Multipliers for Floating-Point Double Precision and Beyond
on FPGAs

Sebastian Banescu
Computer Science
Department
Technical University
of Cluj-Napoca, Romania
Sebastian.Banescu@cs.utcluj.ro

Florent de Dinechin
LIP, projet Arénaire
ENS de Lyon
46 allée d'ltalie
69364 Lyon Cedex 07, France

Florent.de.Dinechin@ens-

Bogdan Pasca
LIP, projet Arénaire
ENS de Lyon
46 allée d'ltalie
69364 Lyon Cedex 07, France
Bogdan.Pasca@ens-lyon.fr

lyon.fr

Radu Tudoran
Computer Science
Department
Technical University
of Cluj-Napoca, Romania
Radu.Tudoran@cs.utcluj.ro

ABSTRACT

The implementation of high-precision floating-point ap-
plications on reconfigurable hardware requires large mul-
tipliers. Full multipliers are the core of floating-point
multipliers. Truncated multipliers, trading resources
for a well-controlled accuracy degradation, are useful
building blocks in situations where a full multiplier is
not, needed.

This work studies the automated generation of such
multipliers using the embedded multipliers and adders
present in the DSP blocks of current FPGAs. The op-
timization of such multipliers is expressed as a tiling
problem, where a tile represents a hardware multiplier,
and super-tiles represent combinations of several hard-
ware multipliers and adders, making efficient use of the
DSP internal resources. This tiling technique is shown
to adapt to full or truncated multipliers.

It addresses arbitrary precisions including single, dou-
ble but also the quadruple precision introduced by the
TEEE-754-2008 standard and currently unsupported by
processor hardware. An open-source implementation is
provided in the FloPoCo project.

Categories and Subject Descriptors

B.2 [Hardware]: Arithmetic and Logic Structures—
High-Speed Arithmetic

Keywords

multiplier, truncated multiplier, floating-point, quadru-
ple precision

1. INTRODUCTION

FPGA integration still follows Moore’s Law, and FP-
GAs have been shown to exceed CPU performance in
single-precision (or SP, a 32 bit format) and then double-
precision (or DP, a 64-bit format including a 52-bit man-
tissa) [16].

ACM SIGARCH Computer Architecture News

73

DP arithmetic is popular for commodity and com-
patibility with software. However, demand for more
accuracy is growing, especially in scientific computing
[6], and the IEEE-754-2008 revision of the Standard for
Floating-Point Arithmetic [10] has introduced a higher
precision floating-point format: quadruple precision (QP),
a 128-bit format including a 112-bit mantissa. So far no
general purpose processor offers hardware floating-point
units supporting this format. Proprietary core genera-
tors such as LogiCore [1] from Xilinx and Megawizard
[2] from Altera currently do not scale to QP either.

This article focuses on techniques for building multi-
pliers larger than double precision. There is a special
motivation for a QP floating-point multiplier, and one
contribution of this work is indeed such a multiplier,
however the applications of this work go well beyond
that. Multiplication is a pervasive operation, and in an
FPGA it should be adapted to its context as soon as
this may save resources:

e In many applications, one needs to multiply num-
bers of different bit-width.

e Truncated multipliers [17] discard some of the lower
bits of the mantissa to save hardware resources.
For a floating-point multiplier, the impact of this
truncation can be kept small enough to ensure
last-bit accuracy (or faithful rounding) instead of
IEEE-754-compliant correct rounding. This small
accuracy lost may be compensated by a larger man-
tissa size. However, it is also perfectly acceptable
in situations where a bound on the relative error
of the multiplication is enough to ensure the nu-
merical quality of the result. This is for instance
the case of polynomial approximation of functions:
it is possible to build high-quality functions out
of truncated multipliers [4]. In other words, the
present work is an important step towards effi-
cient implementations of elementary functions up

Vol. 38, No. 4, September 2010

to quadruple precision on FPGAs.

e The Karatsuba technique [3, 5], trading multiplica-
tions for additions, can also be used on multipliers,
truncated or not.

e Squarers are also a special case of multipliers that
present optimization opportunities [5].

A contribution of this article is, in Setion 3 the au-
tomation of the tiling technique used manually in [5]
— and indeed the automatically-generated multipliers

sometimes surpass the hand-crafted ones published there.

