
Efficient implementation of Parallel BCD
Multiplication in LUT-6 FPGAs

Álvaro Vázquez 1, Florent de Dinechin 2

LIP, Projet Arénaire, INRIA/ENS de Lyon/CNRS/UCBL/Université de Lyon
46, allée d’Italie, 69364 Lyon Cedex 07, France

1 Alvaro.Vazquez-Alvarez@inria.fr
2 Florent.de.Dinechin@ens-lyon.fr

Abstract—Decimal multiplication is one of the most frequent
operations used by many financial, business and user-oriented
applications but current implementations in FPGAs are very
inefficient in terms of both area and latency when compared
to binary multipliers. In this paper we present a new method for
implementing BCD multiplication more efficiently than previous
proposals in current FPGA devices with 6-input LUTs. In
particular, a combinational implementation maps quite well into
the slice structure of the Xilinx Virtex-5/Virtex-6 families and it
is highly pipelineable. The synthesis results for a Virtex-6 device
indicate that our proposal outperforms the area and latency
figures of previous implementations in FPGAs.

I. INTRODUCTION

Decimal arithmetic is pervasive in human-oriented applica-

tions but has a limited use in numerical data processing. Com-

puter arithmetic is mainly binary due to its better numerical

properties and a simpler implementation in two-state digital

systems. Very recently, a renewed interest on efficient decimal

arithmetic implementations has emerged due to an increasing

demand for financial and business computing [1]. Motivated by

this prospect, an intense research and development on decimal

hardware algorithms and architectures is being carried out.

Thus, some processor developers are gradually incorporating

hardware support for decimal floating-point arithmetic (DFP)

into their high-end products [2], [3]. Besides, a specification

of decimal arithmetic has been incorporated to the revision of

the IEEE 754 Standard for Floating-Point Arithmetic (IEEE

754-2008) [4].

An important and frequent operation in many applications is

decimal multiplication. It is complex to implement in hardware

due to the larger range of decimal digits ([0, 9]) and the

inefficiency of binary codes to represent decimal values, so that

decimal multipliers have lower performance and larger area

than comparable binary multipliers. For example, because of

the high-area requirements of a pipelined parallel implemen-

tation, decimal multiplication in IBM Power6 and Z/system

high-end processors [2], [3] is performed serially using a BCD

(Binary Coded Decimal) carry-propagate adder and hardware

assists. Several decimal serial and parallel multipliers have

been proposed for ASIC [5], [6], [7], [8], [9], [10], [11], [12],

[13] and FPGA [14], [15], [16], [17], [18], [19] platforms.

FPGA implementations are generally based on techniques

originally developed for VLSI architectures. The special built-

in characteristics of FPGA architectures [20] make it difficult

to use many well-known methods to speedup computations

(for example, carry-save and signed-digit arithmetics). There-

fore, beyond adapting existing techniques we explore new

decimal multiplication algorithms more suitable for FPGAs.

This paper presents the algorithm, architecture and FPGA

implementation of a novel unit to perform fast decimal fixed-

point or integer multiplication. We have designed a decimal

parallel multiplier which results in an area-efficient implemen-

tation on 6-input LUT FPGAs. Although sequential and online

implementations consume low area, they have long latencies

that make them inadequate for high-performance applications.

Parallel implementations have been widely used to speedup

the binary multiplication in high-performance processors by

means of deeper pipelines. Following this line, our design is

fully pipelined.

The structure of the paper is as follows. In Section II we

present an outline of prior work. In Section III we propose a

new method for BCD multiplication. Section IV introduces

the resultant combinational and pipelined architectures and

presents the synthesis results of an implementation on a Virtex-

6 FPGA [20]. A comparison with other recent FPGA imple-

mentations is shown in Section V. Finally, the conclusions are

summarized in Section VI.

