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Abstract—The atan2 function computes the polar angle arc-
tan(y/x) of a point given by its cartesian coordinates. It is
widely used in digital signal processing to recover the phase of
a signal. This article studies for this context the implementation
of atan2 with fixed-point inputs and outputs. It compares the
prevalent CORDIC shift-and-add algorithm to two multiplier-
based techniques. The first one computes the bivariate atan2
function as the composition of two univariate functions: the
reciprocal, and the arctangent, each evaluated using bipartite
or polynomial approximation methods. The second technique
directly uses piecewise bivariate polynomial approximations of
degree 1 or 2. Each of these approaches requires a relevant
argument reduction, which is also discussed. All the algorithms
are last-bit accurate, and implemented with similar care in the
open-source FloPoCo framework. Based on synthesis results on
FPGAs, their relevance domains are discussed.

Index Terms—arctangent, atan2, hardware, FPGA arithmetic

I. INTRODUCTION

A. Definitions and notations

In all this article we implement the function atan2(y,x) =
arctan(y/x). This function (part of the standard mathematical
library) returns an angle in [−π,π]. Compared to a plain
composition of division and the arctan function (that returns an
angle in [−π/2,π/2]), atan2(y,x) keeps track of the respective
signs of x and y. It is used to compute the phase of a complex
number x+ iy.

We are interested in implementations of this function for
fixed-point input and outputs, each on w bits. As arctan( ky

kx ) =
arctan( y

x ), the range of the inputs is not really relevant, as
long as both x and y are in the same format. We choose to
have both inputs as fixed-point numbers in the range [−1,1),
represented classically in two’s complement.
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Fig. 1. Fixed-point arctan(y/x)

There are two sensible choices for the output.
• It may be expressed in radian, from −π to π;

• It may be expressed in [−1,1), in which case the function
being computed is 1

π
atan2(y,x). We will refer to this

option as “binary angles”.
There are several reasons for preferring binary angles in a
fixed-point context. The first is that it fully uses the represen-
tation space. An output on [−π,π] will be coded on a fixed-
point format that may represent the interval [−4,4). Therefore,
all the codes between π and 4 will never be used.

The second is that it slightly simplifies implementation: the
modulo-2π periodicity of radian angles becomes a modulo-2
periodicity that comes for free in two’s complement binary
arithmetic. For instance, the fact that the two’s complement
output range [−1,1) is slightly asymmetrical is not a problem,
as modulo-2 arithmetic will map angle 1×π to angle −1×π

as it should. This will save some computations in the range
reduction, and allow it to be exact, where radian angles
require computations with the constant π/2 which cannot be
represented exactly in binary.

The third reason for preferring binary angles is that it gener-
ally simplifies the application context as well. For instance, in
QPSK decoding, the atan2 of incoming samples are averaged
to estimate a phase shift. Computing this average is simpler
with binary angles than with radian angles, again because it
is a modulo operation.

For all these reasons, the focus of this article is the function
(sometimes called atan2Pi)

f (x,y) =
1
π

atan2(y,x) .

However, all the algorithms in this paper may be straight-
forwardly adapted to radian angles.

B. Overview of hardware implementation methods

This paper compares several hardware implementation tech-
niques, some classical, some new. To ensure a meaningful
comparison, each technique is implemented with the same
care, and with the same accuracy objective: f (x,y) is computed
with last-bit accuracy (LBA), i.e. the error (the difference
between the returned result and the infinitely accurate one)
is less than the weight of the least significant bit (LSB) of
the result. This is sometimes called faithful rounding in the
literature. LBA takes full advantage of the output format, but
is slightly less accurate than correct rounding. However, it
can be obtained at a much smaller cost: correct rounding may



require twice the internal precision [1], which is not justified
in a hardware context. Last-bit accurate architectures are also
almost bit-for-bit compatible with each other (differing by at
most one bit in the last place) which enables a fair comparison
of methods.

The most classical technique for fixed-point hardware im-
plementation of atan2 is CORDIC. It performs a series of
micro-rotations of the point (x,y) to send it on the x axis.
The angle of each micro-rotation is chosen so that it can be
implemented by shift and add. CORDIC is studied in Sec-
tion III, which contributes a fine error and range analysis that
guarantees last-bit accuracy at the smallest possible datapath
width.