It is based on a fine modelization of the capabilities of
existing DSP blocks. Another contribution is, in Sec-
tion 4, a novel algorithm for truncated multiplication
using embedded multipliers. For QP, the multipliers
obtained using this technique save 23 DSP blocks on
Virtex4 and 15 DSP blocks on Virtex5.

The operators presented here are freely available as
part of the FloPoCo project!.

2. BACKGROUND

2.1 Large multipliers using DSP blocks

Recent FPGAs embed a large number of Digital Sig-
nal Processing (DSP) blocks, which include small mul-
tipliers. The straightforward way of performing large
multiplications using these multipliers is to first decom-
pose the large multiplication into a sum of smaller mul-
tiplications matching the embedded multipliers. Let
«, 3 be two integer parameters representing the size in
bits of each input to an embedded multiplier.

Let A and B be two integers to multiply, of respective
sizes na bits and m(bits. The product AB may be
written:

na—1 . mpB—1 _
Z ai22 X Z szZ
i=0 i=0
i<n,j<m
> 20HiAB,;
i,j=0
are chunks of o and (bits of A and

AB

where A; and B;
B respectively.

This requires the computation of nm subproducts of
size a x 3, and their summation with the proper weights
2¢+87 This technique requires nm DSP blocks to im-
plement an na + m/3 bit multiplier. An automation of
this process has been presented in [8] (for o =) and
n [15] (for a # 8 as in Virtex-5/6). Both works focus
on the alignment of the subproducts in order to reduce
the number of levels of multioperand adder tree. None
of these works make use of the internal DSP adders nor
address pipelined multipliers. Moreover, as presented
in [5], this decomposition process is suboptimal when
a # 0.

Previous studies [3, 5] have also shown that the Karat-
suba technique may reduce the DSP count when a = 3,
e.g. from 4 to 3 DSPs when n =m = 2, or from 9 to 6
when n = m = 3, at the expense of more logic.

1

www.ens-1lyon.fr/LIP/Arenaire/Ware/FloPoCo/

ACM SIGARCH Computer Architecture News

74

2.2 Relevant DSP features

All DSP blocks contain multipliers. For Xilinx VirtexII-
IV and Spartan3 the multiplier size is 18 x 18 bits signed
(or 17x17 bits unsigned). Virtex-5 and Virtex-6 contain
rectangular multipliers of 18 x 25 bits signed (or 17 x 24
bits unsigned). With respect to section 2.1, « = § = 17
for VirtexII-IV and Spartan3. For Virtex-5/6 the values
for the two parameters are o = 17, 5 = 24.

In addition to the multiplier, the Xilinx DSP also con-
tains an adder/subtracter unit that can be used to sum
two subproducts coming from neighbouring DSPs, pos-
sibly with a 17-bit shift. This feature, in combination
with four levels of internal registers, may be used to
sum up to four shifted subproducts in a pipelined way
entirely within four DSP blocks.

The Altera StratixII DSP block contains 4 18 x 18-bit
unsigned multipliers that can also be configured to per-
form eight 9 x 9-bit multiplications. Newer generations
(StratixIII and IV) allow for an extra configuration per-
forming six 12 x 12-bit products using the same hard-
ware. A configurable addition tree allows for the four
18 x 18-bit subproducts to be summed to perform one
36 x 36-bit multiplication. This adder tree seems to al-
low a for a similar degree of flexibility as the Xilinx DSP.
However, unlike Xilinx’, Altera tools currently require
Altera-specific primitives to exploit modes where the
subproducts do not have equal weights. This requires
more development, and for lack of time we therefore
focus on Xilinx FPGAs in the rest of this article.

2.3 Flexible floating-point multiplication

The floating-point format used in this work is param-
eterized by exponent size wg and mantissa fraction size
wg. It is similar in spirit to the IEEE-754 format, but
adapted to the context of FPGAs: It does not sup-
port subnormals (the possibility of increasing indepen-
dently the exponent size makes subnormals less relevant
in FPGA computing) and encodes exceptions (zero, in-
finities and Not a Number) in two separate bit to avoid
the overhead of coding/decoding them in the exponent
field as in the IEEE-754 format.