II. SURVEY OF BCD MULTIPLICATION ALGORITHMS FOR

FPGA

The IEEE 754-2008 Standard [4] specifies three basic

formats (Decimal32, Decimal64, and Decimal128) and two

different encodings, namely BID (Binary Integer Decimal)

and DPD (Densely Packed Decimal), for representing decimal

floating-point numbers. The value of a finite decimal floating-

point number FX in the Standard is given by

FX = (−1)sx · X · 10EX−bias (1)

where sx is a sign bit, X is an integer coefficient, and EX is a

biased positive exponent. In the BID encoding the coefficient

X is coded as an unsigned binary integer, so it needs to be

converted to decimal before being displayed to the user. This

encoding is preferred for software implementations of decimal

floating-point arithmetic [21]. On the other hand, the DPD

encoding is more oriented to hardware implementations, and

uses BCD to represent the coefficient as a p-digit decimal

126

978-1-4244-8982-4/10/$26.00 ©2010 IEEE

integer X =
∑p−1

i=0 Xi 10i (p ∈ {7, 16, 34} for the three basic

formats). Each digit Xi is coded in BCD as

Xi =
3∑

j=0

xi,j · 2j (2)

where Xi ⊂ [0, 9] is the ith decimal digit and xi,j ∈ {0, 1} is

the jth bit of the 4-bit BCD digit i.
In order to obtain an area-efficient FPGA implementation of

parallel decimal multiplication, we have first performed a sur-

vey of the most representative BCD multiplication algorithms.

A straightforward method to implement a BCD multiplication

P = X × Y in hardware is to use an existing binary

multiplier and conversions from BCD to binary and back

to BCD. Although these conversions are costly in terms of

latency and hardware resources, this solution was considered

by Vestias and Neto [19] for FPGAs with embedded binary

multipliers. To reduce the hardware cost, large multiplications

are subdivided in several 4 × 4-digit decimal multiplications,

each one implemented with two BCD to binary converters, an

embedded DSP block, and a binary to BCD converter.

These conversions can be avoided if the BCD operands are

multiplied directly. This typically involves two steps: gener-

ation and reduction of decimal partial products. These steps

can be implemented serially [6], [7], [9], [11] or in a parallel

fashion [5], [8], [10], [12], [13]. In serial implementations one

partial product is generated at each iteration, multiplying the

multiplicand by one digit of the multiplier, and accumulated

to the intermediate partial product. On the other hand, in

parallel implementations all partial products are generated

simultaneously and reduced in an array or tree structure of

adders.

Several FPGA implementations of BCD multipliers [14],

[15], [17], [18] adapt some techniques for decimal partial

product generation and reduction originally proposed for

ASIC. Sutter et al. [18] present combinational and sequential

implementations of BCD multipliers on a Xilinx Virtex-4

device. In this proposal, BCD input operands are multiplied

digit by digit in a binary way. Each 7-bit product is corrected

separately as proposed in [11] to form a two-digit BCD

product. These two-digit products are implemented in a Virtex-

4 FPGA using LUTs configured as multiplexers or 18-Kbit

RAM blocks. Pairs of decimal partial products are generated

in this way multiplying each BCD digit of the multiplier by the

multiplicand. All the partial products are then reduced using

a tree configuration of a specially designed fast BCD carry-

chain adder [22]. An extension of this architecture to decimal

floating-point multiplication was presented in [17].

A sequential BCD multiplier proposed in [6] for ASIC, has

been recently implemented by James et al. [15] on a variety

of FPGAs. In this approach, a set of simple BCD multiplicand

multiples ({0X, 1X, 2X, 4X, 5X}) are precomputed. Each

decimal partial product is generated sequentially by adding

two elements of this set, which are selected according to the

value of the corresponding BCD multiplier digit ([0, 9]). The

decimal partial products are accumulated to an intermediary

(p+1) partial products

Y
4p

Signed-digit
Radix-10 recoder

X
4p

3p

Ym
p

YsXmXs
3pp

LUT-4

ysk

Yk Yk-1

YMk

LUT-4

ysk-1

LUT-5

YMk-1

ysk-2

LUT-5

LUT-4

ysp-1

Yp-1

YMp-1

ysp-2

LUT-5

LUT-4

ys0

Y0

YM0

LUT-4

4 4 4 4

Partial product generation
(digit by digit multiplications)

Input sign/magnitude digits in [-5,5]
Output sign/magnitude digits in [-25,25]

4p+1

Signed-digit
Radix-10 recoder

PP[0]

PP[k]

PP[p]

3 3 3 3

1 1 1 11 1

PP[k-1]

PP[p-1]

pps[p]p

xsp

1

11

ysp

LUT-6

YMkXMi
3 3

6

PPM[k]ipps[k]i

yskxsi

1

11

LUT-4

syp-1XMi
3 1

3

PPM[p]ipps[p]i

yspxsi

1

11

[0,25]{0,1}

[0,5]{0,1}

{0,1}

[0,5][0,5][0,5][0,5]

Magnitude
digits

7p+4 7p+4 7p+4 7p+4

PP[k] PP[k-1] PP[0]PP[p] PP[p-1]

Figure 1. Signed-digit radix-10 recoding architecture

BCD partial product using a decimal carry-save 4:2 adder.

