
Karatsuba with Rectangular Multipliers for FPGAs
Martin Kumm∗, Oscar Gustafsson†, Florent de Dinechin‡, Johannes Kappauf∗, and Peter Zipf∗

∗University of Kassel, Digital Technology Group, Germany
†Linköping University, Division of Computer Engineering, Department of Electrical Engineering, Sweden

‡Univ Lyon, INSA Lyon, Inria, CITI, France

kumm@uni-kassel.de, oscar.gustafsson@liu.se, florent.de-dinechin@insa-lyon.fr,
johannes.kappauf@student.uni-kassel.de, zipf@uni-kassel.de

Abstract—This work presents an extension of Karatsuba’s
method to efficiently use rectangular multipliers as a base for
larger multipliers. The rectangular multipliers that motivate this
work are the embedded 18×25-bit signed multipliers found in the
DSP blocks of recent Xilinx FPGAs: The traditional Karatsuba
approach must under-use them as square 18×18 ones. This work
shows that rectangular multipliers can be efficiently exploited in
a modified Karatsuba method if their input word sizes have a
large greatest common divider. In the Xilinx FPGA case, this
can be obtained by using the embedded multipliers as 16×24
unsigned and as 17×25 signed ones. The obtained architectures
are implemented with due detail to architectural features such as
the pre-adders and post-adders available in Xilinx DSP blocks.
They are synthesized and compared with traditional Karatsuba,
but also with (non-Karatsuba) state-of-the-art tiling techniques
that make use of the full rectangular multipliers. The proposed
technique improves resource consumption and performance for
multipliers of numbers larger than 64 bits.

I. INTRODUCTION

Karatsuba’s method [1] was the first method for computing
products with sub-quadratic complexity. It trades multiplica-
tions for additions, which are cheaper. It will be exposed in
detail in Section II. In its original formulation, Karatsuba’s
algorithm is only expressed in terms of square multipliers,
i.e., multipliers whose two inputs have the same number of
digits. However, the multiplier resources available in recent
Xilinx FPGAs are not square: they typically consist of a
18×25-bit signed multiplier which can be used for 17×24-
bit unsigned multiplication [2]. The Karatsuba method is
therefore inefficient on such FPGAs [3], [4]: to apply it,
one either needs to under-use the DSP blocks (use them as
17×17-bit multipliers), or complement them with (slower)
logic to turn them into 24×24-bit multipliers. The first option
is preferred, as it can exploit the optional pre-adder and post-
adder/accumulator that surround the multiplier in a DSP block
[3], [4].

This article attempts to reconcile Karatsuba’s method with
FPGA hardware whose DSP blocks are rectangular. It first
slightly generalizes the classical Karatsuba formulation. It then
shows how rectangular multipliers can be used under certain
constraints on their aspect ratio.

This problem corresponds to sparse polynomial multiplica-
tion, so the suggested algorithms also find use here. Previous
work in this area primarily focus on asymptotically efficient

results or comparisons for polynomials with a random sparse-
ness [5], [6]. In [6], the authors mention regarding Karatsuba’s
method for sparse polynomial multiplication: “In the sparse
case this phenomenon hardly occurs, and it is commonly
admitted that this approach is useless”. The current work
shows that there are use cases, at least when the sparseness is
regular, and that significant savings can be obtained compared
to a straightforward evaluation. The authors are not aware of
any explicit results for multiplication of sparse polynomials
with a regular sparseness.

Back to FPGAs, the proposed technique is able to save
a smaller proportion of the multipliers compared to classical
Karatsuba using only square multipliers. However, since each
rectangular multiplier is used almost to its full potential,
the proposed technique saves resources and improves latency
for large multipliers (above 64×64 bits). This is confirmed
by actual synthesis results on recent Xilinx devices. Very
large integer multipliers could be an important component
for the booming field of fully homomorphic encryption (see
for instance multipliers from 944×944 up to 2560×2560 bits
in [7]).