In addition, we support multiplying numbers of differ-
ent formats. Let us consider X and Y two floating-point
numbers respectively in (wg,,wp,) and (wg,,wpr,)
formats. The product, noted R, should be on (wg,,, wry,)
format:

XY = (—1)SxaBxbiasxy py s (—1)SvoBy-biesvy By
— (_1)5X+Sy2EX—biasx—‘rEy—b’i(lsy(1.FX X le)
R o= (-1)Sorgees B o (1. Fg)

The simplified data-path of the fully parametrized
floating-point multiplier is presented in Figure 1. There
are several differences with respect to the classical ver-
sion found in textbooks [7, 12] and implemented in most
libraries [11, 9, 14] where wg, = wg, = wg, and
Wpy = Wp, = Wpy. Firstly, for wp, # wp, the man-
tissa product requires a rectangular multiplier. More-
over, the result mantissa has to be rounded to wg,, bits
(0w,). Secondly, the underflow/overflow conditions

change due to the new exponent range. If the expo-

Vol. 38, No. 4, September 2010

Sy SyExc, Exc,
2.

Ey Fy 1 Fy
Iﬂ'b‘y Wr, +H \,lwp +1
+

@pdatg<—| —+
‘ I R, +wF, + 1
- - - = r—=—""=—=" - = N ”
Update <-4 + ---_ Round
%2 —,I"wER IZLUFR
SR EICR ER FR
Figure 1: Architecture of a flexible floating-

point multiplier

nent result is not representable on wg, bits than the
exception bits have to be respectively updated (owER).
Finally, the mantissa multiplier will be built using the
automated tiling technique which we now present.

3. TILING

Let us consider our multiplication operands A and B
on v and v bits respectively. Our purpose it to multiply
A and B making efficient use of the DSP resources. The
technique consists in tiling a u x v rectangular multi-
plication board using a minimal number of such mul-
tipliers. Starting from the tiled multiplication board,
the circuit equation is obtained using a simple rewrit-
ing technique.

Tiling, as a reformulation technique for this optimiza-
tion problem, has been first introduced in [5], where
only rectangular tiles were considered. We show in
this work that considering more complex tiles allows
the tiling technique to optimize the use not only of the
multipliers, but also of the adders within DSP blocks.

We take as running example Figure 2(b) (from [5])
in order to introduce tiling for a DP mantissa multipli-
cation on a Virtex5 FPGA. The rectangles denoted by
M1 to M8 are the eight Virtexb multiplier tiles used to
perform the multiplication (17 x 24 bits). The central
10 x 10-bit multiplication might be either performed in
logic if the DSP count is a big constrain, either partially
using one DSP block.

Each rectangle represents the product between a range
of bits of X and Y. For example M1 = Xg.23 X Yp.16.
For each rectangle, the ranges of X and Y correspond to
its projection on the X and Y axis respectively. A rect-
angle has a weighted contribution to the final product,
the weight being equal to the sum of its upper right
corner coordinates (e.g. the weight of the M4 tile is
217+34) " The presented rewriting technique yields:

XY

(M1+ 27 M2+ 2°* M3 + 2°' M3)
+224 (M8 +2'" M7+ 2% M6 + 2°" M5)
+248 MLogic

We have parenthesized the equation in order to make

So
S1

ACM SIGARCH Computer Architecture News

75

e

|
24|

M4 M2

M4 | M3 4l

| M7

M6 M5

34 17

(a) Xilinx (b) Tiling in [5] (¢c) Proposed
Figure 2: 53-bit multiplication using Virtex-5
DSP48E. The dashed square is the 53x53 multi-

plication.

full use of the Virtex5 internal DSP adders (see sec-
tion 2.2). Due to the fixed 17-bit shifts between the
operands, each sub-sum Sy and S; may be computed
entirely using DSP block resources. This reduces the
number of inputs of the final multi-operand adder to
three.

Such a parenthesing involving only 17-bit shifts is
graphically descried as a super-tile. Figure 3 shows
some super-tiles corresponding to the DSP capabilities
of Virtex 4 and 5/6. These super-tiles (and all their
subsets) don’t require additional hardware to perform
the full product. In addition, larger super-tiles can be
obtained by coupling the black and white circles of ad-
jacent super-tiles. This corresponds to using the cas-
cading adder input of the DSP blocks. Actually, all the
possible super-tiles may be generated by the primitives
shown on Figure 4.

