
1

Custom Arithmetic Datapath Design for FPGAs
using the FloPoCo Core Generator

Florent de Dinechin, Bogdan Pasca
LIP (ENSL-CNRS-Inria-UCBL), École Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon Cedex 07, France
Email: florent.de.dinechin@ens-lyon.fr, bogdan.pasca@ens-lyon.org

Abstract—Reconfigurable circuits have a strong potential as ac-
celeration engines. However, using them efficiently requires much
design effort compared to classical software programming. The
FloPoCo open-source core generator project addresses this issue
for a restricted class of circuits that is central to reconfigurable
computing: arithmetic datapaths.

The FloPoCo framework clearly isolates the two main design
issues for such datapaths: implementing the correct mathematical
function, and pipelining it to an arbitrary frequency.

The function is expressed in FloPoCo as a combinatorial
VHDL circuit. The design of this circuit is assisted by a powerful
C++ framework for VHDL generation, allowing a designer to
program complex optimizations around the VHDL itself. It also
provides high-level, function-based testbench generation.

The issue of pipelining is then completely automated. FloPoCo
automatically builds correct-by-construction pipelines optimized
for a wide range of target FPGAs and target operating frequency.

FloPoCo is shown to be useful for a wide spectrum of
productivity/efficiency trade-offs. At one end, it automatically
converts C-like straight-line code into a parameterized and
pipelined floating-point datapath. At the other end, it assists
expert designers in building complex FPGA-specific operators.

Keywords-FloPoCo; core generator; arithmetic circuit; pipelin-
ing; datapath

I. INTRODUCTION

FPGAs are increasingly being considered as application ac-
celerators. They are especially relevant for applications which
1/ expose parallelism, and 2/ require arithmetic operations
not well supported in hardware by mainstream processors.
Examples include novel cryptography algorithms, Monte Carlo
simulations requiring massive amount of random numbers,
digital signal processing, and many others.

Translating an application into an optimized FPGA design
has always been a tedious task. Emerging high-level synthesis
approaches [1] ease this task but often restrict the class of
applications and trade efficiency for productivity.

A. Arithmetic datapath design

Here we address the design of parameterized, pipelined
arithmetic datapaths for FPGAs.

An arithmetic datapath is the implementation of some
function, where the word “function” is used in its mathematical

An edited (not always for the better) version of this work was published
in IEEE Design and Test, Aug. 2011. http://dx.doi.org/10.1109/MDT.2011.44.
Copyright (c) 2011 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org

Sidebar 1 Data efficiency for numerical datapaths
For FPGAs, an often overlooked measure of efficiency is whether
each of the bits that is carried along an application holds useful
information. Let us take an example.
A single-precision exponential function with a relative error of 2−8

may make sense in a software. The processor imposes the single-
precision floating-point format, that is a 32-bit data granularity. Due
to the 23-bit significand, no single-precision exponential may offer
a relative accuracy better than 2−24. However, some applications
will be contented with a much worse accuracy, say 2−8. If this
saves resources or time, it makes sense to provide such a degraded
implementation. Half of the 32 output bits will contain noise instead
of useful information, but removing them from the processor datapath
is not an option.
In an FPGA, it is an option, as data formats are much more flexible.
Using a single precision exponential core accurate to 2−8 means that,
out of the 32 bits passed along the datapath, 16 bits hold useless
noise. Obviously, this entails a waste of precious routing resources
and registers. Besides, the subsequent operators in the datapath will
compute on this noise, meaning more wasted resources and useless
power consumption.
Therefore we claim that no operator should be designed that is not
accurate to its last bit. If an application, at some point, requires a
relative accuracy of 2−8, then the floating-point format it uses at this
point should have only 8 bits of significand.
Design optimally data-efficient datapaths, i.e. defining which accu-
racy is required at each point of a datapath (possibly including guard
bits to absorb rounding errors), may take considerable design effort.
FloPoCo helps a designer to tackle this challenge in two ways. Firstly,
all the supplied operators are last-bit accurate. Secondly, they are
all parameterized by the precision, enabling design-space exploration
that includes precision tuning.

sense: f(X) = Y where X = x0, ..., xi−1 is a set of
inputs and Y = y0, ..., yj−1 is a set of outputs. Examples
of such functions include the basic operations, elementary
functions such as sine or exponential, complex multiplication
x+ iy = (a+ ib)(c+ id), or even a Fourier transform.