II. CLASSICAL KARATSUBA METHOD

A. Two-Part Splitting

Consider a large multiplication of size 2W × 2W bits. It
can be split into smaller multiplications of size W ×W each
by splitting the arguments into smaller segments of size W ,
leading to

A×B = (a12
W + a0)(b12

W + b0) (1)

= a1b1︸︷︷︸
=M4

22W + (a1b0︸︷︷︸
=M3

+ a0b1︸︷︷︸
=M2

)2W + a0b0︸︷︷︸
=M1

. (2)

The basic idea of Karatsuba’s algorithm is based on the
identity:

a1b0 + a0b1 = (a0 + a1)(b0 + b1)− a0b0︸︷︷︸
=M1

− a1b1︸︷︷︸
=M4

(3)

Hence, by reusing the sub-products M1 and M4, we can
compute the sum of M2 and M3 by a single multiplication:
this reduces the number of smaller multiplications from four
to three. The price to pay are two new additions computing
a0 + a1 and b0 + b1 (called pre-additions in the following),

a0a1

b0

b1

M1

M2

M3

M4

(a)

a0a1

b0

b1

(b)

Fig. 1: Graphical tiling representation of (2)

and two additional negative terms in the final sum (called post-
additions). Besides, the new product is a (W+1)×(W+1)-bit
one, hence requires a slightly larger multiplier than each of the
W ×W -bit products it replaces.

Karatsuba’s technique has been used in software for fast
multiple-precision arithmetic. Equation (2) is applied recur-
sively, and the recursion typically stops when the smaller
multipliers match the capabilities of the hardware multipliers
offered by the processor.

The present work addresses the design of large multipliers
for FPGAs [3], [4], [8], [9]. It is closer to hardware multiplier
design [10], [11]: the relevant metrics here are area and delay.
Area-wise, Karatsuba reduces the cost for large enough values
of W . Exactly how large is technology-dependent, and we
will only address here FPGA technology with embedded hard
multipliers.

Delay-wise, post-additions may be performed in constant
time using carry-save arithmetic. Equivalently, they can be
merged with negligible overhead in the final bit array compres-
sion. Pre-additions, on the other hand, have a significant timing
overhead due to the need for carry propagation. Therefore,
Karatsuba will typically improve area, but degrade timing.

An alternative form of (2) is

a1b0 + a0b1 = (a1 − a0)(b1 − b0) +M1 +M4 . (4)

It uses pre-subtractions, which have the same hardware cost
as pre-additions. However, the product is now a product of
signed numbers. This will therefore be the preferred formu-
lation on FPGAs, whose DSP blocks are capable of signed
multiplication. The extra bit added by the pre-subtractions is
now a sign bit, allowing us to exploit the sign bit inputs of
the DSP blocks that would otherwise be wasted.

B. Terminology and Graphical Representation

Throughout this article, we will use a tile-based graphical
representation introduced in [4]. For instance, Fig. 1 illustrates
the representation of (2). A multiplication is represented as a
rectangle. Decomposing the inputs A and B into subwords
splits this rectangle with vertical and horizontal lines respec-
tively. Each of the sub-products appears as a smaller rectangle
called a tile throughout this article. Fig. 1(a) shows square tiles,
while Fig. 4 shows multiplications decomposed in rectangular
tiles. When two multipliers are paired by Karatsuba, they are
linked on the figure (Fig. 1(b)). Such a link means that the
sum of the two linked tiles will be computed by a single
multiplication, reusing the sub-products corresponding to tiles

with black squares. The size of this multiplication is 1-bit
larger than the tile size in both dimensions (and more if
Karatsuba is applied recursively).

C. Square K-Part Splitting

The inputs to a large multiplication may also be split into
K segments of W bits [12]:

A×B =
(K−1∑

i=0

2iWai

)(K−1∑
j=0

2jW bj

)
(5)

=
∑
i,j

2(i+j)Waibj (6)

In (6), any expression aibj + ajbi may be replaced as
follows:

aibj + ajbi = (ai + aj)(bj + bi)− ajbj − aibi (7)

which again computes the sum of two tile subproducts using
only one multiplier. The novelty is that subproducts may
be reused more than one time, which further improves the
efficiency of the method.