On Stratix, the large adders inside the DSP block that
can be used to add up to four 18x18-bit partial prod-
ucts having the same magnitude. This corresponds to a
line of tiles parallel to the main diagonal. However, as
previously stated, we are currently unable to obtain the
predicted performance out of the Altera Quartus tools.
This could be solved by using Alter-specific primitives,
but would require much more development work.

3.1 Design Decisions

In the previous example, there remains an untiled
10-bit x 10-bit square. Should this be implemented
as logic, or as an underutilized DSP block? This is a
trade-off between logic and DSP blocks, and as such
the decision should be left to the user. This situation is
very common, for instance there is also an untiled part
in Figure 2(c). We have therefore decided to offer the
user the possibility to select a ratio between DSP count
and logic consumption. This ratio is as a number in
the [0, 1] range. Larger values for the ratio favour DSP
oriented architecture whereas lower values favour logic
oriented architectures. The total number of multipliers
used is a function of the input widths, ratio and FPGA
target.

In order to exploit this user-provided ratio accurately,
we have modelled the logical equivalence of a DSP block
for various FPGA families, inside FloPoCo’s Target hi-
erarchy.

3.2 Algorithm

The construction of a tentative multiplier configura-

Vol. 38, No. 4, September 2010

Figure 3:
DSP blocks

Some super-tiles exactly matching

tion consists of three steps.

1. Generate a valid partition of the large multiplica-
tion into smaller partial products or tiles.

2. Group these tiles as super-tiles in order to reduce
the number of operands of the large multiplier’s
final adder. The super-tiles are built using the
regrouping primitives presented in Figure 4. Two
successive tiles can be regrouped if their their black
and white circles correspond to one of the regroup-
ing primitives. When building super-tiles we also

balance their sizes in order to reduce operator pipeline

depth and the number of synchronization registers.

3. Compute the approximate cost of the configura-
tion. This cost includes: the DSPs, the slices
needed for computing the rest of the multiplica-
tion, and the cost of the multioperand adder used
to compute the final result.

Configurations may be compared according to this
cost. The best one will be chosen, and its VHDL gen-
erated.

Choosing among all possible configurations takes an
exponential number of steps with respect to the size of
the multiplication board O((u x v)?), where u and v are
the dimensions of the multiplication and ¢ is the number
of DSPs. Although this would ensure we find the opti-
mal configuration, the exponential complexity prevents
from obtaining results in reasonable time. Hence, we
prune exploration branches using the following criteria:

e Tiles do not overlap. In step 1, we only consider
tilings which align tile edges. This reduces the
number of tilings to O(2°) for Virtex4 and O(3°)
for Virtex5.

e Configurations symmetrical to already existing ones
are pruned.

e Configurations where large holes appear inside the
tiling are also pruned.

Figure 4: Super-tiling primitives

ACM SIGARCH Computer Architecture News

76

3.3 Reality check

We have used the presented algorithm in order to
generate mantissa multipliers for DP (53bit) and QP
(113bit) floating-point. Table 1 presents the synthe-
sis results obtained for both the mantissa multiplier
and the complete floating-point multiplier, on Virtex4
(xc4vix100-12-ff1152) and Virtex5 (xchvix100T-3-{f1738)
FPGAs using Xilinx ISE 11.4. The results of this work
are compared to Xilinx Logicore core generator, a dou-
ble precision operator presented in [5] and combinatorial
results obtained from [15]. With respect to the results
presented in [5] we manage to offer an DP mantissa
multiplier operator that saves 2 DSP blocks at the ex-
pense of some logic while running at a similarly high
frequency. With respect to [15] we offer high perfor-
mance operators while reducing the number of DSP
blocks. The biggest difference is for DP, where their
decomposition technique infers 12 DSPs, out of which
several are underutilized. With respect to Xilinx Logi-
core, we manage to save DSP blocks without big penal-
ties in logic consumption. For example, for Virtex4 we
are able to save 6 DSPs for approximately 330 slices.

4. TILING TRUNCATED MULTIPLIERS

Truncated multipliers reduce resources, delay, or power
consumption [17, 13]. Let us consider two integers A
and B on u and v bits respectively with AB onn = u+v
bits. The idea is to save the computation of some of the
less significant columuns in the multiplication array (see
the greyed-out rows in Figure 5(a)) so that the error of
the integer multiplication remains small enough. More
precisely, given a target precision weight k, we build
a multiplier that returns a result faithfully rounded on
n — k bits. Faithful rounding means that the total error
is smaller that the weight of the last bit of the result:
Etotal < 2k-

4.1 Faithfully accurate multipliers

Let us first determine the maximum number of columns,
denoted by d, that may be removed (see Figure 5(a)).