This mathematical function defines a reference value for
each value computed by a datapath implementing it. For func-
tions on integer or finite-field, the datapath should return the
exact same value as the mathematical function. For functions
over the reals, the datapath must provide an approximation.
This approximation is constrained by the format chosen for the
inputs and output, typically some fixed-point or floating-point
format. The availability of a mathematical reference enables
data-efficient implementations, as discussed in Sidebar 1. It
also enables testing the operators against this reference, as
will be detailed in Section IV.

2

B. The FloPoCo project

FloPoCo (Floating-Point Cores, but not only) is an open-
source1 C++ framework for the generation of arithmetic datap-
aths. It provides a command-line interface that inputs operator
specifications, and outputs synthesizable VHDL.

Each datapath generator in FloPoCo is a C++ class. At the
lowest level, the task of such a class consists in printing VHDL
code to a specific C++ stream. Therefore, FloPoCo embeds the
full expressive power of VHDL, and is relatively easy to get
started with for the VHDL-literate.

C. Assisted pipeline design

Arithmetic datapaths as we defined them can be imple-
mented as combinatorial functions. Then, a way to exploit
the inherent parallelism of FPGAs for better performance is
to pipeline these combinatorial implementations. Pipelining is
conceptually easy, but in practice it is a tedious and error-
prone task. The FloPoCo framework has been designed to let
the programmer focus on the high-level aspects of this task,
and automate the rest. Here are the main features of pipeline
generation in FloPoCo, further discussed in Section III.

1) Frequency-directed pipeline: Pipelining involves a trade-
off between latency (number of pipeline levels, or number
of clock cycles needed for the computation) and frequency
(or throughput). Most core generators let the user specify
the latency. In FloPoCo, on the contrary, the user specifies
a frequency, and the datapath is pipelined for this frequency.
This approach (also used in recent work by Perry [2]) is
preferred because enables composition: a large component
operating at frequency f can be built by assembling smaller
components designed to operate at frequency f .

2) Target-specific pipeline tuning: As the frequency of
a given design is strongly dependent on the target FPGA,
frequency-directed pipelining must be based on an abstract
model of the capabilities of an FPGA, including timing
information. FloPoCo comes with such models for main FPGA
families from both Xilinx and Altera.

3) Pipeline in the hands of the designer: Ideally, a designer
would write only the combinatorial version of an operator
(focussing on its functionality), and let the tools pipeline this
design for a given target FPGA and frequency [2], for instance
using retiming [3], [4], [5]. However, the frequency may
dictate fundamental changes in the architecture, for instance
impose fast adders [6] or tables of precomputed values. The
choice in FloPoCo is therefore that the designer has to program
the pipeline construction. The framework makes this easy and
safe through high-level notions such as cycles, synchroniza-
tion, critical path, etc.

D. FloPoCo operator library

Besides, pipeline tuning has been done already for a wide
range of useful components: FloPoCo provides an ever in-
creasing library of arithmetic cores, each parameterized in
size and following the frequency-directed pipeline paradigm. It
includes integer, fixed-point and floating-point basic operators,

1http://flopoco.gforge.inria.fr/

sometimes in several variants (e.g. large pipelined adders [6],
DSP-saving Karatsuba or truncated multipliers [7]). Some of
these operators are specialized: a squarer, for instance, is a
specialized multiplier that saves resources. This library also
provides state-of-the art architectures for elementary functions,
currently exponential [8], logarithm and power, and more
to come. Finally, the FloPoCo library also includes meta-
operators:

• several generators of multipliers by a constant (another
example of specialization),

• HOTBM and FunctionEvaluator, two generators of
polynomial evaluators for fixed-point functions [9],

• FPPipeline, a floating-point datapath generator that
assembles a full floating-point datapath out of pseudo-
C straight-line code.

The project web site provides a full list, and pointers to
research articles describing most of these components.

II. A MOTIVATING EXAMPLE

Consider a floating-point sum of squares: This datapath
inputs three floating-point numbers X , Y and Z, and outputs
a floating-point number for X2 + Y 2 + Z2.

A. FloPoCo command line

A first option is to assemble standard floating-point multi-
pliers and adders. For this, the command line
flopoco -target=Virtex4 -frequency=200

FPAdder 10 36

will generate synthesizable VHDL for a floating-point
adder, pipelined to run at 200MHz on a Xilinx Virtex4, using
a custom floating-point format with 10 bits of exponent and
36 bits of significand (this format is intermediate between the
standard single- and double-precisions).

