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Certifying the floating-point implementation
of an elementary function using Gappa

Florent de Dinechin, Member, IEEE, Christoph Lauter, and Guillaume Melquiond

F

Abstract—High confidence in floating-point programs requires proving
numerical properties of final and intermediate values. One may need to
guarantee that a value stays within some range, or that the error relative
to some ideal value is well bounded. This certification may require a
time-consuming proof for each line of code, and it is usually broken by
the smallest change to the code, e.g. for maintenance or optimization
purpose. Certifying floating-point programs by hand is therefore very
tedious and error-prone. The Gappa proof assistant is designed to make
this task both easier and more secure, thanks to the following novel
features. It automates the evaluation and propagation of rounding errors
using interval arithmetic. Its input format is very close to the actual code
to validate. It can be used incrementally to prove complex mathematical
properties pertaining to the code. It generates a formal proof of the
results, which can be checked independently by a lower-level proof
assistant like Coq. Yet it does not require any specific knowledge about
automatic theorem proving, and thus is accessible to a wide community.
This article demonstrates the practical use of this tool for a widely
used class of floating-point programs: implementations of elementary
functions in a mathematical library.

Index Terms—Correctness proofs, error analysis, elementary function
approximation.

1 INTRODUCTION

F LOATING-POINT (FP) arithmetic [1] was designed to
help developing software handling real numbers.

However, FP numbers are only an approximation to
the real numbers. A novice programmer may incorrectly
assume that FP numbers possess all the basic properties
of the real numbers, for instance associativity of the
addition, and waste time fighting the subtle bugs they
induce. Having been bitten once, the programmer may
forever stay wary of FP computing as something that
cannot be trusted. As many safety-critical systems rely
on floating-point arithmetic, the question of the confi-
dence that one can have in such systems is of paramount
importance, all the more as floating-point hardware,
long available in mainstream processors, is now also
increasingly implemented into embedded systems.

This question was partly addressed in 1985 by the
IEEE-754 standard for floating-point arithmetic and its

• F. de Dinechin is with LIP (ENS Lyon / CNRS / INRIA / UCBL /
Université de Lyon).

• C. Lauter is with the Numerics team at Intel Corporation, Hillsboro, OR.
• G. Melquiond is with LRI (INRIA / Univ Paris-Sud 11 / CNRS).

revision in 2008 [2]. This standard defines common
floating-point formats (single and double precision), but
it also precisely specifies the behavior of several basic
operators, e.g. +, ×, √ . In the rounding mode to the
nearest, these operators shall return the correctly-rounded
result, uniquely defined as the floating-point number
closest to the exact mathematical value (in case of a tie,
the number returned is the one with the even mantissa).
The standard also defines three directed rounding modes
(towards +∞, towards −∞, and towards 0) with similar
correct rounding requirements on the operators.

The adoption and widespread use of this standard
have increased the numerical quality and portability
of floating-point code. It has improved confidence in
such code and made it possible to construct proofs of
numerical behavior [3]. Directed rounding modes are
also the key to enable efficient interval arithmetic [4], a
general technique to obtain validated numerical results.

This article is related to the IEEE-754 standard in two
ways. Firstly, it discusses the issue of proving properties
of numerical code, building upon the properties speci-
fied by this standard. Secondly, it addresses the imple-
mentation of elementary functions as recommended by
the revision of the IEEE-754 standard: “they shall return
results correctly rounded for the applicable rounding
direction”, so that their numerical quality matches that
of the basic operators.

Elementary functions were left out of the original
IEEE-754 standard in 1985 in part because the correct
rounding property is much more difficult to guarantee
for them than for the basic arithmetic operators. Specifi-
cally, the efficient implementation of a correctly rounded
function [5] requires several evaluation steps, and for
each step the designer needs to compute a bound on the
overall evaluation error. Moreover, this bound should be
tight, as a loose bound negatively impacts performance
[6], [7].

This article describes a new approach to machine-
checkable proofs of the a priori computation of such tight
bounds. This approach is both interactive and easy to
manage, yet much safer than a hand-written proof. It
applies to error bounds as well as range bounds. Our
approach is not restricted to the validation of elemen-
tary functions. It currently applies to any straight-line
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floating-point program of reasonable size (up to several
hundreds of operations).

The novelty here is the use of a tool that transforms
a high-level description of the proof into a machine-
checkable version, in contrast to previous work by Har-
rison [8], [9] who directly described the proof of the
implementation of some functions in all the low-level
details. The Gappa approach is more concise and more
flexible in the case of a subsequent change to the code.
More importantly, it is accessible to people who do not
belong to the formal proof community: this is the case
of the two first authors of the present article.

This article is organized as follows. Section 2 sur-
veys issues related to optimized floating-point programs,
in particular elementary function implementations. Sec-
tion 3 presents the Gappa tool, designed to address the
challenge of proving tight bounds on ranges and errors
in such programs. Section 4 discusses, in a tutorial man-
ner, the proof of an elementary function using Gappa.
The proof of a piece of code from the sine function of
the CRlibm project1 is build interactively as an extensive
example.

2 CONTEXT OF THIS WORK

2.1 Floating-point numbers are not real numbers
We have already mentioned that floating-point (FP)
numbers do not possess basic properties of real numbers.
Let us illustrate that with the Fast2Sum, a FP code
sequence due to Dekker [10]:
s = a + b;
r = b - (s - a);

This sequence consists only of three operations. The
first one computes the FP sum of the two numbers a and
b. The second one would always return b and the third
one 0, if this FP sum were exact. Because of the rounding,
the sum is, however, often inexact. In IEEE-754 arith-
metic with round-to-nearest, under certain conditions,
this algorithm computes in r the error committed by this
first rounding. In other words, it ensures that r+s = a+b

in addition to the fact that s is the FP number closest to
a+b. The Fast2Sum algorithm provides us with an exact
representation of the sum of two FP numbers as a pair
of FP numbers, a very useful operation.

This example illustrates an important point, which
pervades all of this article: FP numbers may be an
approximation of the reals that fails to ensure basic
properties of the reals, but they are also a very well-
defined set of rational numbers, which have other well-
defined properties, upon which it is possible to build
mathematical proofs such as the proof of the Fast2Sum
algorithm.

Let us come back to the condition under which the
Fast2Sum algorithm works: the exponent of a should
be larger than or equal to that of b, which is true for
instance when |a| ≥ |b|. In order to use this algorithm,

1. http://lipforge.ens-lyon.fr/www/crlibm/

one has first to prove that this property holds. Note
that alternatives to the Fast2Sum exist for the case when
one is unable to prove this condition. The version by
Knuth [11] requires 6 operations instead of 3. Here, being
able to prove the condition, which is a property on
values of the code, will result in better performance.