The error Fyotq; has two components, Erotqr = Fapproz+
Eround, where Eqpp,p0, is the approximation error intro-
duced by the truncation of the d columns, and E;ound
is the error of rounding the n — d-bit intermediate result
to n — k bits.

To ensure that Eioe < 2F, we need to distribute
our 2F error budget between the two error sources. By
adding a single one to the multiplier array (the grey
dot on Figure 5(a)) before summing it to an n — d-bit
number, the truncation of this number to n — k bits
implements round to nearest, thus ensuring E,,ung <
2k=1 The remaining 2k—1 are allocated to Eoppros-

The sum of the first d discarded columns is in the
interval 0 < Eqpproz < 2?21 12071 = (d — 1)2% + 1 (see
Figure 5(a)). An offset correction bit can reduce this
error by almost half by centering it [17]. Combined with
the previous constraint Eqpprosz < 2’“*1, this provides us
a relation of the form d = f(k). Table 2 shows how the
number of discarded columns varies for common floating
point formats.

4.2 FPGA Fitting

Vol. 38, No. 4, September 2010

Table 1: Comparison of multiplier implementations

[(wg,wr) | Tool, FPGA, Freq. [[Mantissa multiplier (wr +1) x (wrp +1) [[Complete floating-point multiplier
(11,52) ours, Virtex4, 400MHz llcycles @ 368MHz, 595sl., 10DsSP 16¢cycles @ 338MHz, 729sl. 10DspP
(15,112) ours, Virtex4, 400MHz 18cycles @ 358MHz, 1741sl., 49DsP 25cycles @ 319MHz, 2125sl., 49DspP
(15,112) Virtex4,[15] Ocycles @ 76MHz, 1100sl., 49DsP
(11,52) ours, Virtex5, 400MHz 9cycles @ 407MHz, 530LUT 506REG 9DSP 14cycles @ 407MHz, 804LUT 804REG 9DSP
(11,52) ours, Virtex5, 400MHz 8cycles @ 407MHz, 919LUT 872REG 6DSP 13cycles @ 407MHz, 1184LUT 1080REG 9DSP
(11,52) Virtex5, [5] Fig.2(b) 4cycles @ 369MHz, 243LUT 400REG 8DSP
(11,52) Virtex5,[15] Ocycles @ 111MHz, 200LUT 12DSP
(15,112) ours Virtex5, 400MHz 13cycles @ 407MHz, 2070LUT 2062REG 34DSP 20cycles @ 355MHz, 2978LUT 2815REG 34DSP
(15,112) Virtex5,[15] Ocycles @ 90MHz, 1000LUT 35DsP
(11,52) Logicore, Virtex4 18cycles @ 400MHz, 279sl., 16DSP 22cycles @ 321MHz, 561sl. 16DSP
(11,52) Logicore, Virtex5 Fig.2(a) 12cycles @ 450MHz, 229LUT 280REG 10DSP 18cycles @ 319MHz, 339LUT 482REG 10DSP

Table 2: Truncated multipliers providing faithful
rounding for common floating point formats

| Precision | k | Discarded (d) |
Single | 23 18
Double | 52 46
Quadruple | 112 105

/L ee0e0000e
B eecoee X<

u

1

o Y |
O o |
o o |
le o | v
o | ol |
H......l...l !
Lon—k Lk !
loloooooolzool d 1

(a) truncated multiplication (b) truncated board

Figure 5: Truncated multiplication and the cor-
responding tiling multiplication board

The theoretical saves in complexity entailed by trun-
cated multiplications approaches 50%. The entailed
saves have two components: the size of the computed
subproducts and the size of the operands in the mul-
tioperand reduction scheme. The truncation technique
applied to a multiplication performed using DSP blocks
is presented in Figure 6(a). The architecture consumes
4 DSPs to compute the subproducts M1-M4. The greyed
out parts of these subproducts are then discarded be-
fore performing the final addition. Out of the 4 DSPs
used, 2 are softly underutilized (M1 and M2) and one is
greatly underutilized (M4). A better architecture that
performs M4 in logic is presented in figure 6(b). This
architecture saves one DSP block at the expense of the
logic used to perform M4, which can be itself truncated.