One could consider tabulating all the values of atan2 in
a table addressed by a concatenation of x and y. However,
this table would have 22w entries, which is impractical even
for small values of w. Besides, classical table-compression
techniques (bipartite, etc) do not apply here, since they address
functions of one variable, whereas f (x,y) is a function of two
variables.

The next technique, studied in Section IV and illustrated
in Figure 5, therefore reduces atan2 to two functions of one
variable: the reciprocal 1/x, used to compute the division z =
y/x, and the arctangent, used to compute arctan(z). There is a
wide body of techniques that can be used to compute functions
of one variable. However, we now have the problem that z may
become very large when x comes near to zero. This would
require either a floating-point format, or a very large fixed-
point format for z. This can be avoided by a scaling-based
range reduction that will be detailed in Section II.

The last and most original technique, studied in Section V, is
the use of a piecewise approximation by bivariate polynomials.
We have limited experiments to polynomials of first and
second degree because the number of multipliers in bivariate
polynomials explodes with the degree. Thus, atan2(y,x) will
be approximated by P1(y,x) = ax+ by+ c, respectively P2 =
ax+by+c+dx2 +ey2 + f xy. The corresponding architectures
are depicted by Figures 7 and 8.

It is interesting to compare rough estimations of the asymp-
totic complexity of each approach with respect to the precision.
It is well known that CORDIC area and delay are quadratic
in the precision. The other methods are table-based and will
therefore be exponential in area. However their delay should
be sub-quadratic, with the bivariate approach having shorter
latency, but larger tables. The main objective of this article
is therefore to study the relevance domain of each method in
Section VI.

This work essentially focuses on FPGAs. An unexpected
result is that, even on modern FPGAs enhanced with DSP
blocks and memories, CORDIC is a clear winner. This will
be analyzed in SectionVI. However, this work also contributes
an open-source VHDL generator that covers all the presented
methods, so that comparisons can be performed in other
contexts.
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 x < 0
y < 0
y < x

⇒ atan2(y,x) =− π

2 − atan2(|x|, |y|)

Fig. 2. One case of symmetry-based range reduction. The 7 other cases are
similar.

C. Notations for fixed-point formats

In all the article, we will describe a signed fixed-point
format by sfix(m, l) and an unsigned fixed-point format by
ufix(m, l). The two integers m and l denote respectively the
weights of the most significant bit (MSB) and LSB of the
format. For instance our inputs and outputs in [−1,1) on w
bits will be on the format sfix(0,−w+ 1): the sign bit has
weight 20 and the LSB has weight 2−w+1.

II. RANGE REDUCTIONS

A. Using parity and symmetries

As arctan is an odd function, inputs may be straightfor-
wardly reduced to the positive quadrant. Besides, there is a
symmetry between x and y:

arctan(y/x) = π/2− arctan(x/y).

If y > x, we may therefore swap x and y, so the computation
is reduced to the first octant (x≥ 0, y≥ 0, y < x).

Similar range reduction formulae may be used on other
quadrants, one example being given by Figure 2.

Implementing such argument reduction formulae is much
easier with binary angles. Indeed, the final addition of π/2
becomes an addition of 1/2 to a number in [−1,1) (an exact
operation with only a one-bit carry propagation). Conversely,
adding π/2 would require a full-width carry propagation,
while entailing a systematic error due to the rounding of the
irrational π/2.

The absolute values |x| and |y| require negating negative
input values (the value -1, which has no opposite in two’s
complement arithmetic, must be saturated). This may be
implemented by a full-size subtraction if we want them to
be exact, or by bitwise complement (which is smaller and has
lower latency) at the cost of an error on the last bit. The
two options will be relevant, depending on the subsequent
algorithm.

B. Scaling range reduction

Due to the division by x, the value of z = y/x can become
very large. On the plot of atan2 over a quadrant (Figure 3,
left), this translates to much larger slopes when y is small.