The proof of the properties of the Fast2Sum sequence
(three FP operations) requires several pages [10], and is
indeed currently out of reach of the Gappa tool, basically
because it cannot be reduced to manipulating ranges and
errors. This is not a problem, since this algorithm has
already been proven using formal proof systems [12]. We
consider it as a generic building-block of larger floating-
point programs, and the focus of our approach is to
automate the proof of such larger programs. In the case
of the Fast2Sum, this means proving the condition.

This work was initially motivated by a large class of
such complex FP programs, implementations of elemen-
tary functions, which we now introduce in more details.

2.2 Floating-point elementary functions
Current floating-point implementations of elementary
functions [13], [14], [15], [16], [17] have several features
that make their proof challenging:

• The code size is too large to be safely proven by
hand. In the first versions of the CRlibm project, the
complete paper proof of a single function required
tens of pages. It is difficult to trust such proofs.

• The code is optimized for performance, making
extensive use of floating-point tricks such as the
Fast2Sum above. As a consequence, classical tools
of real analysis cannot be straightforwardly applied.
Very often, considering the same operations on real
numbers would simply be meaningless.

• The code is bound to evolve for optimization pur-
pose, because better algorithms may be found, but
also because the processor technology evolves. Such
changes will require the proof to be rewritten, which
is both tedious and error-prone.

• Much of the knowledge required to prove error
bounds on the code is implicit or hidden, be it
behind the semantics of the programming language
(which defines implicit parenthesizing, for exam-
ple), or in the various approximations made. There-
fore, the mere translation of a piece of code into a set
of mathematical variables that represent the values
manipulated by this code is tedious and error-prone
if done by hand.

Fortunately, implementations of FP elementary func-
tions also have pleasant features that make their proof
tractable:

• There is a clear and simple definition of the math-
ematical object that the floating-point code is sup-
posed to approximate. This will not always be the
case of e.g. scientific simulation code.

• The code size is small enough to be tractable, typi-
cally less than a hundred floating-point operations.

http://lipforge.ens-lyon.fr/www/crlibm/
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• The control flow is simple, mostly consisting of
straight-line code with a few tests but no loops.

The following elaborates on these features.

2.2.1 A primer on elementary function evaluation
Many methods exist for function evaluation [17]. Some
are relevant only to fixed-point hardware evaluation,
other to arbitrary-precision evaluation. We address here
the evaluation of an elementary function for a fixed-
precision floating-point format, typically for inclusion
in a mathematical library (libm). It is classically [16],
[17] performed by a polynomial approximation valid
on a small interval only. A range reduction step brings
the input number x into this small interval, and a
reconstruction step builds the final result out of the results
of both previous steps. For example, the logarithm may
use as a range reduction the errorless decomposition
x = m · 2E of an FP number x into its mantissa m and
exponent E. It may then evaluate the logarithm of the
mantissa, and the reconstruction consists in evaluating
log(x) = log(m)+E · log(2). Note that current implemen-
tations typically involve several layered steps of range
reduction and reconstruction. With current processor
technology, efficient implementations [13], [14], [18] rely
on large tables of precomputed values. See the books by
Muller [17] or Markstein [19] for recent surveys on the
subject.

In the previous logarithm example, the range reduc-
tion was exact, but the reconstruction involved a mul-
tiplication by the irrational log(2), and was therefore
necessarily approximate. This is not always the case.
For example, for trigonometric functions, the range re-
duction involves subtracting multiples of the irrational
π/2, and will be inexact, whereas the reconstruction step
consists in changing the sign depending on the quadrant,
which is exact in floating-point arithmetic.

It should not come as a surprise that either range
reduction or reconstruction are inexact. Indeed, FP num-
bers are rational numbers, but for most elementary
functions, it can be proven that, with the exception
of a few values, the image of a rational is irrational.
Therefore, an implementation is bound, at some point,
to manipulate numbers which are approximations of
irrational numbers.

This introduces another issue which is especially rele-
vant to elementary function implementation. One wants
to obtain a double-precision FP result which is a good
approximation to the mathematical result, the latter be-
ing an irrational most of the time. For this purpose, one
needs to evaluate an approximation of this irrational to
a precision better than that of the FP format.

2.2.2 Reaching better-than-double precision
Better-than-double precision is typically attained thanks
to double-extended arithmetic on processors that support
it in hardware. Otherwise, one may use double-double
arithmetic, where a number is held as the unevaluated

sum of two doubles, just as the 8-digit decimal number
3.8541942 · 101 may be represented by the unevaluated
sum of two 4-digit numbers 3.854 · 101 + 1.942 · 10−3.
Well-known and well-proven algorithms exist for manip-
ulating double-double numbers [10], [11], the simplest of
which is the Fast2Sum already introduced. These algo-
rithms are costly, as each operation on double-double
numbers requires several FP operations.

In this article, we consider implementations based on
double-double arithmetic, because they are more chal-
lenging, but Gappa handles double-extended arithmetic
equally well.

2.3 Approximation errors and rounding errors
The evaluation of any mathematical function entails two
main sources of errors.

• Approximation errors (also called method errors),
such as the error of approximating a function with
a polynomial. One may have a mathematical bound
for them (given by a Lagrange remainder bound on
a Taylor formula for instance), or one may have to
compute such a bound using numerics [20], [21], for
example if the polynomial has been computed using
Remez algorithm.

• Rounding errors, produced by most floating-point
operations of the code.

The distinction between both types of errors is some-
times arbitrary. For example, the error due to rounding
the polynomial coefficients to floating-point numbers is
usually included in the approximation error of the poly-
nomial. The same holds for the rounding of table values,
which is accounted far more accurately as approximation
error than as rounding error. This point is mentioned
here because a lack of accuracy in the definition of the
various errors involved in a given code may lead to one
of them being forgotten.

2.4 Optimizations in floating-point code
Efficient code is especially difficult to analyze and prove
because of all the techniques and tricks used by expert
programmers.

For instance, many floating-point operations happen
to be exact under some hypotheses, and the experienced
developer of floating-point programs will arrange the
code in such a way that these hypotheses are satisfied.
Examples include multiplication by a power of two,
subtraction of numbers of similar magnitude thanks to
Sterbenz’ Lemma [22], exact addition and exact multi-
plication algorithms (returning a double-double), multi-
plication of a small integer by a floating-point number
whose mantissa ends with enough zeros, etc.

Expert programmers will also do their best to avoid
computing more accurately than strictly needed. They
will remove from the code some operations that are
expected not to improve the accuracy of the result by
much. This can be expressed as an additional approx-
imation. However, it soon becomes difficult to know
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what is an approximation to what, especially as the
computations are reparenthesized to maximize floating-
point accuracy.

To illustrate the resulting code obfuscation, let us
introduce the piece of code that will serve as a running
example along this article.