For design exploration, the 4 parameters we have in this ex-
ample (target FPGA, frequency, exponent size and significand
size) can be changed within sensible range. The frequency and
the precision are orthogonal parameters, as they should be, and
the pipeline depth is reported.

More complex datapaths can be obtained in seconds using
the FPPipeline meta-operator of FloPoCo. Assume the file
SumOfSquares.txt contains the following pseudo-program:
R = X*X + Y*Y + Z*Z;
output R;

then the command line
flopoco -target=Virtex4 -frequency=300

FPPipeline SumOfSquares.txt 9 31

will generate the VHDL for a complete floating-point
pipelined datapath.

B. Reconfiguring arithmetic

One of the main goals of the FloPoCo project is to en-
courage FPGA designers to use arithmetic operators beyond
the “one size fits all” operators we are used to see in micro-
processors. Exploring non-standard precisions is a start, but
FloPoCo also offers FPGA-specific operators, operators that
will probably never make sense in a general purpose processor

3

0

3

4

2

1

5

6

1

0

1 + wF 1 + wF 1 + wF

2 + wF + g 2 + wF + g 2 + wF + g

2 + wF + g 2 + wF + g2 + wF + g

4 + wF + g

wE + wF + g

MB2 MC2

X Y Z

MXEZEYEX MY MZ

R

EA d6

EA

MA2

EB EC

EA d1

shiftCshiftB

shifter

sort

shifter

squarer
sort

squarersquarer

add

normalize/pack

unpack

Fig. 1. A FloPoCo pipeline for the floating-point sum-of-square. EX , EY

and EZ are the exponents (of size wE bits) of the three inputs, MX , MY

and MZ are their significands (of size 1 + wF bits). Internal precision is
extended with g guard bits, and g = 3 ensures last-bit accuracy of the result.
The red lines are synchronization barriers for one example of pipeline.

because they do not occur often enough in general code. We
already mentioned squarers: writing the pseudo-program as
R = sqr(X) + sqr(Y) + sqr(Z);
output R;

we may obtain a datapath which consumes less resources and
has a slightly shorter latency (option 2 in Table I).

A third option is to design from scratch, for the function
x2 + y2 + z2, a fused datapath that

• recovers the intrinsic parallelism and symmetry of this
expression,

• fuses the datapaths of the two additions,
• disposes of the logic that, in standard floating-point

adders, manages addition of number of different signs
[10], and

• avoids all intermediate roundings and normalizations,
a task that Langhammer’s floating-point compiler [11]
automates,

• and returns a last-bit accurate result.
This datapath is presented in Fig. 1. Compared to one obtained
by [11], it is better specified and embeds more optimizations,
but took several days to write.

III. THE FLOPOCO VHDL GENERATION FRAMEWORK

We here assume basic knowledge of object-oriented con-
cepts with the C++ terminology. Fig 2 provides a very sim-
plified overview of the FloPoCo class hierarchy.

A. Operators and VHDL generation

The core class is Operator: every datapath we design is an
Operator (i.e. inherits this class). An Operator corresponds
to a VHDL entity. Running FloPoCo constructs a list of
Operators (those specified on the command-line, and all their
sub-components), then generates the VHDL for them.

Fig. 3 describes this VHDL generation flow. The constructor
method of each Operator places combinatorial VHDL code
in the vhdl stream. At the same time, it builds up pipeline

Signal

+width

+cycle

+lifeSpan

Operator

+signalList

+vhdl

+outputVHDL()

+emulate()

+buildRandomTestCases()

FPAdder

+wE

+wF

IntAddder

+size

Shifters SumOfSquares

+wE

+wF

Targets

+adderDelay()

+localWireDelay()

+lutSize()

Virtex4StratixII

TestBench

Virtex5

Fig. 2. FloPoCo class hierarchy (very simplified overview)

subcomponent list

signal list

(bitwidth, etc)

in structural VHDL syntax)

(combinatorial description

 streamvhdl

generation of VHDL declarations

generation of VHDL register code

for each signal
valuelifeSpan

for each signal
cycle value

generation of VHDL architecture code

(second pass on vhdl stream,

delaying right−hand side signals)

C++
to know their pipeline depth)

(recursively calling constructors of all sub−components

Constructor

Operator.outputVHDL()

pipeline information

architecture

entity ...

port (...)

component

signal

end architecture

output file

DEXY <= ...