For an approach that explicits the computation of z, or for a
bivariate polynomials approximation, it is therefore interesting
to avoid this region. This can be easily performed by the
architecture depicted on Figure 4 [2]. This architecture first
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Fig. 3. 3D plot of atan2 over the first octant.

counts how many leading zeroes are common to both x and y.
This leading zero count is called s. Then, thanks to the trivial
identity

arctan
(2sy

2sx

)
= arctan(

y
x
)

both x and y may be scaled up by a shift left of s bits, resulting
in x≥ 1

2 .

|x| |y|

bitwise OR

LZC

ShiftX ShiftY

s

xr yr 0 1
x0

1
y

s = 0

s = 1

s = 2

s = 3
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Fig. 4. Scaling range reduction

III. CORDIC

CORDIC computation of the arctangent is classically [3],
[1] described as x1 = x

y1 = y
α0 = 0

and

 xi+1 = xi−2−isiyi
yi+1 = yi +2−isixi
αi+1 = αi− si arctan2−i

where si = −sgn(yi) (vectoring mode). This iteration con-
verges as follows:

xi −→ K
√

x2 + y2

with K =
∞

∏
i=1

√
1+2−2i ≈ 1.1644...

yi −→ 0
αi −→ arctan yr

xr

It may produce a binary angle if the constants arctan2−i

are expressed in this format. Note that thanks to the initial

argument reduction to the [0,π/4] octant, we may start from
iteration 1 instead of iteration 0, which leads to a smaller value
of K than found in most textbooks .

In FPGA technology, addition carry propagation is very fast
compared to generic logic. Therefore we choose to ignore
CORDIC variants (reviewed in [1], [4] and [5]) that accelerate
the iteration by using carry-save or other forms of redundant
arithmetic. This choice will be validated by the results in
Section VI.

Also, we are interested in an unrolled implementation that,
once pipelined, will produce one result each cycle.

A. Error analysis and datapath sizing

If the iteration is computed with infinite accuracy, the error
on αi after i iterations is smaller than 2−i radian [1]. To obtain
an approximation error on the binary angle smaller than 2−w

(i.e. smaller than one half-ulp of our result), we may therefore
stop after iteration w−1.

Let us now discuss rounding errors, and more generally
fixed-point implementation issues. Let us call p the weight
of the LSB on the xi and yi datapath. It is easy to see that
0≤ xi < K

√
2≈ 1.646. This defines the MSB of xi: its format

will be ufix(1,−p).
We also have yi < K sinαi. Since αi ≤ 2−i, we have |yi| <

2−i+1. This defines the MSB of yi: its format will be sfix(−i+
2,−p).

Let us now study the error of implementing the CORDIC
iteration. Formally, if we note x̃i and ỹi the computed values
we may define εx

i = x̃i−xi, and similarly ε
y
i = ỹi−yi. The only

source of error in each iteration is the error ux
i and uy

i due to
the loss of the bits discarded in the shifts. This is written

x̃i+1 = x̃i− si2−iỹi +ux
i

= xi + ε
x
i − si2−i(yi + ε

y
i )+ux

i

= xi+1 + ε
x
i − si2−i

ε
y
i +ux

i

Hence the recurrence defining the accumulation of rounding
errors:

ε
x
i+1 = ε

x
i − si2−i

ε
y
i +ux

i

If we consider a common bound ε i of εx
i and ε

y
i , and the bound

2−p on ux
i , we get

ε i+1 = ε i(1+2−i)+2−p

with ε1 = 0, unless the opposite in the range reduction is
computed by simply complementing the bits, in which case
ε1 = 2−p. This only marginally adds to the overall error.

To build an accurate architecture, the recurrence ε i+1 =
ε i(1+2−i)+2−p is computed up to i = w−1. We then define
p = w− 1− dlog2εw−1e as the precision of the xi and yi
datapaths. It ensures that yi is computed with enough accuracy
to ensure that rounding errors do not change its sign in a way
that cannot be corrected by CORDIC.

Finally, considering that |yi|< 2−i+1, the term 2−iyi added
or subtracted to xi is smaller than 2−2i+1. Therefore, we may
stop updating xi as soon as 2i−1 > p.



On the αi datapath, the error analysis is much simpler: each
arctan2−i, correctly rounded to the precision pα , contributes
at most one half-ulp to the error. The final rounding will con-
tribute 2−w. We therefore need gα = 1+dlog2 ((w−1)×0.5)e
guard bits to absorb all these errors.

Here the only trick is that the final rounding may be
performed by truncation, provided 2−w has been added to one
of the arctan2−i constants.