2.5 Example: a polynomial evaluation in double-
double arithmetic
Listing 1 is an extract of the code of a sine function in
the CRlibm library. These three lines compute the value
of an odd polynomial p(y) = y + s3 × y3 + s5 × y5 +
s7× y7 close to the Taylor approximation of the sine (its
degree-1 coefficient is equal to 1). In our algorithm, the
reduced argument y is ideally obtained by subtracting
from the FP input x an integer multiple of π/256. As a
consequence y ∈ [−π/512, π/512] ⊂ [−2−7, 2−7].

However, as y is irrational (even transcendental), the
implementation of this range reduction returns only an
approximation of it. Due to the properties of sine, this
approximation has to be more accurate than a double.
Otherwise some information would be lost and the final
result would be impossible to round correctly for some
inputs. In our implementation, range reduction therefore
returns a double-double yh+ yl.

A modified Horner scheme is used for the polynomial
evaluation:

p(y) = y + y3 × (s3 + y2 × (s5 + y2 × s7)).

For a double-double input y = yh + yl, the expression
to compute is thus

(yh+yl)+(yh+yl)3×(s3+(yh+yl)2×(s5+(yh+yl)2×s7)).

The actual code uses an approximation of this expres-
sion. Indeed, the computation is accurate enough if all
the Horner steps except the last one are computed in
double-precision. Thus, yl will be neglected for these
iterations, and coefficients s3 to s7 will be stored as
double-precision numbers written s3, s5, and s7. The
previous expression becomes:

(yh+ yl) + yh3 × (s3+ yh2 × (s5+ yh2 × s7)).

However, if this expression is computed as paren-
thesized above, it has a poor accuracy. Specifically, the
floating-point addition yh+yl (by definition of a double-
double) returns yh, so the information held by yl is
completely lost. Fortunately, the other part of the Horner
evaluation also has a much smaller magnitude than yh

— this is deduced from |y| ≤ 2−7, therefore |y3| ≤ 2−21.
The following parenthesizing leads therefore to a much
more accurate algorithm:

yh+
(
yl+ yh× yh2 × (s3+ yh2 × (s5+ yh2 × s7))

)
.

In this last version of the expression, only the leftmost
addition has to be accurate. So we will use a Fast2Sum,
which as we saw is an exact addition of two doubles
returning a double-double stored in sh and sl. The

Listing 1. Three lines of C
yh2 = yh * yh;
ts = yh2 * (s3 + yh2 * (s5 + yh2 * s7));
Fast2Sum(sh, sl, yh, yl + yh * ts);

other operations use the native — and therefore fast
— double-precision arithmetic. We obtain the code of
Listing 1.

To sum up, this code implements the evaluation of
a polynomial with many layers of approximation. For
instance, variable yh2 approximates y2 through the fol-
lowing layers:

• y was approximated by yh + yl with the relative
accuracy εargred

• yh + yl is approximated by yh in most of the
computation,

• yh2 is approximated by yh2, with a floating-point
rounding error.

In addition, the polynomial is an approximation to
the sine function, with a relative error bound of εapprox
which is supposed known (how it was obtained it is out
of the scope of this paper [20], [21]).

Thus, the difficulty of evaluating a tight bound on an
elementary function implementation is to combine all
these errors without forgetting any of them, and with-
out using overly pessimistic bounds when combining
several sources of errors. The typical trade-off here will
be that a tight bound requires considerably more work
than a loose bound (and its proof might inspire consid-
erably less confidence). Some readers may get an idea of
this trade-off by relating each intermediate value with
its error to confidence intervals, and propagating these
errors using interval arithmetic. In many cases, a tighter
error will be obtained by splitting confidence intervals
into several cases, and treating them separately, at the
expense of an explosion of the number of cases. This is
one of the tasks that Gappa will helpfully automate.

2.6 Previous and related work

We have not yet explained why a tight error bound
is required in order to obtain a correctly-rounded im-
plementation. This question is surveyed in [7]. To sum
it up, an error bound is needed to guarantee correct
rounding, and the tighter the bound, the more efficient
the implementation. A related problem is that of proving
the behavior of interval elementary functions [18], [23].
In this case, a bound is required to ensure that the
interval returned by the function contains the image of
the input interval. A loose bound here means returning a
larger interval than possible, and hence useless interval
bloat. In both cases, the tighter the bound, the better the
implementation.

As a summary, proofs written for versions of the
CRlibm project up to version 0.8 are typically composed
of several pages of paper proof and several pages of
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supporting Maple script for a few lines of code. This pro-
vides an excellent documentation and helps maintaining
the code, but experience has consistently shown that
such proofs are extremely error-prone. Implementing the
error computation in Maple was a first step towards
the automation of this process; but although it helps
to avoid computational mistakes, it does not prevent
methodological mistakes. Gappa was designed, among
other objectives, in order to fill this void.

There have been other attempts of assisted proofs of
elementary functions or similar floating-point code. The
pure formal proof approach by Harrison [8], [9], [24]
goes deeper than the Gappa approach, as it accounts for
approximation errors. However it is accessible only to
experts of formal proofs, and fragile in case of a change
to the code. The approach by Krämer et al [25], [26] relies
on operator overloading and does not provide a formal
proof.

3 THE GAPPA TOOL

Gappa2 extends the interval arithmetic paradigm to the
field of numerical code certification [27], [28]. Given the
description of a logical property involving the bounds
of mathematical expressions, the tool tries to prove the
validity of this property. When the property contains
unbounded expressions, the tool computes bounding
ranges such that the property holds. For instance, the
incomplete property “x + 1 ∈ [2, 3] ⇒ x ∈ [?, ?]” can be
input to Gappa. The tool answers that [1, 2] is a range of
the expression x such that the whole property holds.

Once Gappa has reached the stage where it considers
the property to be valid, it generates a formal proof
that can be mechanically checked by an external proof
checker. This proof is completely independent of Gappa
and, more importantly, its validity does not depend on
Gappa’s own validity.

3.1 Floating-point considerations
Section 4 will give examples of Gappa’s syntax and show
that Gappa can be applied to mathematical expressions
much more complex than just x+1, and in particular to
floating-point approximations of elementary functions.
This requires describing floating-point arithmetic expres-
sions within Gappa.

Gappa only manipulates expressions on real numbers.
In the property x + 1 ∈ [2, 3], x is just a universally-
quantified real number and the operator + is the usual
addition on real numbers R. Floating-point arithmetic
is expressed through the use of “rounding operators”:
functions from R to R that associate to a real number x its
rounded value ◦(x) in a specific format. These operators
are sufficient to express properties of code relying on
most floating-point or fixed-point arithmetics.

