
Application-Specific Arithmetic Operators
with the FloPoCo HDL core generator

Florent de Dinechin
florent.de.dinechin@insa-lyon.fr

H.Abdoli, S. Banescu, L. Besème, A. Böttcher, N. Bonfante,
N. Brunie, R. Bouarah, V. Capelle, M. Christ, P. Cochard,
C. Collange, Q. Corradi, O. Desrentes, J. Detrey, A. Dudermel,
P. Echeverŕıa, F. Ferrandi, N. Fiege, L. Forget, M. Grad, M. Hardieck,
V. Huguet, T. Hubrecht, K. Illyes, M. Istoan, M. Joldes, J. Kappauf,
C. Klein, M. Kleinlein, K. Klug, M. Kumm, J. Kühle, K. Kullmann,
L. Ledoux, J. Marchal, D. Mastrandrea, K. Möller, R. Murillo,
B. Pasca, B. Popa, X. Pujol, G. Sergent, V. Schmidt, D. Thomas,
R. Tudoran, A. Vasquez, A. Volkova.

Fantastic arithmetic beasts
(and where to find them)

Fantastic arithmetic beasts (and where to find them)

All you ever wanted to know about division by 3

Inside FloPoCo

Conclusion

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 2

Where to find them? In your applications!

... with a little help of FloPoCo.

www.flopoco.org

From maths
to circuits

with love and care

A generator of application-specific hardware arithmetic operators

written in C++, outputting portable, synthesizable VHDL

open-source, extensible, state of the art

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 3

Where to find them? In your applications!

... with a little help of FloPoCo.

www.flopoco.org

From maths
to circuits

with love and care

A generator of application-specific hardware arithmetic operators

written in C++, outputting portable, synthesizable VHDL

open-source, extensible, state of the art

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 3

Where to find them? In your applications!

... with a little help of FloPoCo.

www.flopoco.org

From maths
to circuits

with love and care

A generator of application-specific hardware arithmetic operators

written in C++, outputting portable, synthesizable VHDL

open-source, extensible, state of the art

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 3

A command-line tool, because we are all geeks here

FloPoCoFunctional specification

Performance specification

FPGA frequency ...

operation name

input/output formats

... .vhdl

Start simple: a single precision floating-point adder
./flopoco IEEEFPAdd wE=8 wF=23

Who needs 24 bits of mantissa (precision 10−8) for HEP instruments?

All we want is speed!

./flopoco FPAdd wE=6 wF=12

target=Zynq7000 frequency=300 dualpath=true

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 4

A command-line tool, because we are all geeks here

FloPoCoFunctional specification

Performance specification

FPGA frequency ...

operation name

input/output formats

... .vhdl

Start simple: a single precision floating-point adder
./flopoco IEEEFPAdd wE=8 wF=23

Who needs 24 bits of mantissa (precision 10−8) for HEP instruments?

All we want is speed!

./flopoco FPAdd wE=6 wF=12

target=Zynq7000 frequency=300 dualpath=true

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 4

A command-line tool, because we are all geeks here

FloPoCoFunctional specification

Performance specification

FPGA frequency ...

operation name

input/output formats

... .vhdl

Start simple: a single precision floating-point adder
./flopoco IEEEFPAdd wE=8 wF=23

Who needs 24 bits of mantissa (precision 10−8) for HEP instruments? All we want is speed!
./flopoco FPAdd wE=6 wF=12 target=Zynq7000 frequency=300 dualpath=true

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 4

This was not FloPoCo
Suppose you need to evaluate some function,

1,

say e(x
2) on [0, 1)...

... with inputs and outputs on 24 bits.
There are several ways of doing this in FloPoCo.
Here is one of them.

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 5

This was not FloPoCo
Suppose you need to evaluate some function,

1,

say e(x
2) on [0, 1)...

... with inputs and outputs on 24 bits.

There are several ways of doing this in FloPoCo.
Here is one of them.

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 5

This was not FloPoCo
Suppose you need to evaluate some function,

1,

say e(x
2) on [0, 1)...

... with inputs and outputs on 24 bits.
There are several ways of doing this in FloPoCo.
Here is one of them.

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 5

This was not FloPoCo
Suppose you need to evaluate some function1,

say e(x
2) on [0, 1)...

... with inputs and outputs on 24 bits.
There are several ways of doing this in FloPoCo.
Here is one of them.