Take for example, a 3W × 3W multiplier where the argu-
ments are split into three parts

A×B =(a22
2W + a12

W + a0)(b22
2W + b12

W + b0) (8)

=a0b0 + (a0b1 + a1b0)2
W

+ (a0b2 + a2b0 + a1b1)2
2W

+ (a1b2 + a2b1)2
3W + a2b22

4W (9)

=a0b0 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)2
W

+ ((a0 + a2)(b0 + b2)− a0b0 − a2b2 + a1b1)2
2W

+ ((a1 + a2)(b1 + b2)− a1b1 − a2b2)2
3W

+ a2b22
4W . (10)

Here, (7) could be used three times, which reduces the
multiplier count from 3× 3 = 9 to only six.

The K-Part splitting is a straightforward application of rule
(7) on as many partial products as possible. Figure 2 shows
examples of 4-part, 6-part and 7-part splitting.

In general, K-Part splitting saves a triangle of K(K−1)/2
multiplications. For instance, in the 4-part splitting of a
4W × 4W multiplier shown on Fig. 2(a), six of the 16
required W × W bit multiplications can be saved. This
corresponds to the number of tile pairs on the figure.

D. Recursive Karatsuba

The multiplication schemes above can also be applied
recursively (it was actually the original formulation [1]), i.e.,
each multiplier is split into smaller multiplications where
each of the smaller multiplication is itself split into smaller
multiplications, etc.

Consider the 4W × 4W multiplication again. It can be
realized by using three multiplications of up to (2W + 1) ×
(2W + 1) using the 2-part splitting in (2). Each of these
(2W + 1) × (2W + 1) multiplications can then be realized
by using three (W +1)× (W +1) multiplications by applying

a0a1a2a3

b0

b1

b2

b3

(a) 68× 68 (4W × 4W , W = 17)

a0a1a2a3a4a5

b0

b1

b2

b3

b4

b5

(b) 102× 102 (6W × 6W , W = 17)

a0a1a2a3a4a5a6

b0

b1

b2

b3

b4

b5

b6

(c) 119× 119 (7W × 7W , W = 17)

Fig. 2: Tilings using the conventional Karatsuba with square 17× 17 bit multipliers

another 2-part splitting. This leads to a total of only nine
(W + 1) × (W + 1) multiplications (compared to ten in the
4-part splitting). However, this comes at the price of additional
critical path delay or latency, as two pre-additions have to be
performed in sequence.

In other words, in hardware, the choice between K-part
splitting or its recursive application exposes a trade-off be-
tween latency and number of multipliers.

III. KARATSUBA WITH RECTANGULAR MULTIPLIERS

A. Generalized Square Karatsuba

Karatsuba works by pairing two multipliers aibj and ajbi
which have the same weight 2w in the sum defining the large
multiplication. On a tiling representation such as Figure 2, this
means they are aligned on a NW-SE diagonal.

A first observation is that the pattern that results from
Karatsuba can be arbitrary shifted on the rectangle. In other
words it is possible to pair any tile that share the same weight:
as soon as i + j = k + ` = s, the complete product involves
2sW (aibj + akb`), and it is therefore possible to use the
rewriting

aibj + akb` = (ai + ak)(bj + b`)− aib` − akbj (11)

or

aibj + akb` = (ai − ak)(bj − b`) + aib` + akbj (12)

assuming aib` and akbj are already computed. Note that these
formulae generalize (7) and (4).

Graphically, this can be viewed as applying Karatsuba on
a sub-square of the large multiplier. This generalization is in
general less interesting than the classical K-part decomposi-
tion, because the latter exposes more reuse of the diagonal
subproducts. However it could be used to apply Karatsuba
technique to non-square large multipliers: rectangular ones, or
truncated multipliers, for instance.

This generalization is also key to understanding how the
Karatsuba technique can reuse rectangular sub-products.

B. Weight-aligning Rectangular Tiles

In order to use (11) or (12) when the products are rectangu-
lar ones, they need to have the same binary weight. The trick
is therefore to find splittings of the two inputs that expose such
alignment.

Consider the splitting of argument A in WA-bit chunks,
and argument B into WB-bit ones. The weight of aibj is now
2WAi+WBj . Therefore, for aibj and akb` to share the same
weight, we must have WAi+WBj = WAk+WB` for i 6= k
and j 6= `. We can rewrite this as

WAN −WBM = 0 with N,M ∈ N . (13)

Now, the smallest values of N and M to satisfy (13) are
obtained by M = WA/W and N = WB/W where W is
the greatest common divisor (GCD) of WA and WB , i.e.,

W = gcd(WA,WB) .