This adder can be build using two rows of 4-bit BCD carry-

propagate adders.

Baesler and Teufel [14] implement a parallel BCD

multiplier on a Xilinx Virtex-II FPGA. This multiplier

is based on the methods proposed in [8], [12], [13],

namely, signed-digit radix-10 recoding of the BCD mul-

tiplier operand and pre-computation of decimal multiples

{−5X, . . . ,−1X, 0X, 1X, . . . , 5X} for partial product gen-

eration, and decimal partial product reduction by means of a

special BCD-4221 carry-save adder tree.

McIlhenny and Ercegovac [16] present an implementation

of a decimal online floating-point multiplier onto a Virtex 5

FPGA. The multiplication is performed in digit-serial fashion,

obtaining a radix-10 digit of the result per cycle, with the most

significant digit first.

We finally considered a magnitude range reduction of the

BCD operand digits as the best way to simplify and speed-up

the generation of all the decimal partial product in parallel.

We compare the following two options: a signed-digit radix-

10 recoding (from [0, 9] to [−5, 5]) of both input operands

[7], and a signed-digit radix-5 recoding of the BCD multiplier

operand only [10], [12], [13]. We have mapped the different

proposals into 6-input LUTs and other available hardware on

a state-of-the-art FPGA slice.

A. Signed-digit radix-10 recoding of X and Y

In this case, the corresponding block diagram of the ar-

chitecture is shown in Fig. 1. Every BCD (4-bit) input digit

is recoded between [−5, 5] in sign (1-bit) and magnitude (3-

bit) format. The recoded operands are multiplied digit by

digit, performing the multiplication of signs (logical XOR of

127

2p partial products

Y
4p

Signed-digit
Radix-5 recoder

X
4p

3p

YL
2p

YU

LUT-4

Yk Yk-1

LUT-4LUT-4

Yp-1

LUT-4

Y0
4 4 4 4

Partial product generation

Output BCD digits in [0,9]

4p+4

3 3 32 3 2 2 2

{0,1,2} [-2,2]

2X-X -2X5X

4(p+1) 4(p+1)

Generation of
multiples

4(p+1)

Mux-3

X

PPUp-1

4p+4

5X
4p+4 4p+4

2

4p+4 4p+4 4p+4 4p+4 4p+4

-X

Mux-5

-2X X 2X

4p+4

4p+4 4p+44p+4 4p+4

PPLp-1

3

<<4
10X

4(p+1)

x2x5 10’s complement

4
Xi

10’s complement

5Xi -Xi 2Xi -2Xi

4

(X<<3)i
4

4 4

41-digit slice

0X

0X

YUp-1YLp-1 YUk YLk YUk-1YLk-1 YU0 YL0

PPU[p-1]
PPL[p-1]

PPU[0]PPL[0]

PPU[k-1]
PPL[k-1]PPU[p-1] PPL[p-1] PPU[k] PPL[k]

PPU[k]
PPL[k]

PPU[0]

PPL[0]

YUp-1

YLp-1

Figure 2. Signed-digit radix-5 recoding architecture

sign bits) and magnitudes separately. The multiplication of

magnitudes requires 6-bit input lookup tables (LUT-6). The

digits of the decimal partial product array generated, shown

at the bottom of Fig. 1, are sign and magnitude numbers

between [−25, 25]. This results in 6 LUTs per digit-by-digit

multiplication since the partial product digit magnitudes are

represented in BCD. The hardware cost for p-digit BCD

operands is shown in column 2 of Table I.

B. Signed-digit radix-5 recoding of Y

Fig. 2 shows the block diagram for this case. Each BCD

digit Yk of the multiplier operand is recoded into two digits

as

Yk = 5 Y U
k + Y L

k (3)

with Y U
k ∈ {0, 1, 2} and Y L

k ∈ {−2,−1, 0, 1, 2}. This

recoding needs five 4-input LUTs per digit (2 LUTs for Y U
k

and 3 LUTs for Y L
k). Two partial products are generated per

BCD multiplier digit. The upper partial products are generated

as X×Y U
k , while the lower partial products are X×Y L

k , where

X the BCD multiplicand. In a straightforward implementation

[10], two BCD multiplicand multiples 2X and 5X are pre-

computed before partial product generation using combina-

tional logic (each digit of a multiple generator can be mapped

into four LUT-4 or two LUT-6). Two negative multiples −X
and −2X are also pre-computed as the 9’s complement of

X and 2X respectively. Next, each upper partial product is

generated using a row of multiplexers controlled by Y U
k that

selects 5X or 10X . The 0X multiple is selected by a reset of

the output register. The lower partial products are generated

from digits Y L
k by selecting the correspondent multiple −2X ,

−1X , 1X or 2X . The hardware cost (p-digit operands) is

shown in column 3 of Table I, and is higher than the hardware

cost of the first scheme.