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 5

Scope of FloPoCo

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x,y,...) = rounding(operation(x, y,...))
FloPoCo uses the same approach for fixed-point operators

→ Clean mathematical specification

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to pipeline (no memory, no loop)

easy to test against its mathematical specification

(approach recently extended to DSP filters defined by a transfer function)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 6

Scope of FloPoCo

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x,y,...) = rounding(operation(x, y,...))
FloPoCo uses the same approach for fixed-point operators

→ Clean mathematical specification

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to pipeline (no memory, no loop)

easy to test against its mathematical specification

(approach recently extended to DSP filters defined by a transfer function)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 6

Scope of FloPoCo

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x,y,...) = rounding(operation(x, y,...))
FloPoCo uses the same approach for fixed-point operators

→ Clean mathematical specification

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to pipeline (no memory, no loop)

easy to test against its mathematical specification

(approach recently extended to DSP filters defined by a transfer function)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 6

FloPoCo can generate an infinite number of operators

Obviously, they don’t have enough disk space for all of them on Open Logic.

Obviously, we haven’t tested them all.

Don’t trust us! Every operator comes with its specific test bench

./flopoco IntConstDiv wIn=16 d=3 TestBench

based on operator(X) = quantization(operation(X))

implemented as an emulate() method

a few lines of code only
based on trusted arbitrary-precision numerical libraries (MPFR, Sollya)
written first, and easy to audit (test-driven development)
produces a test.input file readable and commented

(We do have a CI based on this! Only, no pretense to full coverage)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 7

FloPoCo can generate an infinite number of operators

Obviously, they don’t have enough disk space for all of them on Open Logic.

Obviously, we haven’t tested them all.

Don’t trust us! Every operator comes with its specific test bench

./flopoco IntConstDiv wIn=16 d=3 TestBench

based on operator(X) = quantization(operation(X))

implemented as an emulate() method

a few lines of code only
based on trusted arbitrary-precision numerical libraries (MPFR, Sollya)
written first, and easy to audit (test-driven development)
produces a test.input file readable and commented

(We do have a CI based on this! Only, no pretense to full coverage)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 7

FloPoCo can generate an infinite number of operators

Obviously, they don’t have enough disk space for all of them on Open Logic.

Obviously, we haven’t tested them all.

Don’t trust us! Every operator comes with its specific test bench

./flopoco IntConstDiv wIn=16 d=3 TestBench

based on operator(X) = quantization(operation(X))

implemented as an emulate() method

a few lines of code only
based on trusted arbitrary-precision numerical libraries (MPFR, Sollya)
written first, and easy to audit (test-driven development)
produces a test.input file readable and commented

(We do have a CI based on this! Only, no pretense to full coverage)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 7

Florent is busy until retirement

Div by 3 was an example of
operator specialization√

X 2 + Y 2 + Z 2 is an example of
operator fusion

x2 is also an example of context-specific
resource sharing

Other examples: SCM, MCM, CMVM...
(Chang Sun’s talk yesterday)

We have only scratched the surface of
function approximation

Also in scope: coarser kernels
such as Fast Fourier Transforms

or neuron network layers

From a frequency response to an IIR

...

/3
×sin 17π

256

√
x2 + y 2

f (x)

x2
x3

FFT8

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 8

Other examples of pointless operators

Some with readable VHDL

A complete single-precision FPU in a single VHDL file:
./flopoco FPAdd wE=8 wF=23 FPMult wE=8 wF=23 FPDiv wE=8 wF=23 FPSqrt wE=8 wF=23

Exact integer constant multiplication (state of the art shift-and-add)
./flopoco IntConstMult wIn=16 constant=7654321

Faithful multiplier of a fixed point by a real constant (table based)
./flopoco FixRealConstMult signedIn=1 msbIn=0 lsbIn=-15 lsbOut=-15

constant="sin(42*pi/256)"

How do you remember the options?

Don’t reach for the source code yet, there is help on the command line

./flopoco TaoSort

./flopoco

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 9

Other examples of pointless operators

Some with readable VHDL

A complete single-precision FPU in a single VHDL file:
./flopoco FPAdd wE=8 wF=23 FPMult wE=8 wF=23 FPDiv wE=8 wF=23 FPSqrt wE=8 wF=23

Exact integer constant multiplication (state of the art shift-and-add)
./flopoco IntConstMult wIn=16 constant=7654321

Faithful multiplier of a fixed point by a real constant (table based)
./flopoco FixRealConstMult signedIn=1 msbIn=0 lsbIn=-15 lsbOut=-15

constant="sin(42*pi/256)"

How do you remember the options?

Don’t reach for the source code yet, there is help on the command line

./flopoco TaoSort

./flopoco

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 9

Open source! Contributions welcome!