IV. RECIPROCAL-MULT-ARCTAN

This variant, illustrated by Figure 5 (where xr and yr are the
reduced inputs), is the most natural but requires the scaling
argument reduction of Figure 4. After this scaling, we have
0.5≤ x≤ 1. Since we are on the first octant where y≤ x, we
also have z = y/x ∈ [0,1]. On such intervals, both 1/x and
arctan(z) are regular (see Figure 6) and can be fully tabulated,
or well approximated by polynomials. The main difficulty will
be to define the bitwidths of r and z that will enable last-bit
accuracy at the minimal cost.

Here again, the situation is much simpler with binary angles.
The output of the arctangent box belongs to [0,1/4] and is
needed in the ufix(−2,−w+ 1) format. Its two leading bits
will be added, error-free, by the reconstruction.

A. Related work

This technique is classically used in software [6], [7].
The division z = y/x is performed in the working precision,
then a high-degree odd polynomial is used for an accurate
approximation of arctan(z).

In hardware, early works [8], [9] use piecewise linear
approximations of unspecified accuracy for the computation
of arctan(z) to some precision. On FPGAs, this technique is
used in [2] with multipartite tables [10] to save multipliers.
Comparisons to CORDIC are only given for 12-bit precision
(the main claim is a near halving of power consumption).
Similarly, the accuracy of the architecture is only measured
for 12-bit precision (10.3 bits in the worst case). In a follow-
up article [11] the division is transformed to a subtraction in
the logarithmic domain. However the architecture now requires
three function evaluations (two log conversions on the input,

xr

yr

1/x ×
r /

?
/

w−2

/
w−1

1
π

arctan(z)z /
?

α/
w−2

Fig. 5. Architecture based on two functions of one variable
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and one arctan(2z)). A non-uniform decomposition is used for
the evaluation of arctan(2z).

The present section generalizes [2] to more precisions, and
with more rigorous rules of the game (last-bit accuracy) and
error analysis. It also uses polynomials of larger degrees, as
in [12], to approximate the unary functions when needed.

B. Error analysis

Let us define formally the errors of the reciprocal and
arctangent boxes:

εrecip = r−1/x

εatan = α− 1
π

arctan(z)

We have to truncate or round the product to keep the
number of input bits to the arctangent box small. Therefore,
the multiplier will not be exact: let us define its error

εmult = z− yr

We may now define the total error on z:

εz = z− y
x

= z− yr + yr− y
x

= εmult + yεrecip

As 0≤ y≤ 1 we will have

|εz| ≤ |εmult|+ |εrecip|

For last-bit accuracy, the total error must remain smaller
than u = 2−w+1. The total error is defined as

εtotal = α− f (x,y)

=

(
α− 1

π
arctan(z)

)
+

(
1
π

arctan(z)− f (x,y)
)

= εatan + ε2

From arctan′(x) = 1
1+x2 we have

arctan(z+ ε)− arctan(z)≈ ε
1

1+ x2 .

From this we deduce that, for z ∈ [0,1],∣∣∣∣ 1
π

arctan(z+ ε)− 1
π

arctan(z)
∣∣∣∣< 1

3
ε

where the rounding up of 1
π

to 1
3 accounts for the higher order

error terms. The previous inequality may also be observed on
Figure 6. Applying it to z = y/x+ εz, we get:

|ε2|=
∣∣∣∣ 1
π

arctan(z)− 1
π

arctan(y/x)
∣∣∣∣< 1

3
|εz|

and finally

|εtotal|<
1
3
|εrecip|+

1
3
|εmult|+ εatan (1)



C. Datapath dimensioning

Let us first consider the simpler case when the two functions
are purely tabulated. The arctangent table may be correctly
rounded to its output format. We therefore have |εatan| ≤ u/2,
and we need |εtotal| < u = 2−w+1 (last-bit accuracy). Unfor-
tunately, we cannot use a correctly-rounded reciprocal table,
because we want its output to be in [1,2) and not in (1,2]
when the input is in [ 1

2 ,1). What we tabulate for r is therefore
the correct rounding of 1/x−2−w to the format ufix(1,−w).
This entails |εrecip| ≤ u.