However, on both Figure 6(a) and 6(b), the mono-
lithic DSP blocks compute all the bits of M1 and M2.
As these bits come for free, we may take them into ac-
count, as it will reduce Eapprop and possibly allow us
to increase d. This requires adders extending beyond
n — d, but those are for free if they are inside the DSP
blocks.

We therefore want to tile the truncated multiplier
such that the error entailed by discarding the untiled
part meets the previously defined error budget. In this

ACM SIGARCH Computer Architecture News

77

(o ;M 4 : :
i d i d i
I H v P H

(b)

(a) wasteful (¢) compensated

Figure 6: Truncation applied to multipliers.
Left: Classical truncation technique applied to
DSPs. Center: Improved truncation technique.
M4 is computed using logic. Right: FPGA opti-
mized compensation technique. M4 is not com-
puted.

way, the bits not computed at the left of k£ will be com-
pensated by the ones computed at the right, as illus-
trated on Figure 6(c).

4.3 Architecture generation algorithm

A two phase algorithm was implemented in order to
generate truncated multiplier using the previously pre-
sented tiling technique. The first phase tiles the mul-
tiplication board starting from bottom left using § =
| Areapoard/Areasi.] DSPs where Areapoqrq is the area
of a multiplication board similar in shape to that in
Figure 5(b) (size is dependent on k) and Ay = a X §.
By construction, the approximation error of this tiling,
E Approz, Will be larger than 251,

The second phase reduces E 4pproz 50 that it becomes
smaller than 2F~!. In order to do this, we rely on
pipelined soft-core multipliers (pipelined multipliers us-
ing logic-only). Eppros can be reduced by tiling some
high-weighted yet untiled bits. Taking Figure 7 as run-

Virtual
truncation
line

tiling

Figure 7: Tiling truncated multiplier using
DSPs and soft-core multipliers

Vol. 38, No. 4, September 2010

ning example, these are the untiled bits situated further
away (Euclidean distance) from the origin (top right
corner).

The second phase of the algorithm finds at each step
the furthest point from the origin. If this point is ad-
jacent to an already existing soft-core multiplier , it in-
creases the respective dimension of this multiplier. Oth-
erwise, an 1 x 1 bit soft-core multiplier is instantiated
at that point. If the soft-core multiplier size is equal
to that of a DSP block, it is replaced by such a block.
Next, the error produced by the new configuration is
evaluated. The second phase iterates until the 251 ap-
proximation error budget is met. Figure 7 shows how
the size these soft-core multipliers increases. When a
valid configuration is met, its hardware cost is evalu-
ated, and stored if minimal. If possible, a new tiling is
explored and cost is re-evaluated.

We remark that with respect to the classical trunca-
tion algorithm, not all the bits at the left of the virtual
truncation line are computed. In fact, the bits com-
puted for free at the right of this line compensate them.
The extra cost of this architecture comes from the few
extra bits of the operands in the final multi-operand
addition.

Figure 8 shows some possible tilings for large preci-
sion truncated multipliers. Table 3 presents synthesis
results for DP and QP. Using our improved truncate
multiplier technique we are able to reduce significantly
reduce the number of DSPs with respect to classical
multiplications. For example, on Virtex4 for DP we are
able to reduce DSP count from 10 to 7 DSPs while also
reducing slice count and for QP we reduce from 49 to
26 at without any slice penalty. On Virtex5, the reduc-
tions are from 6 to 5 for and roughly half the LUTs and
REGs for DP and from 34 to 19 at a small increase in
logic resources.

Table 3: Truncated multiplier results

[FPGA | Prec. [[Latency, Freq. | Resources

DP 6 cycles @Q 414MHz 320LuT 302REG HDSP
Virtex5 QP 20 cycles @ 334MHz | 2497LUT 2321REG 19DSp
QP 14 cycles @ 245MHz | 2249LUT 1576REG 19DSP
Virtexd DP 11 cycles @Q 368MHz 358sl. TDsP
rex QP 21 cycles @ 368MHz 1735sl. 26DSP

S. CONCLUSION

This article addresses the construction large precision
multipliers working at high frequencies, from specifica-
tions including operand size, deployment target, run-
ning frequency, and optimization directives.