(here I should recycle all the slides of Oliver Bründler tuesday about Open Logic)

http://flopoco.org/

Install from source (sorry) but it recently became easy
despite the fact that we pull MPFR, Sollya, SCIP, ... Thanks to them all!

These slides use current git master (some day, it will become version 5.0)
Several older versions available

a few operators more, a few operators less
some versions so old you need to run them in a docker
(also see the “orphaned operators” page)

License: AGPL, modified for FloPoCo so that generated VHDL is LGPL

FloPoCo

.vhdl

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 10

http://flopoco.org/

All you ever wanted to know

about division by 3

Fantastic arithmetic beasts (and where to find them)

All you ever wanted to know about division by 3

Inside FloPoCo

Conclusion

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 11

Application-specific arithmetic

FloPoCo is really about operators that would make absolutely no sense in a processor.

This is also FloPoCo

./flopoco FPConstDiv wE=8 wF=23 d=3

A correctly rounded floating-point divider by 3,
bit-for-bit compatible with a standard divider.

Synthesis results on Kintex7 for single precision

standard correctly rounded divider
748 LUT + 518 Reg 8 cycles @ 300 MHz

floating-point multiplier by 1/3
173 LUT, 6.667 ns (3 cycle @ 400 MHz)

FloPoCo FPConstDiv d=3
39 LUT + 35 Reg 1 cycle @ 400 MHz

demo effect: pipeline not yet re-implemented for

./flopoco FPConstMult we=8 wf=23 constant="1/3"

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 12

Application-specific arithmetic

FloPoCo is really about operators that would make absolutely no sense in a processor.

This is also FloPoCo

./flopoco FPConstDiv wE=8 wF=23 d=3

A correctly rounded floating-point divider by 3,
bit-for-bit compatible with a standard divider.

Synthesis results on Kintex7 for single precision

standard correctly rounded divider
748 LUT + 518 Reg 8 cycles @ 300 MHz

floating-point multiplier by 1/3
173 LUT, 6.667 ns (3 cycle @ 400 MHz)

FloPoCo FPConstDiv d=3
39 LUT + 35 Reg 1 cycle @ 400 MHz

demo effect: pipeline not yet re-implemented for

./flopoco FPConstMult we=8 wf=23 constant="1/3"

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 12

Application-specific arithmetic

FloPoCo is really about operators that would make absolutely no sense in a processor.

This is also FloPoCo

./flopoco FPConstDiv wE=8 wF=23 d=3

A correctly rounded floating-point divider by 3,
bit-for-bit compatible with a standard divider.

Synthesis results on Kintex7 for single precision

standard correctly rounded divider
748 LUT + 518 Reg 8 cycles @ 300 MHz

floating-point multiplier by 1/3
173 LUT, 6.667 ns (3 cycle @ 400 MHz)

FloPoCo FPConstDiv d=3
39 LUT + 35 Reg 1 cycle @ 400 MHz

demo effect: pipeline not yet re-implemented for

./flopoco FPConstMult we=8 wf=23 constant="1/3"

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 12

Application-specific arithmetic

FloPoCo is really about operators that would make absolutely no sense in a processor.

This is also FloPoCo

./flopoco FPConstDiv wE=8 wF=23 d=3

A correctly rounded floating-point divider by 3,
bit-for-bit compatible with a standard divider.

Synthesis results on Kintex7 for single precision

standard correctly rounded divider
748 LUT + 518 Reg 8 cycles @ 300 MHz

floating-point multiplier by 1/3
173 LUT, 6.667 ns (3 cycle @ 400 MHz)

FloPoCo FPConstDiv d=3
39 LUT + 35 Reg 1 cycle @ 400 MHz

demo effect: pipeline not yet re-implemented for

./flopoco FPConstMult we=8 wf=23 constant="1/3"

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 12

Raise your hand if you think you would be able to divide 3885 by 3?

Dividing an hexadecimal number by 3

3F 2 D

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 13

Raise your hand if you think you would be able to divide 3885 by 3?

Dividing an hexadecimal number by 3

0 5

3F 2 D

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 13

Raise your hand if you think you would be able to divide 3885 by 3?

Dividing an hexadecimal number by 3

20 5

3F 2 D

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 13

Raise your hand if you think you would be able to divide 3885 by 3?

Dividing an hexadecimal number by 3

2

020 5

3F 2 D

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 13

Raise your hand if you think you would be able to divide 3885 by 3?

Dividing an hexadecimal number by 3

D2

020 5

3F 2 D

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 13

Raise your hand if you think you would be able to divide 3885 by 3?