Verifying that a computed value is close to an ideal
value can now be done by computing an enclosure of

2. http://gappa.gforge.inria.fr/

the error between these two values. For example, the
property “x ∈ [1, 2]⇒ ◦(◦(2×x)−1)−(2×x−1) ∈ [?, ?]”
expresses the absolute error caused during the floating-
point computation of the following numerical code:
float x = ...;
assert(1 <= x && x <= 2);
float y = 2 * x - 1;

Infinities and NaNs (Not-a-Numbers) are not an im-
plicit part of this formalism: the rounding operators
return a real value and there is no upper bound on the
magnitude of the floating-point numbers. This means
that NaNs and overflows will not be generated nor prop-
agated as they would in IEEE-754 arithmetic. However,
one may still use Gappa to prove useful related proper-
ties. For instance, one can express in terms of intervals
that overflows, or NaNs due to some division by 0,
cannot occur in a given code. What one cannot prove
are properties depending on the correct propagation of
infinities and NaNs in the code.

3.2 Proving properties using intervals
Thanks to the inclusion property of interval arithmetic,
if x is an element of [0, 3] and y an element of [1, 2], then
x + y is an element of the interval sum [0, 3] + [1, 2] =
[1, 5]. This technique based on interval evaluation can be
applied to any expression on real numbers. That is how
Gappa computes the enclosures requested by the user.

Interval arithmetic is not restricted to this role though.
Indeed the interval sum [0, 3] + [1, 2] = [1, 5] do not
only give bounds on x + y, it can also be seen as a
proof of x + y ∈ [1, 5]. Such a computation can be
formally included as an hypothesis of the theorem on the
enclosure of the sum of two real numbers. This method
is known as computational reflection [29] and allows
for the proofs to be machine-checkable. That is how
the formal proofs generated by Gappa can be checked
independently without requiring any human interaction
with a proof assistant.

Such “computable” theorems are available for the
Coq [30] formal system. Previous work [31] on using
interval arithmetic for proving numerical theorems has
shown that a similar approach can be applied for the
PVS [32] proof assistant. As long as a proof checker is
able to do basic computations on integers, the theorems
Gappa relies on could be provided. As a consequence,
the output of Gappa can be targeted to a wide range of
formal certification frameworks, if needed.

3.3 Other computable predicates
Enclosures are not the only useful predicates. As inter-
vals are connected subsets of the real numbers, they
are not powerful enough to prove some properties on
discrete sets like floating-point numbers or integers.
So Gappa handles other classes of predicates for an
expression x:

FIX(x, e) ≡ ∃m ∈ Z, x = m · 2e

FLT(x, p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

http://gappa.gforge.inria.fr/
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As with intervals, Gappa can compute with these new
predicates. For example,

FIX(x, ex) ∧ FIX(y, ey)⇒ FIX(x+ y,min(ex, ey)).

These predicates are especially useful to detect real
numbers exactly representable in a given format. In
particular, Gappa uses them to find rounded operations
that can safely be ignored because they do not contribute
to the global rounding error. Let us consider the floating-
point subtraction of two single-precision floating-point
numbers x ∈ [3.2, 3.3] and y ∈ [1.4, 1.8]. Note that
Sterbenz’ Lemma is not sufficient to prove that the sub-
traction is actually exact, as 3.3

1.4 > 2. Gappa is, however,
able to automatically prove that ◦(x−y) is equal to x−y.

As x and y are floating-point numbers, Gappa first
proves that they can be represented with 24 bits each
(assuming single precision arithmetic). As x is bigger
than 3.2, it can then deduce it is a multiple of 2−22, or
FIX(x,−22). Similarly, it proves FIX(y,−23). The prop-
erty FIX(x−y,−23) then comes naturally. By computing
with intervals, Gappa also proves that |x−y| is bounded
by 1.9. A consequence of these last two properties is
FLT(x−y, 24): only 24 bits are needed to represent x−y.
So x − y is representable by a single-precision floating-
point number.

There are also some specialized predicates for en-
closures. The following one expresses the range of an
expression u with respect to another expression v:

REL(u, v, [a, b]) ≡ ∃ε ∈ [a, b], u = v × (1 + ε).

This predicate is seemingly equivalent to the enclosure of
the relative error u−v

v , but it simplifies proofs, as the error
can now be manipulated even when v is potentially zero.
For example, the relative rounding error of a floating-
point addition vanishes on subnormal numbers (includ-
ing zero) and is bounded elsewhere, so the following
property holds when rounding to nearest in double
precision:

REL(◦(x+ y), x+ y, [−2−53, 2−53]).

3.4 Gappa’s engine
Because basic interval evaluations do not keep track
of correlations between expressions sharing the same
terms, some computed ranges may be too wide to be
useful. This is especially true when bounding errors,
for example when bounding the absolute error ◦(a) − b
between an approximation ◦(a) and an exact value b.
The simplest option is to first compute the ranges of
◦(a) and b separately and then subtract them. However,
first rewriting the expression as (◦(a) − a) + (a − b)
and then bounding ◦(a) − a (a simple rounding error)
and a − b separately before adding their ranges usually
gives a much tighter result. These rules are inspired by
techniques developers usually apply by hand in order
to certify their numerical applications.

Gappa includes a database of such rewriting rules and
Section 3.5 shows how the user can expand this database

with domain-specific hints. The tool applies these rules
automatically, so that it can bound expressions along
various evaluation paths. Since each of the resulting
intervals encloses the initial expression, their intersection
does, too. Gappa keeps track of the paths that lead to the
tightest interval intersection and discards the others, so
as to reduce the size of the final proof. It may happen
that the resulting intersection is empty. This means that
there is a contradiction between the hypotheses of the
logical proposition, and Gappa can then deduce all the
goals of the proposition from it.

Once the user enclosures have been proved (either by a
direct proof or thanks to a contradiction), a formal proof
is generated by retracing the paths that were followed
when computing the ranges.

3.5 Hints

When Gappa is not able to satisfy the goal of the
logical property, this does not necessarily mean that the
property is false. It may just mean that Gappa does not
have enough information about the expressions it tries
to bound.

It is possible to help Gappa in these situations by pro-
viding rewriting hints. These are rewriting rules similar
to those presented above in the case of rounding, but
whose usefulness is specific to the problem at hand.

3.5.1 Explicit hints
A hint has the following form:

Expr1 -> Expr2;

It is used to give the following information to Gappa:
“I believe for some reason that, should you need to
compute an interval for Expr1, you might get a tighter
interval by trying the mathematically equivalent Expr2”.
This fuzzy formulation is better explained by consider-
ing the following examples.