C. Partial product reduction

However, before taking any decision about the preferred

design, we also have to take into account the significant

contribution of the partial product reduction to the total cost of

the multiplier. Faster parallel multipliers use multiple adders

connected in a tree configuration (O(log2 npp)) to reduce

the npp partial products generated into a final non-redundant

product. The number of partial products generated is roughly

doubled (npp = 2p instead of npp = p+1) in the second case,

though all of them are BCD operands (digits in [0, 9]) instead

of signed-digit operands (digits in [−25, 25]).
The partial products generated by the scheme of Fig. 1

can be efficiently reduced using a decimal signed-digit adder

tree [7]. Besides, these partial products have to be converted

from [−25, 25] to an appropriate range for decimal signed-

digit addition. A decimal signed-digit adder [23] reduces two

input digits (⊂ [−a, a] with a ∈ {5, 6, 7, 8, 9}) into a digit

in the same range, producing a transfer digit into the next

decimal position. This type of adders does not fit well in the

building blocks of current FPGAs, leading to tree structures

far from optimal in terms of area and delay. In Table I we

show the estimated complexity of decimal signed-digit adder

tree proposed by Erle et al. [7]. We use a first level of decimal

signed-digit adders for the conversion of partial product digits

from [−25, 25] to [−6, 6].
On the other hand, the reduction of the BCD partial products

generated by the scheme of Fig. 2 can be performed using a

variety of adders which can be mapped more efficiently on a

FPGA. Proposed implementations uses either carry-ripple or

carry-save adder trees. Decimal carry-save adder trees [5], [6],

[10], [13] require additional logic for decimal correction and

have much more interconnections which complicate the FPGA

implementation and routing. Lang and Nannarelli [10] use a

carry-save tree built of 4-bit BCD adders and 8-bit counters

to reduce the 2p BCD partial products generated. The result

of this reduction is a double word operand. The final BCD

product is obtained from the sum of these two terms in a BCD

carry-propagate adder. The estimated hardware cost of this

design is shown in Table I in terms of LUT-6. An alternative

is to implement a BCD carry-ripple adder tree [18] that can

make use of the dedicated fast carry chain. Its hardware cost,

shown in Table I, depends on how efficient are mapped these

BCD adders on FPGA. Fast FPGA implementations of BCD

carry-chain adders [22] require more than double the hardware

of an equivalent binary carry-ripple adder. Besides, since the

logic depth of these BCD adders is also doubled, the delay of a

tree implementation is incremented in a proportional amount.

To overcome both drawbacks, we designed a new BCD carry-

ripple adder tree [24] that roughly halves the hardware cost

and latency of previous implementations.

128

Table I
HARDWARE COST OF BCD MULTIPLIERS (p-DIGIT OPERANDS)

Ref. [7] (Fig. 1) Ref. [10] (Fig. 2) Proposed (Fig. 3)
(# LUT-6) (# LUT-6) (# LUT-6)

Recoding 8p 3p 3p
Gen. of Multiples – 8p 2p
Partial product 6p2 + 6p 8p2 + 2p 8p2 + 2p
generation p2 + 2p + 1 XORs

Reduction Tree Signed-Digit† Carry-Save‡ Carry-Ripple∗

Total:
p = 16 (16 × 16-digit mult) 10720 LUTs 289 XORs 7322 LUTs 4880 LUTs
p = 34 (34 × 34-digit mult) 46580 LUTs 31335 LUTs 21556 LUTs
p = 16 and p = 34 for IEEE 754-2008 decimal64 and decimal128 formats.
†Signed-Digit Adder Tree: hcsd × (2p2 + p × (�log2 p�/2)) + hccra1 × 2p
‡Carry-Save Adder Tree: hccra1 × (9p2/4 + p × (�log2 p� + 3)/2) + 5p/8
∗Carry-Ripple Adder Tree: hccra2 × (2p2 + p × (�log2 p�/2))
hcsd = 16 : Estimated hardware cost of a 1-digit decimal signed-digit adder [7], [23].
hccra1 = 8: Hardware cost of prior art 1-digit BCD carry-chain adder [22].
hccra2 = 5: Hardware cost of proposed 1-digit BCD carry-ripple adder [24].