Hence, the first common weight that appears is 2WNM . Thus,
the smallest multiplier for which Karatsuba can be applied is
of size WM(N + 1)×WN(M + 1).

For example, consider a tile exactly matching the Xilinx
DSP block in unsigned mode: WA = 17 and WB = 24. As
WA and WB are relatively prime, we have W = 1, M = 17
and N = 24. Relation (13) can only be satisfied for N being
multiples of 24 and M being multiples of 17, which is only
useful for very large multipliers starting from 17 · (24 + 1)×
24 · (17 + 1) = 425× 432 bits.

However, if we accept to use the slightly smaller tile size
16× 24 (which means under-using the DSP blocks, but much
less than if we use them as 17 × 17), then we get a much
larger GCD W = gcd(16, 24) = 8, with M = 16/8 = 2 and
N = 24/8 = 3. The minimum large multiplier for which we
may apply Karatsuba is now 8·2·(3+1)×8·3·(2+1) = 64×72.
This specific example is shown in Fig. 3(a). On this figure, we
made the choice that the index of each A chunks is 2i, and
the index of each B chunk is 3j, which makes it easier to spot
the situations where 2i+ 3j = 2k + 3`.

Before we further look into specific implementation issues,
we will first analyze different large multiplier sizes and their
corresponding amount of small multipliers by using their
polynomial representation.

IV. POLYNOMIAL INTERPRETATION

Fast multiplication algorithms are often described as poly-
nomial multiplication [12], [13]. For instance (8) can be read
as the product of two polynomials in the variable x = 2W . The
product of polynomials of similar orders corresponds to large
multipliers that are approximately square. Let us consider a
few potentially useful cases.

A large multiplier of size W (N + 1)M × W (M + 1)N
corresponds to the following polynomial multiplication of an
N+1-term M -sparse polynomial by an M+1-term N -sparse
polynomial, both in x = 2W : N∑

j=0

aMjx
Mj

(M∑
k=0

bNkx
Nk

)
=

2MN∑
i=0

cix
i. (14)

For example, a large multiplier of size 8W × 9W , con-
structed from 2W × 3W tiles, can be expressed as

(
a0 + a2x

2 + a4x
4 + a6x

6
) (

b0 + b3x
3 + b6x

6
)
=

12∑
i=0

cix
i.

(15)
The advantage of this representation is that we can identify

the left-hand side and the right-hand side of (15), which
provides the values of the polynomial coefficients:

c0 = a0b0

c1 = 0

c2 = a2b0

c3 = a0b3

c4 = a4b0

c5 = a2b3

c6 = a0b6 + a6b0

c7 = a4b3

c8 = a2b6

c9 = a6b3

c10 = a4b6

c11 = 0

c12 = a6b6 (16)

which shows where Karatsuba can be applied: one multiplier
can be saved for c6 on this example, with the Karatsuba
identity a0b6 + a6b0 = (a0 − a6) (b0 − b6) + c0 + c12. This
product requires eleven multipliers instead of twelve for the
direct evaluation. The polynomial point of view also tells us
that this is the optimal value, since there are eleven non-zero
ci coefficients.

In general, such an algorithm can be derived that requires
MN +M +N multipliers, which is one less compared to the
direct evaluation.

Another case is constructing a large multiplier of size
2WNM × 2WMN . Here, the polynomial multiplication can
be written as2N−1∑

j=0

aMjx
Mj

(2M−1∑
k=0

bNkx
Nk

)
=

(
A0(x) +A1(x)x

MN
) (

B0(x) +B1(x)x
MN

)
, (17)

where

A0(x) =

N−1∑
j=0

aMjx
Mj

A1(x) =

2N−1∑
j=N

aMjx
Mj−MN

B0(x) =

M−1∑
k=0

bNkx
Nk

B1(x) =
2M−1∑
k=M

bNkx
Nk−MN . (18)

Using a polynomial version of (2), (17) can be expressed
using only three polynomial multiplications, each of which
requires MN multiplier tiles, so in total 3MN instead of
4MN multiplier tiles.