1) The “some reason” in question will typically be that
the programmer knows that expressions A, B, and C,
are different approximations of the same quantity,
and furthermore that A is an approximation to B

which is an approximation to C. As previously, this
means that these variables are correlated, and the
adequate hint to give in this case is

A - C -> (A - B) + (B - C);

It suggests to Gappa to first compute intervals for
A − B and B − C, and then to sum them to get an
interval enclosing A− C.
As there are an infinite number of arbitrary B

expressions that can be inserted in the right hand
side expression, Gappa cannot try to apply every
possible rewriting rule when it encounters A−C. So
Gappa only tries a few B expressions, and the user
has to provide the missing ones. Fortunately, as
3.5.2 will show, Gappa usually infers some useful
B expressions, and it applies the corresponding
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rewriting rules automatically. So an explicit hint is
only needed in the most unusual cases.

2) Relative errors can be manipulated similarly. The
hint to use in this case is
(A-C)/C -> (A-B)/B + (B-C)/C +

((A-B)/B)*((B-C)/C) {B <> 0, C <> 0};

This is still a mathematical identity, as one may
check easily. The properties written between brack-
ets tell Gappa when the rule is valid. Whenever
Gappa wants to apply it, it has to prove the brack-
eted properties first.
As for the first rule, this second rule is needed
quite often in a proof. So Gappa tries to infer some
useful B expressions again, and it applies the rule
automatically without any need for a user hint.

3) When x is an approximation of MX and a relative
error ε = x−MX

MX
is known to the tool, x can be

rewritten MX × (1 + ε). This kind of hint is useful
in combination with the following one.

4) When manipulating fractional terms such as Expr1
Expr2

where Expr1 and Expr2 are tightly correlated (for
example one approximating the other), the interval
division fails to give useful results if the intervals
are wide. In this case, it is better to extract a
correlated part A of the two expressions by stating
Expr1 = A × Expr3 and Expr2 = A × Expr4.
Hopefully, Expr3 and Expr4 are loosely (or even
not) correlated, so the following hint gives a good
enclosure of Expr1

Expr2
.

Expr1 / Expr2 -> Expr3 / Expr4 {A <> 0};

For a user-provided hint to be correct, a sufficient
condition is: both sides of a rewriting rules are math-
ematically equivalent with respect to the field axioms of
the real numbers. Gappa checks whether this is the case.
If not, it warns the user that the hint should be reviewed
for an error, for instance a mistyped variable name.

Note that, when an expression represents an error
between two terms, e.g. x − Mx, the least accurate term
should be written first and the most accurate one should
be written last. The main reason is that the theorems of
Gappa’s database apply to expressions written in this
order. This ordering convention prevents a combinatorial
explosion on the number of paths to explore.

3.5.2 Automatic hints
After using Gappa to prove several elementary func-
tions, it appeared that users kept writing the same hints,
typically of the three first kinds enumerated in 3.5.1.

A new hint syntax, that is a kind of “meta-hint”, was
therefore introduced in Gappa:
Expr1 ~ Expr2;

which reads “Expr1 approximates Expr2”. This has the
effect of automatically inserting rewriting hints for both
absolute and relative differences involving Expr1 or
Expr2. There may be useless hints among these inserted
rewriting hints, but they are harmless.

Given this meta-hint, whenever Gappa encounters an
expression of the form Expr1−Expr3 (for any expression
Expr3), it applies the rule

Expr1− Expr3→ (Expr1− Expr2) + (Expr2− Expr3).

And when it encounters Expr3−Expr2, it tries to rewrite
it as (Expr3− Expr1) + (Expr1− Expr2).

Note that, while meta-hints instruct Gappa to au-
tomatically insert rewriting hints, they are themselves
automatically inserted by Gappa in a few cases. For
instance, the user does not have to tell that Expr1 approx-
imates Expr2, if Expr1 is the rounded value of Expr2.
Gappa also inserts this meta-hint when an enclosure of
the absolute or relative difference between Expr1 and
Expr2 appears in the logical proposition that it is trying
to prove.

3.5.3 Interval splitting and dichotomy hints
Finally, it is possible to instruct Gappa to split some in-
tervals and perform its exploration on the resulting sub-
intervals. There are several possibilities. For instance, the
following hint
$ z in (-1,2);

reads “Better enclosures may be obtained by separately
considering the three cases z ≤ −1, −1 ≤ z ≤ 2, and
2 ≤ z.”

Instead of being provided, the splitting points can also
be automatically found by performing a dichotomy on
the interval of z until the part of the goal corresponding
to Expr has been satisfied for all the sub-intervals of z:
Expr $ z;

3.5.4 Writing hints in an interactive way
Gappa has evolved to include more and more automatic
hints, but most real-world proofs still require writing
complex, problem-specific hints. Finding the right hint
that Gappa needs could be quite complex and would
require completely mastering its theorem database and
the algorithms used by its engine. Fortunately, a much
simpler way is to build the proof incrementally and
question the tool by adding and removing intermediate
goals to prove, as the extended example in next section
will show. Before that, we first describe the outline of
the methodology we use to prove elementary functions.

4 PROVING ELEMENTARY FUNCTIONS USING
GAPPA

As in every proof work, style is important when working
with Gappa: in a machine-checked proof, bad style will
not in principle endanger the validity of the proof, but
it may prevent its author from getting to the end. In
the CRlibm framework, it may hinder acceptance of
machine-checked proofs among new developers.

Gappa does not impose a style, and when we started
using it there was no previous experience to get inspira-
tion from. After a few months of use, we had improved
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our “coding style” in Gappa, so that the proofs were
much more concise and readable than the earlier ones.
We had also set up a methodology that works well
for elementary functions. This section is an attempt to
describe this methodology and style.

The methodology consists in three steps, which corre-
spond to the three sections of a Gappa input file.

• First, the C code is translated into Gappa equations,
in a way that ensures that the Gappa proof will
indeed prove some property of this program (and
not of some other similar program). Then equations
are added in order to describe what the program
is supposed to implement. Usually, these equations
are also in correspondence with the code.

• Then, the property to prove is added. It is usually
in the form hypotheses -> properties, where
the hypotheses are known bounds on the inputs, or
contribution to the error determined outside Gappa,
like the approximation errors.

• Finally, one has to add hints to help Gappa complete
the proof. This last part is built incrementally.

The following sections detail these three steps.