Dividing an hexadecimal number by 3

F

0

D2

020 5

3F 2 D

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 13

Division by 3 should not be more complex than multiplication by 3

F

0

D2

020 5

3F 2 D

R0 = R/3

4

4

2

Q0

X0

/3

4

4

2

Q1

X1

/3

4

4

2

Q2

X2

0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you don’t know how to compute it, then tabulate it

... here a table of 26 entries of 6 bits each.
(small enough to be called a truth table and submitted to synthesis tools)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 14

Division by 3 should not be more complex than multiplication by 3

F

0

D2

020 5

3F 2 D

R0 = R/3

4

4

2

Q0

X0

/3

4

4

2

Q1

X1

/3

4

4

2

Q2

X2

0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you don’t know how to compute it, then tabulate it

... here a table of 26 entries of 6 bits each.
(small enough to be called a truth table and submitted to synthesis tools)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 14

Division by 3 should not be more complex than multiplication by 3

F

0

D2

020 5

3F 2 D

R0 = R/3

4

4

2

Q0

X0

/3

4

4

2

Q1

X1

/3

4

4

2

Q2

X2

0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you don’t know how to compute it, then tabulate it

... here a table of 26 entries of 6 bits each.
(small enough to be called a truth table and submitted to synthesis tools)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 14

Then FloPoCo does clever things

Two equivalent architectures, targetting Zynq LUT6 (above) and Efinix LUT4 (below)

R0 = R/3

4

4

2

Q0

X0

/3

4

4

2

Q1

X1

/3

4

4

2

Q2

X2

0

R0 = R/3

2

2

2

X0

Q0

/3

2

2

2

X1

Q1

/3

2

2

2

X2

Q2

/3

2

2

2

X3

Q3

/3

2

2

2

X4

Q4

/3

2

2

2

X5

Q5

0

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 15

More good surprises in the floating-point divider by 3

unpack & exception handling

exception handling & pack

X

sX

FXEX + E0

exn2

R

01

FX ≥ FD?

−EC − 1

1

1

divider
by D

wF + 2
H

wF + ED + 2

FR

+1

ER + E0

wE + 1

Low latency thanks to
pre-normalisation
and pre-rounding:

⌊
2s+ϵm

d

⌉
=

⌊
2s+ϵm

d
+

1

2

⌋
=

⌊
2s+ϵm + d/2

d

⌋

(I agree it is not obvious, but it saves one large adder on the critical path)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 16

What, your taxpayer money is being wasted on stupid division by 3?

(of course the technique works for various values of 3)

We did it for the fun of it, but it turns out to be quite useful...

Euclidean integer division (quotient and remainder)

round-robin addressing with 3 banks of memory
pooling layers in quantized neural networks
crypto (with much larger constants – other methods needed for large divisor)

In floating-point

serious linear algebra (Jacobi),
stencil applications,
pooling layers,
etc.

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 17

Inside FloPoCo

Fantastic arithmetic beasts (and where to find them)

All you ever wanted to know about division by 3

Inside FloPoCo

Conclusion

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 18

Combinatorial circuits in FloPoCo: just print VHDL

C++ code for a Barrel Shifter

for (int i=0; i<shiftValueWidth; i++){
levelWidth = (...) ;

vhdl<< declare("level" + to_string(i+1),

levelWidth)

<< " <= " << level << i << " & " << genZeros(1<<i)

<< " when S(" << i-1 << ") = ’1’ else "

<< genZeros(1<<i) << " & " << level << i<< ";";

}

Resulting VHDL code

level1 <= level0 & "0" when S(0)=’1’

else "0" & level0;

level2 <= level1 & "00" when S(1)=’1’

else "00" & level1;

level3 <= level2 & "0000" when S(2)=’1’

else "0000" & level2;

(. . .)

X S

MUX

concat concat

”0” ”0”

level0

S[0]

MUX

concat concat

”00” ”00”

level1

S[1]

MUX

concat concat

”0000” ”0000”

level2

S[2]

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 19

Combinatorial circuits in FloPoCo: just print VHDL

C++ code for a Barrel Shifter

for (int i=0; i<shiftValueWidth; i++){
levelWidth = (...) ;

vhdl<< declare("level" + to_string(i+1),

levelWidth)

<< " <= " << level << i << " & " << genZeros(1<<i)

<< " when S(" << i-1 << ") = ’1’ else "

<< genZeros(1<<i) << " & " << level << i<< ";";

}

Resulting VHDL code

level1 <= level0 & "0" when S(0)=’1’

else "0" & level0;

level2 <= level1 & "00" when S(1)=’1’

else "00" & level1;

level3 <= level2 & "0000" when S(2)=’1’

else "0000" & level2;

(. . .)