DEYZ <= ...

...

end process

begin

process(clk)

....

VHDLC++

functional information
produces

is used

Fig. 3. Simplified overview of VHDL generation flow

information as described below. Then the outputVHDL()

method combines the vhdl stream and the pipeline informa-
tion to form the VHDL code of the pipelined datapath. It also
declares all the needed VHDL signals, entities, components,
etc, so that a designer only has to focus on the architectural
part of the VHDL code.

An example of basic FloPoCo code is given by Listing 1.
The corresponding generated VHDL is given by Listing 2.
These listings describe the upper left part of Fig. 1 and will
be explained below.

B. Pipelining basics

A pipeline of depth n is composed of n + 1 pipeline
stages (numbered from 0 to n, in blue on Fig. 1), separated
by synchronization barriers (red lines). In essence, pipelining
consists in associating to every signal the number of the cycle

4

TABLE I
SOME SYNTHESIS RESULTS FOR x2 + y2 + z2 .

Productivity versus performance on Virtex4, target frequency f = 350 MHz
format approach performance cost

(8,23)
LogiCore 34 cycles @ 482 MHz 1356 slices, 12 DSP
option 1 35 cycles @ 327 MHz 1279 slices, 12 DSP
option 2 35 cycles @ 333 MHz 1043 slices, 9 DSP
option 3 11 cycles @ 369 MHz 470 slices, 9 DSP

(11,52)
LogiCore 50 cycles @ 354 MHz 3074 slices, 48 DSP
option 1 47 cycles @ 319 MHz 3859 slices, 48 DSP
option 2 45 cycles @ 322 MHz 3137 slices, 18 DPS
option 3 16 cycles @ 368 MHz 1866 slices, 18 DSP

Performance versus cost on Virtex4, option 3, varying target frequency
format target f performance cost

(10,36) 200 MHz 6 cycles @ 203 MHz 874 slices, 9 DSP
100 MHz 2 cycles @ 109 MHz 809 slices, 9 DSP
50 MHz 0 cycles @ 51 MHz 751 slices, 9 DSP

(11,52)
200 MHz 7 cycles @ 187 MHz 1285 slices, 18 DSP
100 MHz 3 cycles @ 102 MHz 1272 slices, 18 DSP
50 MHz 2 cycles @ 64 MHz 1130 slices, 18 DSP

Portability to different FPGAs, , target frequency f = 200 MHz
format FPGA performance cost

(10,36)
Virtex 5 5 cycles @ 196 MHz 1444L, 762 R, 9 DSP48E
Stratix II 8 cycles @ 179 MHz 1395L, 1295 R, 18 9-bit elem
Stratix IV 4 cycles @ 213 MHz 1529L, 792 R., 18 9-bit elem

Format is given as (exponent size, significand size). We provide a reference as LogiCore operators assembled by hand. Option 1 is FPPipeline, using multipliers.
Option 2 is FPPipeline, using squarers. Option 3 is the fused datapath of of Fig.1. All these numbers were obtained in empty FPGAs using ISE 11.5 for
Xilinx and QuartusII 9.1 for Altera.

where it is defined (its cycle attribute in FloPoCo), then
using this information to insert the proper number of registers
between this definition of a signal and its later use.

As code is written to the vhdl stream, a variable currentCy-
cle is updated thanks to the manageCriticalPath() calls in
Listing 1. Their detailed behaviour will be explained below, for
now, one just has to understand that manageCriticalPath()
sometimes increases currentCycle, and sometimes does not:
the pipeline information is built dynamically in function of
frequency, target FPGA, etc.

This currentCycle variable is used for two things:

• it defines the cycle of signals appearing on the left-hand
side of <=;

• it is compared to the cycle of any signal appearing on
the right-hand side of <=: the difference is the number of
registers that should be inserted between the declaration
of the signal and its use.

For an example, consider again Listing 1, and assume the
manageCriticalPath() of line 27 has increased current-
Cycle. Arriving line 30, we have an EA that is used on the
right-hand side one cycle after its declaration line 19. To use
the synchronized version, outputVHDL() simply replaces the
right-hand side EA of line 30 with EA_d1 in the generated code
(see line 15 in Listing 2). Here the 1 in EA_d1 is computed
as currentCycle-cycle(EA). Each signal also has a lifeSpan

attribute which holds its maximum delay, and will be used
to create, in the generated VHDL code, the needed number
of new signals (here EA_d1 to EA_d6) with registers between
them.