The last considered case is a large multiplier of size
W (2N + 1)M ×W (2M + 1)N . This can be written similar
to (17), but with

A1(x) =

2N∑
j=N

aMjx
Mj−MN

B1(x) =

2M∑
k=M

bNkb
Nk−MN , (19)

i.e., one more term in each of the A1(x) and B1(x)
polynomials. Now, again, three polynomial multiplica-
tions can be computed based on (2). The multiplication
A0(x)B0(x) requires MN multipliers as above. However,
for (A0(x) +A1(x)) (B0(x) +B1(x)) and A1(x)B1(x), it
is now possible to use the approach for W (N + 1)M ×
W (M+1)N multipliers leading to MN+M+N multipliers.
Besides, the product a2MNb2MN appears in both polynomial
multiplications, and, hence, only must be computed once. In
total, a W (2N +1)M ×W (2M +1)N multiplication require
3MN + 2M + 2N − 1 rectangular multipliers instead of
4MN + 2M + 2N + 1 for direct evaluation.

More complexity results for rectangular multipliers are
summarized in Table I. The lower bounds are based on the
number of non-zero coefficients in the resulting polynomial. It
should be noted that the lower bounds can always be obtained,
but sometimes the pre- and post-computation will become
more complex. See, e.g., three-term multiplication with five
square multipliers [14]. It requires division by three, but this
operation is quite cheap on FPGAs [15]. This remains to be
studied in detail.

TABLE I: Number of rectangular WM ×WN tiles for different multiplier sizes. N,M relative prime.

Number of tiles of size WM ×WN

Case Large multiplier size (×W) Tiling Karatsuba Lower bound

a NM ×MN MN - MN
b (N + 1)M × (M + 1)N MN +M +N + 1 MN +M +N MN +M +N
c 2NM × 2MN 4MN 3MN 3MN
d (2N + 1)M × (2M + 1)N 4MN + 2M + 2N + 1 3MN + 2M + 2N − 1 3MN +M +N

TABLE II: Karatsuba cases for M and N when mapped to
Xilinx DSP blocks

M N W Tile size Case Large mult. size Small mult.

2 3 8 16× 24 b 64× 72 11
3 4 6 18× 24 b 90× 96 19
2 3 8 16× 24 c 96× 96 18
3 5 5 15× 25 b 90× 100 23
2 3 8 16× 24 d 112× 120 27
3 4 6 18× 24 c 132× 132 36
3 5 5 15× 25 c 150× 150 45
3 4 6 18× 24 d 160× 168 49
3 5 5 15× 25 d 165× 175 60
17 24 1 17× 24 b 425× 432 449

V. DESIGN OF CONCRETE MULTIPLIERS

In the following, we consider the design of concrete
multipliers targeting recent Xilinx FPGAs with DSP blocks
providing a 18× 25 signed multiplication.

A. Discussion on Other Possible Rectangular Tilings

A natural question to answer is: are there other possibilities
of rectangular tilings like the 16 × 24 tiling discussed in
Section III-B that would lend themselves to Karatsuba pairing?

We considered the following tiles:

• 18 × 24 (with one line of the multiplication performed
using logic resources). This leads to W = gcd(18, 24) =
6, M = 3 and N = 4.

• 15×25 (under-using the DSP in one dimension, and again
with one line of the multiplication performed using logic
resources). This leads to W = 5, M = 3 and N = 5.

Figure 3 shows the smallest possible multipliers on which
Karatsuba can be applied with these tiles. A detailed compar-
ison of the resulting number of small multipliers when using
one of the different options for M , N and W and the cases
of Table I is given in Table II, sorted by the resulting large
multiplier size. We conclude that Karatsuba opportunities are
higher for the 16 × 24 configuration, and select this tile for
actual evaluation in the rest of this work.

Besides, this configuration is also the simplest one to use as
each tile uses just one DSP block without additional logic. As
the result from the pre-addition grows in word size by one bit,
it would require a 17×25 (unsigned) multiplication. However,
it is simple to circumvent this by selecting the alternative form
given in (12), which leads to subtractions in the pre-processing.
The multiplier is now 17× 25 signed, and this fits very well
the 18× 25 signed multiplier available in the DSP block.