X S

MUX

concat concat

”0” ”0”

level0

S[0]

MUX

concat concat

”00” ”00”

level1

S[1]

MUX

concat concat

”0000” ”0000”

level2

S[2]

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 19

Combinatorial circuits in FloPoCo: just print VHDL

C++ code for a Barrel Shifter

for (int i=0; i<shiftValueWidth; i++){
levelWidth = (...) ;

vhdl<< declare("level" + to_string(i+1),

levelWidth)

<< " <= " << level << i << " & " << genZeros(1<<i)

<< " when S(" << i-1 << ") = ’1’ else "

<< genZeros(1<<i) << " & " << level << i<< ";";

}

Resulting VHDL code

level1 <= level0 & "0" when S(0)=’1’

else "0" & level0;

level2 <= level1 & "00" when S(1)=’1’

else "00" & level1;

level3 <= level2 & "0000" when S(2)=’1’

else "0000" & level2;

(. . .)

X S

MUX

concat concat

”0” ”0”

level0

S[0]

MUX

concat concat

”00” ”00”

level1

S[1]

MUX

concat concat

”0000” ”0000”

level2

S[2]

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 19

Combinatorial circuits in FloPoCo: just print VHDL

C++ code for a Barrel Shifter

for (int i=0; i<shiftValueWidth; i++){
levelWidth = (...) ;

vhdl<< declare("level" + to_string(i+1),

levelWidth)

<< " <= " << level << i << " & " << genZeros(1<<i)

<< " when S(" << i-1 << ") = ’1’ else "

<< genZeros(1<<i) << " & " << level << i<< ";";

}

Resulting VHDL code

level1 <= level0 & "0" when S(0)=’1’

else "0" & level0;

level2 <= level1 & "00" when S(1)=’1’

else "00" & level1;

level3 <= level2 & "0000" when S(2)=’1’

else "0000" & level2;

(. . .)

X S

MUX

concat concat

”0” ”0”

level0

S[0]

MUX

concat concat

”00” ”00”

level1

S[1]

MUX

concat concat

”0000” ”0000”

level2

S[2]

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 19

Pipelined circuits in FloPoCo: automatic

C++ code for a Barrel Shifter

for (int i=0; i<shiftValueWidth; i++){
levelWidth = (...) ;

vhdl<< declare(target->logicdelay(), "level" + to_string(i+1),

levelWidth)

<< " <= " << level << i << " & " << genZeros(1<<i)

<< " when S(" << i-1 << ") = ’1’ else "

<< genZeros(1<<i) << " & " << level << i<< ";";

}

Resulting VHDL code

level1 <= level0 & "0" when S(0)=’1’

else "0" & level0;

level2 <= level1 & "00" when S(1)=’1’

else "00" & level1;

level3 <= level2 & "0000" when S(2)=’1’

else "0000" & level2;

(. . .)

X S

MUX

concat concat

”0” ”0”

level0

S[0]

MUX

concat concat

”00” ”00”

level1

S[1]

MUX

concat concat

”0000” ”0000”

level2

S[2]

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 19

Pipelined circuits in FloPoCo: automatic

C++ code for a Barrel Shifter

for (int i=0; i<shiftValueWidth; i++){
levelWidth = (...) ;

vhdl<< declare(target->logicdelay(), "level" + to_string(i+1),

levelWidth)

<< " <= " << level << i << " & " << genZeros(1<<i)

<< " when S(" << i-1 << ") = ’1’ else "

<< genZeros(1<<i) << " & " << level << i<< ";";

}

Resulting VHDL code

level1 <= level0 & "0" when S(0)=’1’

else "0" & level0;

level2 <= level1 d1 & "00" when S d1(1)=’1’

else "00" & level1;

level3 <= level2 d1 & "0000" when S d2(2)=’1’

else "0000" & level2;

(. . .)

