generation according to meta-entity
–  Loading : alteration of compiled code or modification of

dependencies in a set of entities
–  Execution : dynamic access to the meta level, by using

proxy, or by the execution platform

RAM

  [Bouraqadi et al 01] Reflexion for Adaptable
Mobility

  Code mobility = non functional aspect, so at meta
level

  Cluster = unity of mobile code with:
–  A set of applicative objects
–  A meta interface for policies of the cluster (migration, …)
–  A table of instantiated bindings (references to other

clusters)
  Strong code mobility

DynamicTAO:
reflexive middleware

  [Kon et al. 2000] ORB reflexive based on
CORBA

  Set of Component Configurators
– A TAO Configurator maintains middleware

strategies (concurrency, scheduling…)
•  Component calls interception -> strategies
•  Dynamic component load of implementations (even

for strategies)

  Component dynamic reconfiguration

Dream : Dynamic REflective
Asynchronous Middleware

  [Leclerc et al. 2005] « component-based framework for
constructing, statically or dynamically, resource-aware,
configurable message-oriented middleware (MOM) ».

  Fractal extension (Java based)
–  Dynamic assembly of components

•  Primitive components
•  Composite components

–  For each component, management interfaces:
•  BindingControler : components dependencies management
•  ContentControler: adding and removing components
•  LifeCycleControler : run, stop components

Execution behaviour Adaptation strategy

Adaptation system

Application

Environment

Acts on

Needs changes Specialization
according to needs

Characteristics
of environment

Variations
changes

AeDEN – Software entity
adaptation

  [Le Mouel 2003]

AeDEN - entity

  Entity = software conception unity
–  Abstract and specializable
–  A functionality <=> A entity
–  A service <=> A specialized entity

  3 aspects:
–  AInteraction (communication with other entities)
–  AImplementation (business : expected treatments)
–  AState (internal state of the business part)

  Different implementation available for each aspect

AeDEN - entity
  Abstract entity + possible specializations

AeDEN – Adaptive entity
  Entity + Adaptation entity

– Adaptations by introspection and intercession

AeDEN - introspection and
intercession

  Each entity has the following methods:
–  getInteraction(), setInteraction()
–  getImplementation(), setImplementation()
–  getState(), setState()

  Each adaptive entity has the following methods:
–  getFunctionalInteraction(), setFunctionalInteraction()
–  getFunctionalImplementation(),

setFunctionalImplementation()
–  getFunctionalState(), setFunctionalState()

AeDEN - Adaptive and
reactive entity

  Adaptation entity + reaction entity linked to a
notification service

Entité fonctionnelle (In, Im, St)
Im : algo de compression GIF

Entité fonctionnelle (It, Im’,
St’’)

Im’ : algo compression JPEG
St’’ : taux qualité 50%

Entité fonctionnelle (It, Im’, St’)
Im’ : algo compression JPEG

St’ : taux qualité 75%

Bande passante <X

adaptation d’implantation
 GIF->JPEG75%

Bande passante <Y

adaptation d’implantation
JPEG75%->JPEG50%

Bande passante >Y

adaptation d’implantation
 JPEG50%->JPEG75%

Bande passante >X

adaptation d’implantation
JPEG75%->GIF

AeDEN – Strategy example
  Adaptation strategy for the transmission of

compressed pictures

Adaptation conclusion

  General needs [Le Mouel 2003]:
– Genericity : use by different kind of applications
– Modularity : Splitting and decorrelation
– Context-aware
– Evolution : integration of new technologies and

new functionalities
– Dynamicity : reaction to changes without

stopping the system
– Efficiency : performance and stability

Bibliographic references -
Adaptation services

  M. Cremene et al. « Adaptation dynamique de services », Decor ’2004, Grenoble, octobre
2004, pp 53-64

  CAAD : T. Chaari, F. Laforest, A. Celentano design of context-aware applications based
on web services Rapport de recherche LIRIS, octobre 2004 - RR-2004-033

  RAM : N.M.N. Bouraqadi-Saadani et al. « A reflexive infrastructure for coarse grained
strong mobility and its tool-based implementation. » Int. Workshop on experiences with
reflexive systems. Sept. 2001

  DynamicTAO : F. Kon et al. « Monitoring, security and dynamic configuration with the
dynamicTAO reflective ORB » Middleware 2000

  AeDEN : F. Le Mouël « Environnement adaptatif d’exécution distribuée d’applications
dans un contexte mobile » mémoire de thèse de doctorat en informatique, Université
Rennes I, 1er décembre 2003

  M. Leclercq, V. Quma, J.-B. Stefani, DREAM: A Component Framework for Constructing
Resource-Aware, Configurable Middleware, IEEE distributed systems online, vol. 6, no. 9,
September 2005

Synthesis

  Roadmap to build a Pervasive System – Questions?
–  Which kind of functionalities of a classic distributed

system do I need (load balancing, fault tolerance, etc) ?
Can I reuse one, or do I have to plan to redevelop some
of these functionalities ?

–  How do I model my context ? What do I have to include
in my context ?

–  What are the changes expected in my system ? Where
and how do I have to adapt to these changes ?

–  What are the middleware frameworks and toolkits
available to reach these goals ?