Y

4p

Signed-digit
Radix-5 recoder

X
4p

3p

YL
2p

YU

LUT-4

yuj

Yj Yj-1

ylj

LUT-4

yuj-1 ylj-1

LUT-4

yup-1

Yp-1

ylp-1

LUT-4

yu0

Y0

yl0

4 4 4 4

Partial product generation

Output BCD digits in [0,9]

3 3 32

{0,1,2} [-2,2]

3 2 2 2

{0,1,2} [-2,2] {0,1,2} [-2,2] {0,1,2} [-2,2]

2p partial products
4p+4

PPUi PPLi

4p+4

PPUp-1PPLp-1

4p+4 4p+4 4p+4

PPU0 PPL0

4p+4

Partial product reduction

Output BCD digits in [0,9]

PPUp-1 PPLp-1
4p+4 4p+4 4p+4 4p+4

BCD carry-ripple adder

PPL0PPU0
4p+4 4p+4 4p+4 4p+4

PPL0PPU0

BCD carry-ripple adderBCD carry-ripple adderBCD carry-ripple adder

PPUi PPLi

4p+4 4p+4

BCD carry-ripple adder

4p+8

4p+4

8p

4p+44p+4

BCD carry-ripple adder

8p

4p+2p

4p+4

BCD carry-ripple adder

4p+16

4p+84p+8

BCD carry-ripple adder

4p+8

BCD carry-ripple adder

4p+2p

P

P

log2 (p)+1 levels

x2

BCD ripple-carry adder tree

4p+1

Figure 3. Proposed BCD parallel multiplier

III. PROPOSED METHOD

From the results of this survey, we opt for a parallel design

with a signed-digit radix-5 recoding of the BCD multiplier

Y and a BCD carry-ripple adder tree for partial product

reduction. The general block diagram of the proposed decimal

parallel multiplier is shown in Fig. 3. To improve the area

and performance of the resultant implementations we propose

a different organization of the basic scheme[10] that maps

better in a Xilinx Virtex-5/6 device (see hardware cost in

column 4 of Table I). In our case, only the 2X multiple is

precomputed. The remaining BCD multiplicand multiples are

computed on-the-fly in the BCD partial product generation

block. The decimal partial product generation is detailed in

Section III-A. We also have developed a new BCD carry-

propagate addition algorithm [24], detailed in Section III-B,

that leads to an efficient decimal carry-ripple adder tree

implementation on a Xilinx Virtex-5/6 device (see hardware

cost in row 4 of Table I with hccra = 5). Moreover, since

it presents many similarities with a binary carry-ripple adder

tree, the partial product reduction tree can be pipelined using

existing techniques for binary [25]. The combinational and

pipelined BCD multipliers are presented in Section IV.

A. Partial product generation

We recode the BCD digits of Y using the signed-digit

radix-5 recoding described by Equation (3) in Section II-B.

129

Each 4-bit BCD digit Yk is recoded into an upper 2-bit

digit Y U
k ∈ {0, 1, 2} and a lower 3-bit signed-digit Y L

k ∈
{−2,−1, 0, 1, 2}. This recoding generates 2p partial products

aligned as shown in Fig. 2, that is, two BCD partial products

PPU [k] and PPL[k] per BCD digit Yk. The upper partial

product PPU [k] is computed from X and Y U
k as

PPU [k] =

⎧⎨
⎩

10X if Y U
k == 2

10X/2 if Y U
k == 1

0X if Y U
k == 0

(4)

We have mapped this equation into a Virtex-5/6 FPGA slice.