Similar techniques enable managing sub-components, such
as the shifters or squarers on Fig. 1. Effective inputs are
managed as right-hand side signals, and effective outputs as

left-hand side signal declarations: their cycle is defined as
currentCycle, plus the sub-component’s pipeline depth.

This simple technique has many advantages:

• It is simple to implement, as it involves only comparisons
and subtractions of integers.

• It clearly separates two very different issues: building a
functional combinatorial datapath (on the left of Fig. 3),
and pipelining it (on the right). From a combinatorial
datapath, we are guaranteed to obtain a correctly syn-
chronized pipeline with the same functionality, without
touching any of the lines that define this datapath (the
lines starting with vhdl <<).

• Its complexity is linear in the size of the generated
code. Two passes are necessary: The first one writes the
combinatorial VHDL code in the vhdl stream, and builds
a dictionary of signals with their cycle and lifeSpan.
The second one delays right-hand side signals.

• It adapts to arbitrary, dynamical placement of synchro-
nization barriers, which is what we need for frequency-
directed pipeline. It also gracefully degrades to a un-
pipelined, combinatorial implementation.

• The overhead of pipeline management in the generated
code is minimal (some signal names posfixed by _dxxx),
and this code remains as easy to read as the unpipelined
version, especially compared to a pipeline of similar
flexibility that would be written using VHDL GENERATE

constructs.
• Finally, since this technique only involves post-processing

signal names, it works for arbitrary VHDL.

For the designer, the construction of the pipeline boils down
to managing the value of currentCycle at each point of its C++
code. Let us now study this.

5

Listing 1. Exponent difference and sorting in Fig. 1
1 // The expSort box
2 manageCriticalPath(// evaluate the delay
3 target->adderDelay(wE+1) // exp. diff.
4 + target->localWireDelay(wE) // wE is the fanout
5 + target->lutDelay()); // mux
6
7 // determine the max of the exponents
8 vhdl << declare("DEXY", wE+1) <<
9 " <= (’0’ & EX) - (’0’ & EY);" << endl;

10 vhdl << declare("DEYZ", wE+1) <<
11 " <= (’0’ & EY) - (’0’ & EZ);" << endl;
12 vhdl << declare("DEXZ", wE+1) <<
13 " <= (’0’ & EX) - (’0’ & EZ);" << endl;
14 vhdl << declare("XltY") << "<= DEXY(wE);" << endl;
15 vhdl << declare("YltZ") << "<= DEYZ(wE);" << endl;
16 vhdl << declare("XltZ") << "<= DEXZ(wE);" << endl;
17
18 // rename exponents to A,B,C with A>=(B,C)
19 vhdl << declare("EA", wE) << " <= "
20 << "EZ when (XltZ=’1’) and (YltZ=’1’) else "
21 << "EY when (XltY=’1’) and (YltZ=’0’) else "
22 "EX;" << endl;
23 vhdl << declare("EB", wE) << " <= " << (...);
24 vhdl << declare("EC", wE) << " <= " << (...)
25
26 // the parallel subtractions
27 manageCriticalPath(target->adderDelay(wE-1));
28
29 vhdl << declare("shiftB", wE-1) <<
30 " <= EA(wE-2 downto 0) - EB (wE-2 downto 0);";
31 vhdl << declare("shiftC", wE-1) <<
32 " <= EA(wE-2 downto 0) - EC (wE-2 downto 0);";

C. Cycle management and synchronization

We want to pipeline our datapath for a given frequency
f . When done by hand, this task consists in identifying the
critical path of the combinatorial circuit, then inserting enough
synchronization barriers to split it into sub-paths, each of delay
smaller than 1/f .

In FloPoCo, code generation progresses from input to
output, so the idea is to maintain an estimation of the current
critical path delay, and insert synchronization barriers when
needed. This is what manageCriticalPath() does. This
function takes as argument an estimation of the critical path
delay of the logic generated by the C++ code that follows
it (up to the next manageCriticalPath()). It adds this
argument to a variable currentCriticalPath, and if the resulting
delay is larger than 1/f , it inserts a synchronization barrier:
it increments currentCycle, and resets the critical path delay
to its argument.