TABLE III: Operation counts for similar multiplier sizes

Square Rectangular

Karatsuba Tiling Karatsuba

Size Mult Pre-
add

Post-
add

Size Mult =
Post-add

Mult Pre-
add

Post-
add

51× 51 6 6 6 48× 48 6 6 0 6
68× 68 10 12 22 64× 72 12 11 2 13
102× 102 21 30 51 96× 96 24 18 5 30
119× 119 28 42 70 112× 120 35 27 7 43

B. Results on Concrete Multipliers

We designed several multipliers using the classical Karat-
suba using square tiles, the conventional tiling (without any
reduction) using rectangular tiles as well as the proposed
Karatsuba method using rectangular tiles. The size of the
square tiles was selected to be 17 × 17 and the rectangular
tiles was selected to be 16× 24 as discussed above. The sizes
of the large multipliers were selected to be as close to each
other as possible to achieve a direct comparison. The resulting
tilings are shown in Fig. 4 and their concrete coefficients ci
are given in appendix. Table III compares the operation counts
in terms of their used amount of small multipliers, pre-adders
and post-adders for all three methods.

The proposed Karatsuba method using rectangular tiles
requires the least multipliers except in the 68×68 case, where
classic Karatsuba uses one small multiplier less.

In terms of adders, the proposed method also significantly
improves the numbers of pre- and post-adders. The main
reason for this is of course the larger tile size, which leads
to fewer sub-products, hence pre-adders.

Note that for the larger multipliers using the proposed
method, many of the pre-adders can be shared as they compute
the same values. For the 96×96, only 5 out of 12 pre-additions
compute different values. For the 112× 120 multipliers, only
7 pre-additions are required out of 16 (see appendix). For
the traditional Karatsuba, no sharing is possible as each pre-
addition only appears once.

VI. SYNTHESIS RESULTS

Table III shows the expected trade-off between multipliers
and adders used for pre- and post-processing. To be able to
compare the actual performance and resource consumption
(including pipeline resources etc.), we designed a VHDL
code generator for the multipliers using the different methods

a0a2a4a6

b0

b3

b6

(a) M = 2, N = 3, W = 8
(tile size: 16× 24, pattern size: 64× 72)

a0a3a6a9a12

b0

b4

b8

b12

(b) M = 3, N = 4, W = 6
(tile size: 18× 24, pattern size: 90× 96)

a0a3a6a9a12a15

b0

b5

b10

b15

(c) M = 3, N = 5, W = 5
(tile size: 15× 25, pattern size: 90× 100)

Fig. 3: Minimal Karatsuba patterns with various rectangular tiles matching Xilinx DSP blocks.

a0a2a4a6

b0

b3

b6

(a) 64× 72 (8W × 9W , W = 8)

a0a2a4a6a8a10

b0

b3

b6

b9

(b) 96× 96 (12W × 12W , W = 8)

a0a2a4a6a8a10a12

b0

b3

b6

b9

b12

(c) 112× 120 (14W × 15W , W = 8), see Appendix C

Fig. 4: Rectangular Karatsuba tilings selected for synthesis. They mostly use 16× 24 tiles, replicating the pattern of Fig. 3(a)

discussed above. It was integrated into the FloPoCo open-
source code generator [16]. FloPoCo also provides a state-
of-the-art framework to create and optimize compressor trees
[17], [18]. It was used to implement all the post-adders within
a single compressor tree. For each Karatsuba sub-product, one
of the pre-adders was implemented using the pre-adder within
the DSP block, while the other was implemented using logic.
This further reduces about half of the pre-adders of Table III
that are not shared.

Table IV shows synthesis results on Xilinx Virtex-6 using
ISE. Results for Kintex-7 using Vivado are similar. As ex-
pected from Table III, the tiling approach typically requires the
least logic resources in terms of look-up tables (LUTs) but the
most DSP resources. Using the conventional Karatsuba with
square multipliers helps reducing the DSP count but at the cost
of a highly increased LUT count: more than 50% compared
to the tiling approach. The proposed rectangular Karatsuba
reduces the DSP count compared to the tiling approach with
only a slight increase in logic resources. As a consequence,
the latency (number of cycles) is also reduced.