X S

MUX

concat concat

”0” ”0”

level0

S[0]

MUX

concat concat

”00” ”00”

level1

S[1]

MUX

concat concat

”0000” ”0000”

level2

S[2]

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 19

Frequency-directed pipelining is compositional

unpack & exception handling,
exponent difference & swap

add/sub YinXin

>>

|Mx ±MYa |

LZC
+ shifter

rounding adder

−

+1

exception handling & pack

R

pipeline
stage 0

pipeline
stage 1

pipeline
stage 2

pipeline
stage 3

./flopoco FPAdd we=8 wf=23

frequency=200
*** Final report ***

|---Entity RightShifterSticky24 by max 26 Freq200 uid4

| R: (c0, 3.930000ns) Sticky: (c1, 1.420000ns)

|---Entity IntAdder 27 Freq200 uid6

| R: (c1, 3.230000ns)

|---Entity Normalizer Z 28 28 28 Freq200 uid8

| Count: (c2, 3.470000ns) R: (c2, 4.020000ns)

|---Entity IntAdder 34 Freq200 uid11

| R: (c3, 1.110000ns)

Entity FPAdd 8 23 Freq200 uid2

R: (c3, 2.210000ns)

FloPoCo reports a pipeline depth of 3,

meaning that there are 4 pipeline stages

An assembly of components working at frequency f
is a component working at frequency f .

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 20

Frequency-directed pipelining is compositional

unpack & exception handling,
exponent difference & swap

add/sub YinXin

>>

|Mx ±MYa |

LZC
+ shifter

rounding adder

−

+1

exception handling & pack

R

pipeline
stage 0

pipeline
stage 1

pipeline
stage 2

pipeline
stage 3

./flopoco FPAdd we=8 wf=23 frequency=200
*** Final report ***

|---Entity RightShifterSticky24 by max 26 Freq200 uid4

| R: (c0, 3.930000ns) Sticky: (c1, 1.420000ns)

|---Entity IntAdder 27 Freq200 uid6

| R: (c1, 3.230000ns)

|---Entity Normalizer Z 28 28 28 Freq200 uid8

| Count: (c2, 3.470000ns) R: (c2, 4.020000ns)

|---Entity IntAdder 34 Freq200 uid11

| R: (c3, 1.110000ns)

Entity FPAdd 8 23 Freq200 uid2

R: (c3, 2.210000ns)

FloPoCo reports a pipeline depth of 3,

meaning that there are 4 pipeline stages

An assembly of components working at frequency f
is a component working at frequency f .

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 20

The higher the frequency, the deeper the pipeline

... and the more painful the drawing.
Fortunately, there are options that produce figures...
./flopoco frequency=200 dependencygraph=full fpadd we=8 wf=23

creates a dot/ directory containing this:

F
P
A

d
d

_8
_2

3
_F

re
q

2
0

0
_u

id
2

R
ig

h
tS

h
if

te
rS

ti
ck

y
2

4
_b

y
_m

a
x
_2

6
_F

re
q

2
0

0
_u

id
4

In
tA

d
d

e
r_

2
7

_F
re

q
2

0
0

_u
id

6

N
o
rm

a
li

ze
r_

Z
_2

8
_2

8
_2

8
_F

re
q

2
0

0
_u

id
8

In
tA

d
d

e
r_

3
4

_F
re

q
2

0
0

_u
id

1
1

X
d

T
 =

 0
(0

,
0

)

e
x
cE

x
p

F
ra

cX
d

T
 =

 0
(0

,
0

)

e
X

m
e
Y

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
1

.0
9

2
e
-0

9
)

e
Y

m
e
X

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
1

.0
9

2
e
-0

9
) n

e
w

X
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

n
e
w

Y
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

Y
d

T
 =

 0
(0

,
0

)

e
x
cE

x
p

F
ra

cY
d

T
 =

 0
(0

,
0

)

R
d

T
 =

 0
(3

,
4

.4
7

3
e
-0

9
)

sw
a
p

d
T

 =
 1

.1
9

e
-0

9
(0

,
1

.1
9

e
-0

9
)

e
x
p

D
if

f
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

sh
if

te
d

O
u

t
d

T
 =

 5
.6

7
5

e
-1

0
(0

,
2

.3
0

0
5

e
-0

9
)

sh
if

tV
al

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.8
4

3
5

e
-0

9
)

e
x
p

X
d

T
 =

 0
(0

,
1

.7
3

3
e
-0

9
)

e
x
cX

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

si
g

n
X

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

fr
a
cX

p
a
d

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

e
x
cY

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

si
g

n
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

fr
a
cY

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

e
x
te

n
d

e
d

E
x
p

In
c

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
2

.8
2

5
e
-0

9
)

sX
sY

E
x
n

X
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

sd
E

x
n

X
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

E
ff

S
u

b
d

T
 =

 5
.4

3
e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

si
g

n
R

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

E
ff

S
u

b
V

ec
to

r
d

T
 =

 0
(0

,
2

.2
7

6
e
-0

9
)

cI
n

S
ig

A
d

d
d

T
 =

 5
.4

3
e
-1

0
(1

,
4

.1
4

2
7

5
e
-0

9
)

e
x
cR

d
T

 =
 5

.4
3

e
-1

0
(3

,
4

.4
7

3
e
-0

9
)

si
g

n
R

2
d

T
 =

 5
.4

3
e
-1

0
(3

,
1

.4
5

2
e
-0

9
)

e
x
cR

t
d

T
 =

 6
.1

9
e
-1

0
(0

,
2

.3
5

2
e
-0

9
)