The multiplier itself does not need to be correctly rounded.
A truncated multiplier, faithful to an output format ufix(0,−w)
for z will entail |εmult| ≤ u/2. This combination of errors
satisfies (1). Interstingly, however, this error bound is not
reached: exhaustive tests (up to w = 12) show that LBA is still
achieved with a truncated multiplier faithful to ufix(0,−w+1).

A correctly rounded multiplier adds to the cost of the
multiplier (by requiring to compute and sum all its partial
products), but it provides the same accuracy for z using one
less bit. Saving one bit on z will reduce the size of the
arctangent box, possibly halving it. This trade-off between the
multiplier and the arctangent box has not been fully studied
yet.

Using a black-box polynomial approximator [12] or the
multipartite method [10] entails that the two functions are
themselves last-bit accurate. In this case, we may no longer
ensure |εatan| ≤ u/2 at a reasonable cost, due to the Table
Maker’s dilemma [1]. What is possible is a more accu-
rate implementation that will ensure |εatan| ≤ 3u/4. We now
have a u/4 error budget to distribute among the multiplier
and the reciprocal table. With the same reasoning, using a
ufix(1,−w−1) format for r and a ufix(0,−w) for z will satisfy
(1).

This analysis has been implemented in the FloPoCo gen-
erator (FixAtan2 operator). This program builds an archi-
tectures for any size w and degree d. For d = 1, the bipartite
method is currently used, and the multipartite method should
be used in the near future.

D. FPGA-specific considerations

For small precisions, the following optimizations may apply
on some FPGAs that embed hard memory and multiplier
blocks.

The hard multipliers will compute the full product, so
truncation will be faithful, and correct rounding will come
at the expense of only one addition which can be mapped in
the post-adder included in all recent DSP blocks. The latter
is relevant if it saves one hard memory block, for instance in
the situations depicted below.

Memory blocks are of fixed size (20Kb and 36Kb on current
Altera and Xilinx chips respectively). They are dual-ported,
which means that we can store two tables in one single block.
The largest architecture that fits in a single 20Kb block is
for w = 11, with a reciprocal table of 29 × 11 bits and an
arctangent table of 210× 9 bits, both packed in a dual-port
block configured as 210 × 20. In a 36Kb block, the largest
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Fig. 7. Architecture based on a first order bivariate polynomial

architecture that fits is for w = 12. Then we may have a 210×
12 reciprocal table and a 210× 10 arctangent table. In both
cases the multiplier must be correctly rounded.

V. PIECEWISE BIVARIATE APPROXIMATION

In this section, we evaluate atan2(y,x) using a piecewise
bivariate polynomial approximation of degree 1 or 2. We are
not aware of comparable work in the literature.

The idea is to decompose the domain of Figure 4 into a grid
of square subdomains indexed by the first few bits of x and
y. On each subdomain, we evaluate a bivariate polynomial in
the remaing bits. In other words, let xh (resp. yh) the number
formed of the k (resp. k+ 1) MSBs of xr (resp. yr). Let δx
and δy the numbers formed of their w−k−1 respective LSBs,
such as {

xr = xh +δx
yr = yh +δy

The bits (xh,yh) are used to index a table of the coefficients
of bivariate polynomials approximating atan2(y,x) on each
subdomain (see Figures 7 and 8):

atan2(y,x)≈ Pxhyh(δx,δy) .

As illustrated by Figure 3, such approximation benefits from
the scaling range reduction of Figure 4.

A. First order bivariate approximation

Here
Pxhyh(δx,δy) = a ·δx+b ·δy+ c

A first way of obtaining a, b and c is the Taylor series around
point (x0,y0):

T1(x,y) ≈ f (x0,y0)

+ ∂

∂x f (x0,y0)(x− x0)+
∂

∂y f (x0,y0)(y− y0)

Taking for (x0,y0) the centre of a square subdomain indexed
by (xh,yh), we may obtain the coefficients a, b and c.

The multiplications a ·δx and b ·δy are of reduced size, as
δx = x− xh < 2−k (idem for δy).