In Listing 1 we have defined two atomic blocks that
correspond respectively, on Fig. 1, to the expSort box (lines 7
to 24), and to the two parallel subtraction boxes (lines 29 to
32). Depending on the target frequency, the code of Listing 1
will fuse these two blocks in a single cycle, or will insert a
synchronization barrier between them.

The designer has the freedom to chose the granularity
of these atomic boxes. This is a matter of expertise. Here,
for instance, we know that we are subtracting exponents,
which will therefore remain relatively small (even the 128-
bit quadruple precision format has only wE=15 exponent bits),
so it makes sense to consider the expSort box as atomic.

Many other high-level functions help a designer managing
currentCycle. For instance, synchronization of several paths
(as is needed at the input of the normalize/pack box of Fig. 1)
means advancing currentCycle to the max of the cycles of
the signals to be synchronized.

Listing 2. VHDL generated by Listing 1 for wE
1 DEXY <= (’0’ & EX) - (’0’ & EY);
2 DEYZ <= (’0’ & EY) - (’0’ & EZ);
3 DEXZ <= (’0’ & EX) - (’0’ & EZ);
4 XltY <= DEXY(8);
5 YltZ <= DEYZ(8);
6 XltZ <= DEXZ(8);
7 EA <=
8 EZ when (XltZ=’1’) and (YltZ=’1’) else
9 EY when (XltY=’1’) and (YltZ=’0’) else

10 EX;
11 EB <= (...)
12 EC <= (...)
13 --Synchro barrier, entering cycle 1--
14 shiftB <=
15 EA_d1(6 downto 0) - EB_d1(6 downto 0) ;
16 shiftC <=
17 EA_d1(6 downto 0) - EC_d1(6 downto 0) ;

D. The Target class hierarchy

The delays passed to manageCriticalPath() are eval-
uated thanks to methods of a target object. This object
holds the current target FPGA (which can be specified by
the -target option of the FloPoCo command line). Thus
for instance, adderDelay(16) will return different values for
a Spartan3 or a Virtex5, and eventually the pipeline will be
deeper for a slower FPGA.

As seen on Fig. 2, a Target object provides methods for
delay estimation (including routing), but also methods that
can be used for architecture tuning. For instance, Chapman’s
constant multiplication algorithm is based on FPGA look-
up tables [12]. Its generic FloPoCo implementation queries
lutSize() for the input size of LUTs in the target FPGA.
Other methods describe the capabilities of DSP blocks and
embedded memories.

Modeling FPGAs is an endless effort, all the more as
new models appear each year, but the reliance on the virtual
Target class ensures that FloPoCo datapaths are designed in a
reasonably future-proof way.

E. Towards optimal pipelines

The general philosophy of FloPoCo’s approach to pipelining
is “best effort”. While it gets the pipeline almost right for small
operators in empty FPGAs, the actual performance in a real
application may depend on subsequent optimizations by the
synthesizer, and on unpredictable effects such as placement
within a larger design, and routing congestion. These effects
are out of control of the datapath designer, so it is impossible to
guarantee that the final circuit will run at the desired frequency.
However, targeting a higher frequency will improve the actual
frequency, and targeting a lower frequency will save resources.
This is enough for design exploration.

FloPoCo pipelines should also be a good starting point for
automatic retiming algorithms introduced by Leiserson and
Saxe [3], [4], which are slowly being integrated in synthesis
tools (after the technology mapping and related optimizations,
but before place and route). As these algorithms work by local
modifications of the circuit, they will converge much faster and
avoid being trapped in local extrema if they start with a good
approximation of the global optimal.

To sum up, we view Leiserson and Saxe retiming as a back-
end to FloPoCo, and we view FloPoCo as a back-end to global

6

application-level retiming approaches such as Perry’s [2]. The
abstraction level offered by FloPoCo (cycles and approximate
critical path) is just right for this context.

IV. ARITHMETIC-BASED TESTING

The underlying mathematical nature of an arithmetic data-
path can be usefully exploited towards test-bench generation:
we have a reference function (x2 + y2 + z2 for the sum of
squares), and the datapath should behave as the composition
of this function with some rounding to the target format.

A. Specification-based testing

In FloPoCo, one may define what a datapath is supposed
to compute by overloading the virtual method emulate().
Thanks to the bit-accurate MPFR library2, this typically takes
about ten lines (due to lack of space we refer again to the
FloPoCo distribution for actual examples).