X
d

T
 =

 0
(0

,
2

.2
7

6
e
-0

9
)

e
x
E

x
p

E
x
c

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

S
d

T
 =

 0
(0

,
2

.8
4

3
5

e
-0

9
)

sh
if

te
d

F
ra

cY
d

T
 =

 0
(0

,
3

.9
2

9
5

e
-0

9
)

fr
a
cY

p
a
d

d
T

 =
 0

(0
,

3
.9

2
9

5
e
-0

9
)

st
ic

k
y

d
T

 =
 0

(1
,

3
.5

9
9

7
5

e
-0

9
)

fr
a
cS

ti
ck

y
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

fr
a
cY

p
a
d

X
o
rO

p
d

T
 =

 5
.4

3
e
-1

0
(0

,
4

.4
7

2
5

e
-0

9
)

Y
d

T
 =

 0
(0

,
4

.4
7

2
5

e
-0

9
)

X
d

T
 =

 0
(0

,
1

.7
3

3
e
-0

9
)

C
in

d
T

 =
 0

(1
,

4
.1

4
2

7
5

e
-0

9
)

fr
a
cA

d
d

R
e
su

lt
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

X
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

n
Z

e
ro

sN
e
w

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

u
p

d
a
te

d
E

x
p

d
T

 =
 1

.0
9

2
e
-0

9
(3

,
2

.0
0

1
e
-0

9
)

e
q

d
if

fs
ig

n
d

T
 =

 0
(3

,
9

.0
9

e
-1

0
)

sh
if

te
d

F
ra

c
d

T
 =

 0
(3

,
1

.4
5

2
e
-0

9
)

e
x
p

F
ra

c
d

T
 =

 0
(3

,
2

.0
0

1
e
-0

9
)

st
k

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

rn
d

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

ls
b

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

X
d

T
 =

 0
(3

,
2

.0
0

1
e
-0

9
)

n
e
e
d

T
o
R

o
u

n
d

d
T

 =
 5

.4
3

e
-1

0
(3

,
1

.9
9

5
e
-0

9
)

C
in

d
T

 =
 0

(3
,

1
.9

9
5

e
-0

9
)

cs
t_

9
d

T
 =

 0
(0

,
0

)

Y
d

T
 =

 0
(0

,
0

)

R
o
u

n
d

e
d

E
x
p

F
ra

c
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

u
p

E
x
c

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

fr
a
cR

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

e
x
p

R
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

co
m

p
u

te
d

R
d

T
 =

 0
(3

,
4

.4
7

3
e
-0

9
)

e
x
cR

t2
d

T
 =

 5
.4

3
e
-1

0
(3

,
3

.9
3

e
-0

9
)

X
p

a
d

d
e
d

d
T

 =
 0

(0
,

2
.2

7
6

e
-0

9
)

p
s

d
T

 =
 0

(0
,

2
.8

4
3

5
e
-0

9
)

R
d

T
 =

 0
(0

,
3

.9
2

9
5

e
-0

9
)

S
ti

ck
y

d
T

 =
 0

(1
,

3
.5

9
9

7
5

e
-0

9
)

st
k
4

d
T

 =
 1

.1
3

5
e
-0

9
(0

,
3

.9
7

8
5

e
-0

9
)

le
v
e
l4

d
T

 =
 0

(0
,

2
.8

4
3

5
e
-0

9
)

st
k
3

d
T

 =
 1

.1
1

0
5

e
-0

9
(1

,
3

.0
5

e
-1

0
)

le
v
e
l3

d
T

 =
 5

.4
3

e
-1

0
(0

,
3

.3
8

6
5

e
-0

9
)

st
k
2

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
1

.4
0

3
2

5
e
-0

9
)

le
v
e
l2

d
T

 =
 0

(0
,

3
.3

8
6

5
e
-0

9
)

st
k
1

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
2

.5
0

1
5

e
-0

9
)

le
v
e
l1

d
T

 =
 5

.4
3

e
-1

0
(0

,
3

.9
2

9
5

e
-0

9
)

st
k
0

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
3

.5
9

9
7

5
e
-0

9
)

le
v
e
l0

d
T

 =
 0

(0
,

3
.9

2
9

5
e
-0

9
)

le
v
e
l5

d
T

 =
 0

(0
,

2
.2

7
6

e
-0

9
)

