The arithmetic operators you will never see in a microprocessor
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Abstract—It has been shown that FPGAs could outperform
high-end microprocessors even on floating-point computations,
thanks to massive parallelism. Too often, however, such studies
re-implement in the FPGA the operators present in a processor.
An FPGA can do much better: it can accomodate hardware
operators that would make no economical sense in a general-
purpose processor, and it can taylor them just right to the
needs of the application. This talk tries to survey this idea
systematically, discussing its potential, exhibiting some exotic
(but useful) operators developed in the FloPoCo project, and
listing some of the challenges ahead.

I. MICROPROCESSOR VERSUS FPGA

When designing an arithmetic unit for a processor, a
major concern is to cast to hardware only those operators
that are the most generally useful. Should a processor’s
instruction set include the elementary functions [1]? Should
a processor include a hardware divider, considering the
rarity of division in general code [2]? Such questions have
oriented hardware arithmetic research towards one-size-fits-
all operators, culminating with the fused multiply and add,
a single operator that replaces a whole floating-point unit in
the most recent instruction sets.

When porting an application to a field-programmable
gate array (FPGA), one has, among other things, to design
its arithmetic operators. In this case, the previous concern
disappears: As soon as one application requires an operator,
it makes sense to investigate a specific architecture for it.
Squaring or multiplying by log(2) are examples of opera-
tions that will never be included in the instruction set of a
general purpose processor, but appear in enough applications
to justify developing the corresponding FPGA operators.

We have therefore many more operators to study when
targetting FPGAs than when targetting processors. In addi-
tion, we have more freedom in the data formats. A processor
offers only the choice between single (32-bit) and double
(64-bit) precision floating-point, but it is very unlikely that
the minimal precision required by a given application is
one of these standard formats. As a consequence, most
of the time, a processor carries around, and computes on,
data with many irrelevant bits. Determining this optimal
precision is a challenge per se [4], [S], but then we may
build operators just right for this precision. Furthermore, we
may optimize out the hardware that turns out to be useless
in the application context [3].

In this sense, an FPGA implementation has the potential
to be much more efficient than its processor counterpart, if
we can build it to compute just right.

Computing just right will help conserve power, but it
is also a major (and currently vastly underused) lever to
improve performance. It is well known that the FPGA im-
plementation of a given operator, say a floating-point double-
precision multiplier, is typically one order of magnitude
slower than its highly optimized processor counterpart. This
is the uncompressible cost of reconfigurability. FPGAs have
been shown to catchup thanks to massive parallelism [6],
but computing just right is another, complimentary way to
catch up. Firstly, it may help reduce both area and latency,
hence maximize the operator-level parallelism. Secondly, for
more complex operations for which the processor has no
hardware support, a just-right architecture may inverse the
performance ratio, proving one order of magnitude faster
than the best processor software, as has been consistently
demonstrated for elementary functions [7].

The goal of the FloPoCo project! is to systematically
explore this almost virgin land of non-standard arithmetic
operators for FPGAs, with an obsession to compute just
right. To address the practical challenges of designing such
operators, FloPoCo is also an open C++ framework for the
easy construction of heavily parameterized operators with
flexible pipeline[8]. However, we now focus on some of the
non-standard operators already designed in this framework.

II. SOME SUCCESSFUL NON-STANDARD OPERATORS

FloPoCo includes a range of specialized multipliers: exact
or truncated multipliers or squarers [9], multipliers by a
constant using several techniques [10], [7]. The latter are
actually meta-operators, programs that compute an archite-
cure out of an arbitrary constant, one of the reasons why
FloPoCo cannot be a component library, but has to be an
architecture generator.

Our most complex meta-operator to date are generators of
polynomial approximations to an arbitrary numeric function
specified as an expression like exp(z x x — 1) [11], [12].

Several approaches to floating-point accumulation on
FPGAs have been proposed [13], [14], [15]. Instead of these
generic approaches, FloPoCo provides application-specific

Uhttp://flopoco.gforge.inria.fr/
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Figure 1. An architecture for floating-point exponential. wg and wg are
the sizes in bits of the exponent and significand

accumulator, sum-of-products and sum-of-squares [5], [8]
that compute just right, provided a designer can express
some numerical properties on the data manipulated by her
application.

A good illustration of the FloPoCo project is Figure 1
(explained in [7]) that depicts an highly arithmetic-efficient
implementation of the floating-point exponential, building
on many other non-standard operators.

III. OPEN CHALLENGES AND FUTURE WORK

Whether FPGAs will establish themselves as a credible,
mainstream computing platform is still unclear. The main
challenge is probably to ease their programming. FloPoCo
doesn’t help here, as it gives more freedom of choice to
a programmer who already has to face tasks much more
complex than when programming a PC. To make just-right
computing mainstream, we will have to design tools that
assist us in precision analysis and optimization. Meanwhile,
providing efficient coarse operators, such as elementary
functions, is a good way to disseminate just right computing
while hiding its complexity.

With this goal, the list of operators still to be investigated
is endless, even going well beyond those we study in
FloPoCo, to fields such as cryptography or random number
generation [16].
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