The coefficients a, b and c can also be obtained using a
different approach. A degree-1 bivariate polynomial is a plane.
Three points from the surface of f define a unique plane
that goes through these three points. This plane is a bivariate
degree-1 approximation of the function. Therefore, if we chose
three points of the form (x,y, f (x,y)) with (x,y) inside the
square subdomain, the equation of the plane defined by these
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three points will provide candidate coefficients a, b and c. If
the three points are very close to (x0,y0) this methods gives
the Taylor coefficients. Chosing a larger triangle inside the
square subdomain actually provides a better approximation to
the function.

B. Second order bivariate approximation

The approach is very similar to the previous one. The
motivation for using the second order is to provide a better
approximation, which will enable a smaller value of k, hence
a smaller coefficient table. We approximate atan2(y,x) as:

T2(xr,yr)≈ Pxhyh(δx,δy)

≈ a.δx+b.δy+ c+d(δx)2 + e(δy)2 + f δx.δy

The coefficients a through f are again obtained by using
the Taylor series for atan2(yr,xr), around a point (x0,y0):

T2(xr,yr) = f (x0,y0)

+ ∂

∂x f (x0,y0)(xr− x0)+
∂

∂y f (x0,y0)(yr− y0)

+ 1
2

∂ 2

∂x2 f (x0,y0)(xr− x0)
2

+ 1
2

∂ 2

∂y2 f (x0,y0)(yr− y0)
2

+ ∂ 2

∂x∂y f (x0,y0)(xr− x0)(yr− y0)

Replacing f by atan2(yr,xr), and performing the variable
change xr = xh +δx and yr = yh +δy, we get:

T2(xr,yr) = atan2(yh,xh)+
−yh

x2
h+y2

h
δx+ xh

x2
h+y2

h
δy

+ xhyh
(x2

h+y2
h)

2 δx2 + −xhyh
(x2

h+y2
h)

2 δy2 +
y2

h−x2
h

(x2
h+y2

h)
2 δx2δy2

C. Error analysis

We limit the discussion to the approximation of atan2(xr,yr)
by the second order Taylor polynomial, as the case of the
first order method is simpler. Our goal is to produce a result
which is within 1 unit in the last place (ulp) from the exact
mathematical result, meaning:

εtotal < 2−w

where εtotal is the total error and:

εtotal = εmethod + ε f inal round + εround

The magnitude of εmethod , the method error, is determined
by the parameter k. Limiting the approximation to the second
order terms results in:

εmethod =
∞

∑
i=3

(cx ixi + cy iyi + ∑
k,l, k+l=i

cx ky lxkyl)

where the cx i’s and cy i are obtained by expanding the Taylor
series. εmethod is bounded by:

εmethod Max = cx max
∞

∑
i=3

(2−k)i + cy max
∞

∑
i=3

(2−k)i

+ cxy max
∞

∑
i=3

(2−k)i

< (cx max + cy max + cxy max)
2−3k

1−2−k

(2)

cx max, cy max and cxy max being the maximum values of cx, cy,
and cxy. Equation 2 determines a bound for εmethod , which, in
turn, determines the value of k, that must satisfy k > dw

3 e. But
this is a pessimistic bound. In practice, we set the value of k
more optimistically, then fill the table, and compute εmethod in
each point of the domain using the actual coefficient values.
If the error is above budget, k is increased. Using the actual
values for the coefficients provides a tighter bound on εmethod .

The error due to the final rounding ε f inal round can be limited
to 1/2ulps by rounding the final result to the output accuracy.

Each term of T2(xr,yr), except for c, brings to the final
sum an error due to the truncation/rounding of the multiplica-
tions/squares, and an error due to storing the real coefficients
in the table. The expressions for the error terms are given after
the variable change. For a ·δx, the error is:

εa·δx = pa·δx−a ·δx
= (δx · ã+ εmultaxr

)−a ·δx
= (δx(a+ εa table)+ εmulta·δx)−a ·δx
= εmulta·δx +δx · εa table

The same holds for b ·δy term. The error due to c in the final
sum comes from storing the coefficient in the table:

εc = εc table

For the second order terms, the error can be found in a similar
manner:

εd·δx2 = pd·δx2 −d ·δx2

= (pδx2 d̃ + εmultd·δx2 )−d ·δx2

= ((δx2 + εsqr
δx2 )(d + εd table)+ εmultd·δx2 )