X
_1

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

Y
_1

d
T

 =
 0

(0
,

4
.4

7
2

5
e
-0

9
)

C
in

_1
d

T
 =

 0
(1

,
4

.1
4

2
7

5
e
-0

9
)

R
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

S
_1

d
T

 =
 1

.3
3

7
e
-0

9
(2

,
6

.9
5

7
5

e
-1

0
)

R
_1

d
T

 =
 0

(2
,

6
.9

5
7

5
e
-1

0
)

le
v
e
l5

d
T

 =
 0

(2
,

6
.9

5
7

5
e
-1

0
)

C
o
u

n
t

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

R
d

T
 =

 0
(3

,
1

.4
5

2
e
-0

9
)

co
u

n
t4

d
T

 =
 5

.9
2

e
-1

0
(2

,
1

.2
8

7
7

5
e
-0

9
)

le
v
e
l4

d
T

 =
 5

.4
3

e
-1

0
(2

,
1

.8
3

0
7

5
e
-0

9
) sC

o
u

n
t

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

co
u

n
t3

d
T

 =
 5

.6
7

5
e
-1

0
(2

,
2

.3
9

8
2

5
e
-0

9
)

le
v
e
l3

d
T

 =
 5

.4
3

e
-1

0
(2

,
2

.9
4

1
2

5
e
-0

9
)

co
u

n
t2

d
T

 =
 5

.5
5

2
5

e
-1

0
(2

,
3

.4
9

6
5

e
-0

9
)

le
v
e
l2

d
T

 =
 5

.4
3

e
-1

0
(2

,
4

.0
3

9
5

e
-0

9
)

co
u

n
t1

d
T

 =
 5

.5
5

2
5

e
-1

0
(2

,
4

.5
9

4
7

5
e
-0

9
)

le
v
e
l1

d
T

 =
 5

.4
3

e
-1

0
(3

,
3

.5
3

7
5

e
-1

0
)

co
u

n
t0

d
T

 =
 5

.5
5

2
5

e
-1

0
(3

,
9

.0
9

e
-1

0
)

le
v
e
l0

d
T

 =
 5

.4
3

e
-1

0
(3

,
1

.4
5

2
e
-0

9
)

R
tm

p
d

T
 =

 1
.3

8
6

e
-0

9
(3

,
3

.3
8

7
e
-0

9
)

R
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 21

Mostly automatic

You describe your combinatorial operator in VHDL

and you debug it
and you optimize it
and you debug it again.

Then you add delay information where needed

using methods of the Target class, they return a δt (in seconds)
example: Target->adderDelay(int size) got quite complex on AMD and Intel.

FloPoCo automatically pipelines and synchronizes

and you don’t need to debug it! It is correct by construction.

Prediction of routing delay is in general hopeless

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 22

Other stuff we are proud of

A SotA framework for fixed-point summation (bit heaps)
(see our ARITH 2025 keynote)

A SotA tiling approach to multiplier construction

SotA *Constant Multiplication* (SCM, MCM, CMM, etc.)

ILP (integer linear programming) for all sorts of arithmetic optimizations

IIR filters guaranteed without limit-cycle oscillations

A logarithmic neuron for machine learning

And computing just right

Specifying the output format specifies the accuracy:

no point in computing more accurately: we could not express it;

no point in computing less accurately: we would output meaningless bits.

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 23

Conclusion

Fantastic arithmetic beasts (and where to find them)

All you ever wanted to know about division by 3

Inside FloPoCo

Conclusion

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 24

Bibliography (or maybe advertising)

Our book is finally out !
800 pages of fancy hardware arithmetic.

Also (and for free), you can find articles
about most of the subjects described in these slides
on the web page of FloPoCo:

http://flopoco.org/

More references there...

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 25

http://flopoco.org/

Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here?

≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 26

Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 26

Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 26

Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 26

Why move useless bits around?

FloPoCo only solves the easy problem

DONE Good, flexible, versatile application-specific operators

TODO Now how many bits do I need for this variable in my FPGA application?

Questions? A demo?

F. de Dinechin Application-Specific Arithmetic Operators with FloPoCo 27

	Fantastic arithmetic beasts (and where to find them)
	All you ever wanted to know about division by 3
	Inside FloPoCo
	Conclusion