4.1 Translating a floating-point program
We consider again the following C code, where we have
added the constants:
s3 = -1.6666666666666665741e-01;
s5 = 8.3333333333333332177e-03;
s7 = -1.9841269841269841253e-04;
yh2 = yh * yh;
ts = yh2 * (s3 + yh2 * (s5 + yh2 * s7));
Fast2Sum(sh, sl, yh, yl + yh * ts);

There is a lot of rounding operations in this code,
so the first thing to do is to define Gappa rounding
operators for the rounding modes used in the program.
In our example, we use the following line to define
IEEEdouble as a shortcut for IEEE-compliant round-
ing to the nearest double, which is the mode used in
CRlibm.
@IEEEdouble = float<ieee_64,ne>;

Then, if the C code is itself sufficiently simple and
clean, the translation step only consists in making ex-
plicit the rounding operations implicit in the C source
code. To start with, the constants s3, s5, and s7, are
given as decimal strings, and the C compilers we use
convert them to (binary) double-precision FP numbers
with round to nearest. We ensure that Gappa works with
these same constants as the compiled C code by inserting
explicit rounding operations:
s3 = IEEEdouble(-1.6666666666666665741e-01);
s5 = IEEEdouble( 8.3333333333333332177e-03);
s7 = IEEEdouble(-1.9841269841269841253e-04);

Then we have to do the same for all the roundings
hidden behind C arithmetic operations. Adding by hand
all the rounding operators, however, would be tedious
and error-prone, and would make the Gappa syntax
so different from the C syntax that it would degrade

confidence and maintainability. Besides, one would have
to apply without error the rules (well specified by the
C99 standard [33]) governing for instance implicit paren-
theses in a C expression. For these reasons, Gappa has a
syntax that instructs it to perform this task automatically.
The following Gappa lines
yh2 IEEEdouble= yh * yh;
ts IEEEdouble= yh2*(s3 + yh2*(s5 + yh2*s7));

define the same mathematical relation between their
right-hand side and left-hand side as the corresponding
lines of the C programs. This, of course, is only true
under the following conditions:

• all the C variables are double-precision variables,
• the compiler/OS/processor combination used to

process the C code respects the C99 and IEEE-
754 standards and computes in double-precision
arithmetic.

Finally, we have to express in Gappa the Fast2Sum
algorithm. Where in C it is a macro or function call,
for our purpose we prefer to ignore this complexity and
simply express in Gappa the resulting behavior, which
is a sum without error (again, we have here to trust an
external proof of this behavior [10], [11]):
r IEEEdouble= yl + yh*ts;
s = yh + r; # the Fast2Sum is exact, so sh + sl = yh + r

Note that we are interested in the relative error of the
sum s with respect to the exact sine, and for this purpose
the fact that s has to be represented as a sum of two
doubles in C is irrelevant.

More importantly, this adds another condition for this
code translation to be faithful: As the Fast2Sum requires
the exponent of yh to be larger than or equal to that
of r, we now have to prove that. We delegate this
process to Gappa by simply adding this precondition
as a conclusion of the theorem to prove.

As a summary, for straight-line program segments
with mostly double-precision variables, a set of cor-
responding Gappa definitions can be obtained by just
replacing the C assignment operator with IEEEdouble=
in the Gappa script, a straightforward and safe opera-
tion.

4.2 Defining ideal values
This code is supposed to evaluate the sine of its input.
As a matter of fact, the property we intend to prove is
a bound on the relative error of the computed value s
with respect to this sine SinY. Gappa can be queried for
this bound by typing (s - SinY)/SinY in ?. At this
point, Gappa will not answer anything, since SinY has
not been defined yet.

The expression SinY is the “mathematically ideal”
value that the variable s tries to approximate. In order
to prepare the proof, the mathematically ideal values
of some other variables will also have to be defined.
These values are the references with respect to which the
errors are bounded. There is some choice in this notion
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of mathematically ideal. For instance, what is the ideal
value of yh2? It could be

• the exact square of yh (without rounding), or
• the exact square of yh+ yl which yh approximates,

or
• the exact square of the ideal reduced argument,

which is usually irrational.
For our code, the mathematically ideal value for both

yh+yl and yh will be the ideal reduced argument, which
we write My. This is a real number defined as a function
of the input variable x and the irrational π as detailed
in Section 2.2.1. Similarly, the purest mathematical value
that yh2 approximates is written My2 and will be defined
as My2 = My2.

For the mathematical ideal of the polynomial ap-
proximation ts, we could choose, either the value of
the function that the polynomial approximates, or the
value of the same polynomial, but computed on My and
without rounding error. Here we chose the latter, as it is
syntactically closer to ts.

Here come a few naming conventions. The first one is
obviously that the Gappa expressions representing the
content of C variables have the same name. We also
impose the convention that these names begin with a
lowercase letter. In addition, Gappa variables for math-
ematically ideal terms will begin with a “M”. The other
intermediate Gappa variables should begin with capital
letters to distinguish them from actual variables from
the C code. Of course, related variables should have
related and, wherever possible, explicit names. Again,
these are conventions and are part of a proof style, not
part of Gappa syntax. Indeed, the capitalization gives
no information to the tool, and neither does the fact that
expressions have related names.

For instance, it will be convenient to define a variable
equal to yh+ yl:

Yhl = yh + yl;

4.3 Defining what the code is supposed to compute

Defining mathematically ideal values amounts to defin-
ing in Gappa what the C code is supposed to implement.
For instance, the line for ts can be seen as an approxi-
mated evaluation of a polynomial at point My:

My2 = My * My;
Mts = My2 * (s3 + My2 * (s5 + My2 * s7));

We have kept the polynomial coefficients in lower
case: as already discussed in Section 2, the polynomial
thus defined nevertheless belongs to the set of poly-
nomial with real coefficients, and we have means to
compute (outside Gappa) a bound of its relative error
with respect to the function it approximates.

The link between ts and the polynomial approximat-
ing sine is also best expressed using mathematically ideal
values:

PolySinY = My + My * Mts;

To sum up, PolySinY is the actual polynomial with the
same coefficients s3 to s7 as in the C code, but evaluated
without rounding error, and evaluated on the ideal value
My that yh+ yl approximates.

Another crucial question is: How do we define the
real, ideal, mathematical function which we eventually
approximate? Gappa has no builtin sine nor any other
elementary function. The current approach can be de-
scribed in English as: “sin(My) is a value which, as long
as My is smaller than 6.3 · 10−3, remains within a relative
distance of 3.7 · 10−24 of our ideal polynomial.”

This relative distance between sine and the polynomial
on this interval is computed outside Gappa. We used to
depend on Maple’s infinite norm, but it only returns an
approximation, so this was in principle a weakness of the
proof. We now use a safer, interval-based approach [20],
[21], implemented with the Sollya tool.3 This tool pro-
vides a theorem which could be expressed as

|My| ≤ 6.3 · 10−3 ⇒
∣∣∣∣PolySinY− SinY

SinY

∣∣∣∣ ≤ 3.7 · 10−24

We inject this theorem in the Gappa script as an
hypothesis of the property to prove:

|My| <= 6.3e-03
/\ |(PolySinY - SinY)/SinY| <= 3.7e-24
/\ ... # (more hypotheses, see below)
-> (s - SinY) / SinY in ?