− d ·δx2

= δx2 · εd table +d · εsqr
δx2 + εsqr

δx2 · εmultd·δx2

The same holds for e ·δy2. Lastly, for f ·δx ·δy the error can
be expressed as:

ε f ·δx·δy = p f ·δx·δy− f ·δx ·δy
= (pδx·δy f̃ + εmult f ·δx·δy)− f ·δx ·δy
= ((δx ·δy+ εmultδx·δy)( f + ε f table)

+ εmult f ·δx·δy)− f ·δx ·δy
= δx ·δyε f table + f · εmultδx·δy

+ εmultδx·δy · εmult f ·δx·δy



This gives the expression for εround :

εround = εaδx + εbδy + εc + εdδx2 + εeδy2 + ε f δxδy

Let us assume that the errors due to storing the coefficients
in the tables are all equal to εtable and that the errors due
truncation/rounding of multiplications and squares are εmult
and εsqr respectively. Thus, εround becomes:

εround = εmult(2+ f +2εsqr + εmult)
+ εtable(1+δx+δy+δx2 +δy2 +δx ·δy)
+ εsqr(d + e)

(3)

D. Datapath dimensioning

As in the case of the previous sections, the error analysis
ensures that the final result is within less than 1 ul p of the
mathematical result. It also allows us to create architectures
that compute with the minimal amount of resources.

Thus, let us analyze the required number of additional guard
bits g due to ε f inal round and εround . Due to ε f inal round we
must extend the precision of our computations to −w (from
−w+1). The contribution due to εround is worth the discussion.
From equation 3, εround is influenced by the precision of the
multiplications and squares. It is also influenced by precision
of the stored coefficients, which depends on our choice for the
k parameter. This is due to the dependence of εround to δx and
δy, which satisfy δx < 2−k and δy < 2−k.

When deciding the value of g, we attempt try to strike a
balance between the size of the multiplications and that of the
coefficient tables.

VI. RESULTS AND DISCUSSION

This section presents synthesis results obtained for Virtex 6
(6vhx380tff1923) using ISE 14.7.

A. Logic-only synthesis

Tables I and II show results when the multipliers as well
as the tables are synthesized purely in logic (in FPGA Look-
Up Tables, or LUT). In this case, we use faithful truncated
multipliers to save resources and latency. Degree 0 uses plain
tabulation, degree 1 uses a bipartite approximation [10], and
degree 2 and above use a Horner scheme inspired by [12].
The squarers of Figure 8 also use bipartite approximation
(which saves resources over a dedicated squarer for the small
precisions needed here).

The objective of these tables is to compare the methods
in absolute terms. A first observation is that CORDIC be-
haves extremely well on modern FPGAs. The multiplier- and
table-based methods never perform better in area, and only
rarely beat its latency. This is especially disappointing as the
architecture of Figure 8 exhibits a lot of parallelism. The
comparison between CORDIC and the RecipMultAtan method
is consistent with the findings of [2].

The implementation of combined sine and cosine (which
can be viewed as the inverse function of atan2) was studied
in [13]. Interestingly, it lead to the opposite conclusion: for
sine/cosine, it was shown that CORDIC had longer latency

than multiplier-based methods even when the multipliers were
implemented in logic.

The bivariate approximation methods could be compared to
a bivariate interpolation technique used in [14]. The technique
used there resorts to two sequential interpolation processes (on
x, then on y). The results reported in that work (extrapolated
from a different FPGA family, Altera Stratix II), tend to show
that this bivariate interpolation technique has longer latency
and consumes even more resources, mainly due to the high
memory requirements.

It is interesting to re-assess the complexity asumption made
in the introduction in the light of these results. In principle,
classical (i.e. non-redundant) CORDIC is quadratic both in
area and delay: The CORDIC algorithm in precision w con-
sists of about w iterations, each consisting of three add/sub
operations of about w bits, hence the quadratic area. Besides,
there is a carry propagation in each iteration, whose LSB input
depends on the MSB of the previous iteration: there is a critical
path of size w2.

On the one hand, Table I indeed exhibit this quadratic
area. However, the constant is very small. Specifically, we can
observe that the area of CORDIC is roughly 3w2. This means
that each CORDIC iteration is indeed implemented in 3 LUT
per bit. In other words, a multiplexed addition and subtraction
is mapped to a row of LUTs, and therefore consumes no more
than a simple addition.