VII. CONCLUSION AND FUTURE WORK

In this work, an extension of Karatsuba’s method was pre-
sented that exploits rectangular-shaped multipliers. Necessary
conditions were derived showing that Karatsuba’s method can
be applied when the word lengths of the two inputs of these
multipliers have a large GCD. Different large multipliers were
designed for the general case, showing the benefits of the pro-
posed extension compared to the conventional tiling. Based on
that, several concrete multipliers were implemented for recent
Xilinx FPGAs providing 18×25-bit signed multipliers in their
DSP blocks. With this technique, a significant reduction in
arithmetic operations (multipliers and adders) is possible. Syn-
thesis experiments showed that this also predictively translates
to a reduction of DSP blocks and logic resources.

The proposed technique is probably not useful when target-
ing ASIC or software, although it could find applications in
the multiplication of polynomials with very specific sparseness
properties.

Future work will be directed towards the further exploration

TABLE IV: Actual synthesis results obtained for Virtex 6 FPGA (xc6vlx760-ff1760) using Xilinx ISE 13.4, post place&route

Square Rectangular

Karatsuba Tiling Karatsuba

Size DSPs LUTs Cycles fmax [MHz] Size DSPs LUTs Cycles fmax [MHz] DPSs LUTs Cycles fmax [MHz]

68× 68 10 1405 11 215.1 64× 72 12 764 10 217.5 11 867 10 247.0
102×102 21 2524 13 192.0 96× 96 24 1586 13 215.1 18 2032 14 195.1
119×119 28 3438 15 192.6 112×120 35 2293 16 218.9 27 2292 14 190.1

of possible large multiplier sizes, and exploring more formulae
[12]. Another goal is a fully automated design flow that
selects the best fitting tile, integrated in a generic multiplier
optimization framework [3], [9].

REFERENCES

[1] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Soviet Physics Doklady, vol. 7, p. 595, Jan. 1963.

[2] UltraScale Architecture DSP Slice User Guide (v1.6), Xilinx Corpora-
tion, 2018.

[3] F. de Dinechin and B. Pasca, “Large Multipliers with Fewer DSP
Blocks,” in Field Programmable Logic and Application (FPL). IEEE,
2009, pp. 250–255.

[4] B. Pasca, “High-performance floating-point computing on reconfigurable
circuits,” Ph.D. dissertation, École Normale Supérieure de Lyon, 2012.

[5] G. I. Malaschonok and E. Satina, “Fast multiplication and sparse
structures,” Programming and Computer Software, vol. 30, no. 2, pp.
105–109, 2004.

[6] J. Van Der Hoeven and G. Lecerf, “On the bit-complexity of sparse
polynomial and series multiplication,” Journal of Symbolic Computation,
vol. 50, pp. 227–254, 2013.

[7] C. Moore, N. Hanley, J. McAllister, M. O’Neill, E. O’Sullivan, and
X. Cao, “Targeting FPGA DSP slices for a large integer multiplier
for integer based FHE,” in Financial Cryptography and Data Security.
Springer, 2013, pp. 226–237.

[8] S. Gao, D. Al-Khalili, N. Chabini, and P. Langlois, “Asymmetric large
size multipliers with optimised FPGA resource utilisation,” Computers
& Digital Techniques, IET, vol. 6, no. 6, pp. 372–383, 2012.

[9] M. Kumm, J. Kappauf, M. Istoan, and P. Zipf, “Optimal design of large
multipliers for FPGAs,” in IEEE Symposium on Computer Arithmetic
(ARITH), 2017, pp. 131–138.

[10] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[11] M. K. Jaiswal and R. C. C. Cheung, “VLSI Implementation of Double-
Precision Floating-Point Multiplier Using Karatsuba Technique,” Cir-
cuits, Systems, and Signal Processing, vol. 32, no. 1, pp. 15–27, Jul.
2012.

[12] P. L. Montgomery, “Five, six, and seven-term Karatsuba-like formulae,”
IEEE Transactions on Computers, vol. 54, no. 3, pp. 362–369, Mar.
2005.