Concerning style, it makes the proof much clearer
to add, from the beginning, as many definitions as
possible for the various terms and errors involved in the
computation:

# argument reduction error
Epsargred = (Yhl - My)/My;
# polynomial approximation error
Epsapprox = (PolySinY - SinY)/SinY;
# rounding errors in the polynomial evaluation
Epsround = (s - PolySinY)/PolySinY;
# total error
Epstotal = (s - SinY)/SinY;

4.4 Defining the property to prove
Thanks to the previous definition, the theorem to prove
can be stated as follows:
{

# Hypotheses
|yl / yh| <= 1b-53

/\ |My| <= 6.3e-03
/\ |Epsargred| <= 2.53e-23
/\ |Epsapprox| <= 3.7e-22

# Goals to prove
-> Epstotal in ? # main goal of our theorem
/\ |r/yh| <= 1 # validity of the Fast2Sum

}

The full initial Gappa script is given in Listing 2. It
adds a more accurate definition of yh and yl, stating
that they are double-precision numbers and that they
form a disjoint double-double. Invoking Gappa on this
script produces the following output:

3. http://sollya.gforge.inria.fr/

http://sollya.gforge.inria.fr/
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Listing 2. The initial Gappa file.
1 @IEEEdouble = float<ieee_64,ne>;
2

3 # yh + yl is a double-double (call it Yhl)
4 yh = IEEEdouble(dummy1);
5 yl = IEEEdouble(dummy2);
6 Yhl = yh + yl; # Below, there is also an hypothesis stating that |yl| < ulp(yh)
7

8 #————— Transcription of the C code ————————–
9

10 s3 = IEEEdouble(-1.6666666666666665741e-01);
11 s5 = IEEEdouble( 8.3333333333333332177e-03);
12 s7 = IEEEdouble(-1.9841269841269841253e-04);
13 yh2 IEEEdouble= yh * yh;
14 ts IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
15 r IEEEdouble= yl + yh*ts;
16 s = yh + r; # no rounding, it is the Fast2Sum
17

18 #——– Mathematical definition of what we are approximating ——–
19

20 My2 = My*My;
21 Mts = My2 * (s3 + My2*(s5 + My2*s7));
22 PolySinY = My + My*Mts;
23

24 Epsargred = (Yhl - My)/My; # argument reduction error
25 Epsapprox = (PolySinY - SinY)/SinY; # polynomial approximation error
26 Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynomial evaluation
27 Epstotal = (s - SinY)/SinY; # total error
28

29 #———————- The theorem to prove ————————–
30 {
31 # Hypotheses
32 |yl / yh| <= 1b-53
33 /\ |My| <= 6.3e-03
34 /\ |Epsargred| <= 2.53e-23
35 /\ |Epsapprox| <= 2.26e-24
36

37 # Goals to prove
38 -> Epstotal in ?
39 /\ |r/yh| <= 1
40 }

Results for |yl / yh| in [0, 1.11022e-16]
and |My| in [0, 0.0063]
and |Epsargred| in [0, 2.53e-23]
and |Epsapprox| in [0, 2.26e-24]:

Warning: some enclosures were not satisfied.
Missing Epstotal /\ |r / yh|

4.5 With a little help from the user

This means that Gappa needs some help, in the form of
hints. Where to start? There are several ways to interact
with the tool to understand where it fails.

First of all, we may add additional goals to obtain
enclosures for intermediate variables. For instance, when
we add the goal “|PolySinY| in ?”, Gappa answers
“|PolySinY| in [0, 0.0063]”. Gappa was able to
deduce this enclosure from the enclosure of My (hypoth-
esis) and from the syntax tree of PolySinY.

Similarly, we may notice that Gappa is unable to build
enclosures of either SinY or s. This way it is possible
to track the point where Gappa’s engine gets lost, and
provide hints to help it.

Among the values that Gappa cannot bound, there
is Yhl. Yet Gappa knows some enclosures of both My

and the relative error between My and Yhl. But Gappa

is unable to formally prove a property by using the
quotient Yhl−My

My
when My is equal to zero.

Therefore, in the early steps of a proof that involves
relative errors, the -Munconstrained option of Gappa
may be valuable. This mode weakens or removes the
hypotheses of some theorems, so that the tool can go
much further in its proof. Thanks to the option, the
output of Gappa becomes:

Results for |yl / yh| in [0, 1.11022e-16]
and |My| in [0, 0.0063]
and |Epsargred| in [0, 2.53e-23]
and |Epsapprox| in [0, 2.26e-24]:

|Yhl| in [0, 0.0063]
Warning: some enclosures were not satisfied.
Unproven assumptions:

NZR(My)

It means that Gappa was able to bound Yhl, but
the proof requires that the value My be nonzero, which
Gappa is unable to prove given the current hypotheses.
Fortunately, we can provide a positive lower bound
on |My|. Not only does it ensure that My is nonzero, it
will also ensure that relative errors are not arbitrarily
big due to underflow. The bound was obtained thanks
to the Kahan/Douglas algorithm [17], which uses the
continued fractions of π/256 to find the floating-point
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input that is the worst case of an additive argument
reduction, namely the one that minimizes |My|.

We now try to obtain an enclosure of yh. For this
purpose, we add two hints. The first one tells the tool
that yh is almost equal to Yhl:
yh ~ Yhl;

whereas the second one explains how to compute the
relative error between the two of them given the ratio
between yl and yh:
(yh - Yhl) / Yhl -> 1 / (1 + yl / yh) - 1;

Gappa is now able to bound yh and ts, but not yl,
and therefore neither r nor s. So we tell the tool how to
deduce yl from yh.
yl -> yh * (yl / yh) { yh <> 0 };

At this point, the tool is able to bound all the variables
of the C code and all their mathematically ideal values,
assuming that some variables are not zero. Unfortu-
nately, the relative errors between the variables and the
ideal values are still out of reach.

For the following steps, we introduce two definitions
in order to simplify the script:

# just to make the hints lighter
yhts = IEEEdouble(yh*ts);
# remove last round on s
S1 = yh + (yl + yhts);

Let us consider Epsround, which is the relative error
between s and its mathematically ideal value PolySinY.
Both values are sums: yh + r and My + My · Mts. But
Epsround should not be considered as the relative error
of an addition, since r is not exactly an approximation
of My · Mts.

So we consider an intermediate expression (yh +
yl) + yhts whose structure is closer to the structure of
PolySinY. By reordering the terms of this expression, we
get S1. So we tell Gappa that S1 is close to PolySinY and
equal to the intermediate expression.
S1 ~ PolySinY;
S1 - (Yhl + yhts) -> 0;

Although they have the same structure, Gappa is
still unable to bound the relative error between (yh +
yl) + yhts and PolySinY. However, running Gappa in
-Munconstrained mode produces a tight bound. So,
this failure is only caused by some term being zero or a
subnormal number and we will come back to it later.