By automating the tiling technique presented in [5],
we are able to offer a fully parametrized multiplier oper-
ator generator which is capable of generating operators
that sometime surpass the hand-crafted ones.

We have also extended this technique to the genera-
tion of faithful truncated multipliers, and applied it to
build faithfully rounded floating-point multipliers. The
savings entailed by this approach are significant, and
this type of multiplier could be preferred when IEEE-
754 compliance is not mandatory. Moreover, these mul-
tipliers can be applied to the polynomial evaluation used

ACM SIGARCH Computer Architecture News

78

to build high-quality functions for FPGAs [4], where
only an error bound is required for the final result.

Future work includes finalizing an Altera version for
both regular and truncated tiling multipliers, and ex-
tending tiling-based approaches to squarers and Karat-
suba multipliers.

6. REFERENCES

[1] ISE 11.4 CORE Generator IP.

[2] MegaWizard Plug-In Manager.

[3] J.-L. Beuchat and A. Tisserand. Small
multiplier-based multiplication and division
operators for Virtex-II devices. In
Field-Programmable Logic and Applications, 2002.
F. de Dinechin, M. Joldes, and B. Pasca.
Automatic generation of polynomial-based
hardware architectures for function evaluation. In
Application-specific Systems, Architectures and
Processors. IEEE, 2010.

F. de Dinechin and B. Pasca. Large multipliers
with fewer DSP blocks. In Field Programmable
Logic and Applications. IEEE, Aug. 2009.

F. de Dinechin and G. Villard. High precision
numerical accuracy in physics research. Nuclear
Inst. and Methods in Physics Research, A,
559:207-210, 2006.

M. D. Ercegovac and T. Lang. Digital Arithmetic.
Morgan Kaufmann Publishers, 2004.

S. Gao, N. Chabini, D. Al-Khalili, and

P. Langlois. Optimised realisations of large integer
multipliers and squarers using embedded blocks.
IET Computers € Digital Techniques, 1(1):9-16,
2007.

G. Govindu, L. Zhuo, S. Choi, and V. Prasanna.
Analysis of high-performance floating-point
arithmetic on FPGAs. In Reconfigurable
Architecture Workshop, 2004.

IEEE Computer Society. IEEE Standard for
Floating-Point Arithmetic, IEEE Std 754-2008.
2008.

J. Liang, R. Tessier, and O. Mencer. Floating
point unit generation and evaluation for FPGAs.
Field-Programmable Custom Computing
Machines, page 185, 2003.

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P.
Jeannerod, V. Lefevre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of
Floating-Point Arithmetic. Birkhiuser Boston,
2010.

M. J. Schulte, K. E. Wires, and J. E. Stine.
Variable-Correction Truncated Floating Point
Multipliers. In Asilomar Conference on Signals,
Circuits and Systems, pages 1344-1348, 2000.

R. Scrofano, G. Govindu, and V. K. Prasanna. A
Library of Parameterizable Floating-Point Cores
for FPGAs and Their Application to Scientific
Computing. In Engineering of Reconfigurable
Systems and Algorithms, pages 137-148. CSREA
Press, 2005.

S. Srinath and K. Compton. Automatic
generation of high-performance multipliers for
FPGAs with asymmetric multiplier blocks. In

[4]

15

Vol. 38, No. 4, September 2010

ey e :

(a) SP (b) DP (c) QP (d) SP (¢) DP (f) QP

Figure 8: Mantissa multipliers for SP,DP,QP, Virtex4 (left) and Virtex5 (right) ensuring faithful
rounding. The grey tiles represent soft-core multipliers

Field Programmable Gate Arrays, pages 51-58,
New York, NY, USA, 2010. ACM.

[16] K. Underwood. FPGAs vs. CPUs: trends in peak
floating-point performance. In Field
Programmable Gate Arrays, pages 171-180. ACM,
2004.

[17] K. E. Wires, M. J. Schulte, and D. McCarley.
FPGA Resource Reduction Through Truncated
Multiplication. In Field-Programmable Logic and
Applications, pages 574-583. Springer-Verlag,
2001.

ACM SIGARCH Computer Architecture News 79 Vol. 38, No. 4, September 2010