[13] R. Brent and P. Zimmermann, Modern Computer Arithmetic. Cam-
bridge University Press, 2010.

[14] M. Bodrato and A. Zanoni, “Integer and polynomial multiplication:
Towards optimal toom-cook matrices,” in Symbolic and Algebraic Com-
putation. ACM, 2007, pp. 17–24.

[15] H. F. Ugurdag, F. de Dinechin, Y. S. Gener, S. Gren, and L.-S. Didier,
“Hardware division by small integer constants,” IEEE Transactions on
Computers, vol. 66, no. 12, pp. 2097–2110, 2017.

[16] F. de Dinechin and B. Pasca, “Custom arithmetic datapath design for
FPGAs using the FloPoCo core generator,” IEEE Design & Test of
Computers, no. 99, pp. 1–1, 2012.

[17] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa,
“Arithmetic core generation using bit heaps,” in Field Programmable
Logic and Application (FPL). IEEE, 2013, pp. 1–8.

[18] M. Kumm and J. Kappauf, “Advanced compressor tree synthesis for
FPGAs,” IEEE Transactions on Computers, pp. 1–1, 2018.

APPENDIX

A. Coefficients for 8W × 9W = 64× 72

c0 = a0b0

c1 = 0

c2 = a2b0

c3 = a0b3

c4 = a4b0

c5 = a2b3

c6 = a0b6 + a6b0 = (a0 − a6) (b6 − b0) + c0 + c12

c7 = a4b3

c8 = a2b6

c9 = a6b3

c10 = a4b6

c11 = 0

c12 = a6b6

B. Coefficients for 12W × 12W = 96× 96

c0 = a0b0

c1 = 0

c2 = a2b0

c3 = a0b3

c4 = a4b0

c5 = a2b3

c6 = a0b6 + a6b0 = (a0 − a6)(b6 − b0) + c12 + c0

c7 = a4b3

c8 = a2b6 + a8b0 = (a2 − a8)(b6 − b0) + c2 + c14

c9 = a0b9 + a6b3 = (a0 − a6)(b9 − b3) + c3 + c15

c10 = a4b6 + a10b0 = (a4 − a10)(b6 − b0) + c4 + c16

c11 = a2b9 + a8b3 = (a2 − a8)(b9 − b3) + c5 + c17

c12 = a6b6

c13 = a4b9 + a10b3 = (a4 − a10)(b9 − b3) + c7 + c19

c14 = a8b6

c15 = a6b9

c16 = a10b6

c17 = a8b9

c18 = 0

c19 = a10b9

C. Coefficients for 14W × 15W = 112× 120

Terms which are conflicting each other are marked with
double underlines. Terms in square brackets are not realized
due to conflicts.

c0 = a0b0

c1 = 0

c2 = a2b0

c3 = a0b3

c4 = a4b0

c5 = a2b3

c6 = a0b6 + a6b0 = (a0 − a6)(b6 − b0) + a6b6 + a0b0

c7 = a4b3

c8 = a2b6 + a8b0 = (a2 − a8)(b6 − b0) + a2b0 + a8b6

c9 = a0b9 + a6b3 = (a0 − a6)(b9 − b3) + a0b3 + a6b9

c10 = a4b6 + a10b0 = (a4 − a10)(b6 − b0) + a4b0 + a10b6

c11 = a2b9 + a8b3 = (a2 − a8)(b9 − b3) + a2b3 + a8b9

c12 = a0b12 + a12b0 + a6b6

c13 = a4b9 + a10b3 = (a4 − a10)(b9 − b3) + a4b3 + a10b9

c14 = a2b12 + a8b6

[
= (a2 − a8)(b12 − b6) + a2b6 + a8b12

]
c15 = a6b9 + a12b3

[
= (a6 − a12)(b9 − b3) + a6b3 + a12b9

]
c16 = a4b12 + a10b6

[
= (a4 − a10)(b12 − b6) + a4b6 + a10b12

]
c17 = a8b9

c18 = a6b12 + a12b6 = (a6 − a12)(b12 − b6) + a6b6 + a12b12

c19 = a10b9

c20 = a8b12

c21 = a12b9

c22 = a10b12

c23 = 0

c24 = a12b12