A more pressing matter is that Gappa is unable to
bound the relative error between s = yh + r et S1 =
yh + (yl + yhts). This is the relative error of an addi-
tion; querying Gappa about it shows that it successfully
bounds the relative errors between its subterms. So the
issue actually lies in the addition itself. In that case,
we may help the tool by providing a rewriting hint for
the quotient of the ideal subterms. There are two such
quotients: yh/(yl+yhts) and (yl+yhts)/yh. The second
one looks much easier to manipulate, so we pass the
following trivial hint to Gappa:

(yl + yhts)/yh -> yl/yh + yhts/yh {yh <> 0};

Gappa is now able to prove all the properties in
-Munconstrained mode, but it tells us that it had to
assume that S1 is nonzero and that yh2, ts, and yhts are
normal numbers. These properties seem true, especially
due to the lower bound on |My|. Therefore we just have to
suggest Gappa to consider positive and negative inputs
separately:

$ My in (0);

This hint is sufficient to finish the proof. It also has the
effect that our third hint (the rewriting of yl) becomes
useless and may be removed. The final Gappa script
(Listing 3) is given at the end of this article, and is
available from the distribution of CRlibm.

4.6 Summing up

Writing hints is the most time-consuming part of the
proof, because it is the part where the designer’s intel-
ligence is required. However, we hope to have shown
that it may be done very incrementally.

The example chosen in this article is actually quite
complex: its Gappa proof consists of 63 lines, a sixth of
which are hints. The bound found on Epstotal is 2−67.18

and is obtained in less than a second on a recent machine
(the time can be longer when there is a dichotomy).

Some functions are simpler. We could write the proof
of a logarithm implementation [7] with a few hints
only [34]. One reason is that the logarithm never comes
close to 0, so the full proof can be handled only with
absolute errors, for which the load of writing hints is
much lighter.

Once Gappa has proved all the goals, it can be asked
for a formal proof script. In our case, the script is 2773-
line long. It takes about one minute for the Coq proof
assistant to mechanically check the correctness of the
proof and hence of the presented algorithm. Note that
the generated theorem contains as explicit hypotheses
the three rewriting hints from Listing 3, since Gappa
does not generate proofs for them.

5 CONCLUSION AND PERSPECTIVES

Validating tight error bounds on the low-level, optimized
floating-point code typical of elementary functions has
always been a challenge, as many sources of errors cu-
mulate their effect. Gappa is a high-level proof assistant
that is well suited to this kind of proofs.

Using Gappa, it is easy to translate a C function into
a mathematical description of the operations involved
with fair confidence that this translation is faithful.
Expressing implicit mathematical knowledge one may
have about the code and its context is also easy. Gappa
uses interval arithmetic to manage the ranges and er-
rors involved in numerical code. It handles most of
the decorrelation problems automatically thanks to its
builtin rewriting rules and an engine that explores the
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possible rewriting of expressions to minimize the size of
the intervals. All the steps of the proof are based on a
library of theorems which allows Gappa to translate its
computation process into a script mechanically check-
able by a lower-level proof assistant such as Coq.

If Gappa misses some information for completing the
proof, the user can add new rewriting rules in its Gappa
script. The missing rules can be found by interrogating
the tool while developing the script. Therefore, it is
possible to quickly get a fully validated proof with good
confidence that this proof indeed proves a property of
the initial code. This process is, however, not instant.
Writing a Gappa script requires exactly the same knowl-
edge and cleverness a paper proof would. However, it
requires much less work, since Gappa takes care of all
the tedious details once the problem has been prop-
erly described (e.g. neglected terms, exact operations,
reparenthesized expressions, and so on).

The current CRlibm distribution contains several bits
of proofs using Gappa at several stages of its develop-
ment. Although this development is not over, the current
version of Gappa (0.12.3) is very stable and we safely
consider generalizing the use of this tool in the future
developments of CRlibm. The methodology and the
proof style we presented in this paper are well suited
to the validation of state-of-the-art elementary functions.
This methodology is not set in stone, though. Indeed
we may have to refine it further, as future functions
may depend on unforeseen evaluation schemes with
specialized proof processes.

Although we have insisted in this article on the inter-
activity of the tool, it can also successfully be used in
blind mode. Current work targets code generators [35]
that produce Gappa scripts along with the code. Typi-
cally, it is easy in such cases to first develop hints for
one instance of the problem and then to generalize them
to all the other instances.
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Listing 3
The complete Gappa file.

1 @IEEEdouble = float<ieee_64,ne>;
2 # Convention 1: uncapitalized variables match the variables in the C code. Other variables begin with a capital letter.
3 # Convention 2: variables beginning with “M” are mathematical ideal.
4

5 # yh + yl is a double-double (call it Yhl)
6

7 yh = IEEEdouble(dummy1);
8 yl = IEEEdouble(dummy2);
9 Yhl = yh + yl; # There is also an hypothesis stating that |yl| < ulp(yh).

10

11 #————— Transcription of the C code ————————–
12

13 s3 = IEEEdouble(-1.6666666666666665741e-01);
14 s5 = IEEEdouble( 8.3333333333333332177e-03);
15 s7 = IEEEdouble(-1.9841269841269841253e-04);
16

17 yh2 IEEEdouble= yh * yh;
18 ts IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
19 r IEEEdouble= yl + yh*ts;
20 s = yh + r; # no rounding, it is the Fast2Sum
21

22 #——– Mathematical definition of what we are approximating ——–
23

24 My2 = My*My;
25 Mts = My2 * (s3 + My2*(s5 + My2*s7));
26 PolySinY = My + My*Mts;
27

28 Epsargred = (Yhl - My)/My; # argument reduction error
29 Epsapprox = (PolySinY - SinY)/SinY; # polynomial approximation error
30 Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynomial evaluation
31 Epstotal = (s - SinY)/SinY; # total error
32

33 # Some definitions to simplify hints
34 yhts = IEEEdouble(yh*ts); # just to make the hints lighter
35 S1 = yh + (yl + yhts); # remove last round on s
36

37 #———————- The theorem to prove ————————–
38 {
39 # Hypotheses
40 |yl / yh| <= 1b-53
41 /\ |My| in [1b-200, 6.3e-03] # lower bound guaranteed by Kahan-Douglas algorithm
42 /\ |Epsargred| <= 2.53e-23
43 /\ |Epsapprox| <= 3.7e-22
44 /\ |SinY| in [1b-1000,1]
45

46 ->
47

48 # Goal to prove
49 |Epstotal| <= 1b-67
50 /\ |r/yh| <= 1
51 }
52

53 # ———————- Hints ———————————-
54

55 $ My in (0);
56

57 yh ~ Yhl;
58 (yh - Yhl) / Yhl -> 1 / (1 + yl / yh) - 1;
59

60 S1 ~ PolySinY;
61 S1 - (Yhl + yhts) -> 0;
62

63 (yl + yhts) / yh -> yl / yh + yhts / yh { yh <> 0 };
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