For any FloPoCo Operator with an emulate() method,
the TestBench operator tests its generated VHDL against its
expected behaviour. Millions of test vectors may be generated
automatically in seconds, and this high-level approach mini-
mizes the possibility of making the same mistake in both the
operator and its testbench.

B. Function-specific random testing

TestBench may generate exhaustive tests when it is practi-
cal. Otherwise, it has to resort to testing on random inputs. In
this case, it is often desirable to use a function-specific random
test-case generator. Let us just take two examples.

• The exponential function ex very quickly over- and
underflows. For instance, in double precision it overflows
for x > 710 and underflows to 0 for x < −746. If we
test it on random inputs in the full floating-point range
(−1.8 · 10308 < x < 1.8 · 10308) we will statistically
mostly test the under/overflow logic. What is needed here
is a random generator that is biased towards the useful
interval −746 < x < 710. We also want to bias it against
all the small inputs (|x| < 2−55) in double precision) for
which the exponential returns 1.0.

• In a floating-point adder, if the difference between the
exponents of the two operands is larger than the signif-
icand size, the adder will simply return the biggest of
the two, and again this is the most probable situation
when taking two random operands. Here we must bias the
random generator towards cases where the two operands
have close exponents.

Such cases are managed by overloading the Operator

method buildRandomTestCases(). In addition,
buildStandardTestCases() specifically tests corner
cases which even focused random testing has little chance to
find.

2www.mpfr.org

V. CONCLUSION AND FUTURE WORK

The FloPoCo framework improves the productivity of de-
signing flexible and efficient arithmetic datapaths for FPGAs.
Its main features are a state-of-the-art arithmetic operator
library, a novel methodology for the generation of correct-by-
construction pipelines matching a given frequency on a given
FPGA target, and arithmetic-oriented test-bench generation.

The most complex operator currently in FloPoCo is the
floating-point exponential operator detailed in [8]. It makes
use of shifter and adders, but also constant multipliers, trun-
cated multipliers, table generators and polynomial evaluators
available only in FloPoCo, and a lot of glue logic. FloPoCo
enabled us to manage this complexity, to provide an operator
that is parameterized in exponent and significand size, last-bit
accurate for all its input, automatically optimized for a range
of Altera and Xilinx targets, and pipelined to frequencies close
to the maximum practical on these FPGA.

We plan to use FloPoCo for ever coarser datapaths such
as signal-processing filters. We also hope it will be used as a
back-end for high-level synthesis tools. Both the library and
the framework will be developed to address the needs of these
application fields. Potential future work also includes adding
to the framework resource estimation, floorplaning support,
fixed-point support, support of sequential circuits, and ASIC
targets.

REFERENCES

[1] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, vol. 6, no. 4, pp. 18–24, 2009.

[2] S. Perry, “Model based design needs high level synthesis: a collection
of high level synthesis techniques to improve productivity and quality of
results for model based electronic design,” in Design, Automation and
Test in Europe. EDAA, 2009, pp. 1202–1207.

[3] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5 – 35, 1991.

[4] K. N. Lalgudi and M. C. Papaefthymiou, “DELAY: an efficient tool
for retiming with realistic delay modeling,” in ACM/IEEE Design
Automation Conference, 1995, pp. 304–309.

[5] K. Eguro and S. Hauck, “Simultaneous retiming and placement for
pipelined netlists,” in Field-Programmable Custom Computing Ma-
chines. IEEE, 2008, pp. 139–148.

[6] F. de Dinechin, H. D. Nguyen, and B. Pasca, “Pipelined FPGA adders,”
in Field Programmable Logic and Applications. IEEE, 2010.

[7] S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran, “Multipliers
for floating-point double precision and beyond on FPGAs,” in Higly-
Efficient Accelerators and Reconfigurable Technologies. ACM, 2010.

[8] F. de Dinechin and B. Pasca, “Floating-point exponential functions for
DSP-enabled FPGAs,” in Field-Programmable Technologies. IEEE,
2010.

[9] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic generation of
polynomial-based hardware architectures for function evaluation,” in
Application-specific Systems, Architectures and Processors. IEEE,
2010.

[10] J. Liang, R. Tessier, and O. Mencer, “Floating point unit generation
and evaluation for FPGAs,” in Field-Programmable Custom Computing
Machines. IEEE, 2003.

[11] M. Langhammer and T. VanCourt, “FPGA floating point datapath
compiler,” in Field-Programmable Custom Computing Machines. IEEE,
2009, pp. 259–262.

[12] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, May 1994.