On the other hand, the latency of CORDIC does not seem
quadratic, it seems linear in w. This is explained by the fact
that the carry propagation delay is about 30 times faster than
the standard routing used between two iterations. It justifies
a posteriori the choice of ignoring redundant versions of
CORDIC.

TABLE I
LOGIC-ONLY SYNTHESIS RESULTS

Bitwidth Method LUT Latency (ns)
CORDIC

8 173 9.3
12 435 14.6
16 734 19.7
24 1504 31.0
32 2606 43.1

Taylor degree 1 / Plane
8 207 12.64

12 1258 14.74
16 37744 20.20

Taylor degree 2
8 356 13.72

12 469 14.75
16 1509 17.90

RecipMultAtan
8 degree 0 175 11.8

12 degree 0 683 16.2
12 degree 1 443 19.0
16 degree 1 1049 19.1
24 degree 2 2583 35.2
32 degree 2 6190 40.7
32 degree 3 5423 50.8



TABLE II
BREAKDOWN OF AREA AND LATENCY FOR RECIPMULTATAN METHOD

LZC Shift Recip Mult Atan
12 bits area 12 2x36 149 159 220

delay 1.63 1.72 2.23 4.22 2.54
16 bits area 16 2x47 294

delay 2.5 1.76 5.9

A second observation is that the degree 1 bivariate approxi-
mation is never interesting. Its size explodes too fast, and this
even impacts the latency.

The scaling-based argument reduction is quite small and
fast, as illustrated by Table II. In [2], the shifts were im-
plemented as one-hot encoding then multiplication in a DSP
block. This is probably overkill.

B. Pipelining, DSP- and table-based results

Small multipliers (or DSP blocks) and memories are embed-
ded in all recent FPGAs. Table III shows some synthesis re-
sults for pipelined operators at various frequencies, exploiting
these resources when possible. The multiplier-based methods
do indeed improve logic count, but bring no clear advantage
in terms of latency nor frequency compared to a pipelined
unrolled CORDIC. This probably reflects the current weakness
of FloPoCo at managing the pipelining of such entities.

Still, we again observe the excellent match of CORDIC to
FPGA logic: as the third line of TableIII shows, it is possible
to pack two 16-bit iterations in one pipeline stage operating
at nearly 400MHz.

Finally, these results should not be extrapolated to ASIC.
There, without carry propagation and large LUTs, CORDIC
will appear much less favorably.

VII. CONCLUSION AND FUTURE WORK

This article compares several methods for the evaluation of
the atan2 function. The most novel method, based on piecewise
bivariate polynomials, does reduce the latency as much as
expected, at least on FPGAs. There are many improvements
to bring to this method, the first being to reduce k using
degree-2 approximation technique that are more accurate than
Taylor. Unfortunately we are not aware of a Remez or minimax
polynomial approximation algorithm for functions of two

TABLE III
RESULTS FOR PIPELINED 16-BIT ARCHITECTURES

Method LUT + Reg. BRAM + DSP Speed
cycles@freq.

CORDIC
816 + 44 2@191

799 + 202 5@274
796 + 336 8@389

RecipMultAtan 1 320 + 51 2+1 2@112
315 + 68 2+1 3@199

RecipMultAtan 2 425 + 199 0+5 10@130
432 +250 0+5 14@253

Taylor 2
331 + 53 4+6 1@135

327 + 103 4+6 3@144
329 + 140 4+6 5@220

inputs. The problem is that the alternation property on which
Remez is based [1] is difficult to transpose in two dimensions.

Current work also focuses on improving the pipelining of
the multiplier-based methods to make the best use of the FPGA
embedded resources.

To make things even better for CORDIC, it should be
noted that it may also compute the module

√
x2 + y2 along

with the angle [1]. This costs only one additional constant
multiplication by 1/K.

Among the possibilities to explore around atan2, [15] de-
composes the computation into two successive rotation, a
coarse one and a finer one. Both first approximate z= y/x, then
compute atan2(z). This provides a blend between CORDIC
and multiplicative methods.

A table- and multiplier- based combined range reduction
and scaling method could enable the bivariate techniques to
scale better, but again at the expense of latency.
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