Fig 4 shows the implementation of one BCD digit of PPU [k].
The LUTs implement the selection of digits (10X)i = Xi−1,

LUT-6

2

2

1

2

0

1

ppu[k]i,3

0

1 1

YUk

LUT-6

2

1

0

1 1

LUT-6

1

0

1 1

LUT-6

2

1

0

1

xi-1,3 xi-1,3xi-1,2

ppu[k]i,2 ppu[k]i,1 ppu[k]i,0

1

xi,0

0

0

xi-1,2xi-1,1 xi-1,1xi-1,0

pi,2 pi,1 pi,0pi,3 gi,2 gi,0

YUk= 0

xi-1,3 xi-1,2 xi-1,1
xi,0 xi,0

YUk= 1

YUk =

PPU[k]i

+

4 2 18PPU[k]i = (10X)i=Xi-1

PPU[k]i = (5X)i= [Xi-1/2] + 5xi,0

PPU[k]i = (0X)i= 0

4 2 1810

Figure 4. Generation of partial product PPU [k] at digit i

(5X)i or 0. The BCD multiple 10X is obtained at no cost

by shifting the multiplicand X 4 bits to the left. The multiple

5X is computed dividing 10X by 2, that is, each digit of

5X is given by (5X)i = �Xi−1/2� + xi,0 5. This division

is implemented as a 1-bit right shift of 10X followed by a

conditional addition of 5 (BCD value 0101) at digit i when

xi,0 is one. This 4-bit addition is implemented using the fast

carry logic of the Virtex-5/6 slice.

The k− th lower partial product PPL[k] is computed from

2X , X and Y L
k as

PPL[k] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2X if Y L
k == 2

1X if Y L
k == 1

0X if Y L
k == 0

10p − X if Y L
k == −1

10p − 2X if Y L
k == −2

(5)

In Fig. 5 we show the implementation of this equation into the

Virtex-5/6 slice for one digit. Only the multiples X and 2X are

pre-computed. A negative partial product is obtained by com-

puting on demand the 10’s complement of the corresponding

positive multiple (that is, by the 10’s complement of X if

Y L
K = −1, and by the 10’s complement of 2X if Y L

K = −2).

LUT-6

3

3

1

3

ppl[k]i,3

0

1 1

YLk

LUT-6

3

1

0

1 1

LUT-6

1

0

1 1

LUT-6

31

xi,3

ppl[k]i,2 ppl[k]i,1 ppl[k]i,0

0

pi,2 pi,1 pi,0pi,3

YLk= 0

YLk = 1

YLk= 2

PPL[k]i

PPL[k]i = (2X)i

PPL[k]i = 0

4 2 18
(2x)i,3 xi,2 (2x)i,2 xi,1 (2x)i,1 xi,0 (2x)i,0

1

PPL[k]i = Xi

YLk = -1

YLk= -2

PPL[k]i =(Xi+10) mod16

0

gi,1

PPL[k]i =((2X)i+10)) mod16

xi,3 xi,2 xi,1
1

xi,0
+ 1

Figure 5. Generation of partial product PPL[k] at digit i

The 10’s complement of X is obtained by computing the 9’s

complement of each BCD digit Xi as

9 − Xi = (15 − Xi + 10) − 16 = (Xi + 10) mod 16 (6)

and adding one bit to the least significant digit of PPL[k].
To avoid a large carry propagation in the partial product

generation, this bit is added in the partial product reduction

tree. The 9’s complement of Xi and (2X)i implies a 4-

bit carry-propagate addition implemented using the fast carry

logic of the Virtex-5/6 slice as shown in Fig. 5.

B. Partial product reduction

The 2p partial products generated are aligned and reduced

using the tree of carry-ripple adders of Fig. 3. It has log2(2p)
levels of carry-ripple adders ranging from 4p + 4-bit to 6p-bit

length. The result of each two-operand BCD sum is passed to

an adder a level down, and the carry ripples through the length

of the adder. However, since the carry-ripple chains overlap,

the signals are propagated as much as 8p bits in length plus

log2(2p) levels in depth. Therefore, the critical path delay of

this tree is given by

tppr = tc−path × 2p + ts−path × (log2(2p) − 1) (7)

where tc−path is the delay of the carry chain of a 1-digit (4-bit)

BCD adder and ts−path the delay of the sum path of the 1-digit

BCD adder. Bioul et al. [22] proposed several decimal adders

that use the fast carry chain of the Virtex-6 slice to speedup

a two-operand BCD addition. The implementation with the

lowest hardware cost is shown in Fig. 6. In this design, the

decimal carries are obtained by a direct implementation of

a decimal carry-propagate recurrence Ci+1 = Gi ∨ Pi Ci.

Boolean signals Gi and Pi indicate the conditions for the

generation and propagation of decimal carries for each digit,

and are true when the binary sum of the input digits Zi =
Xi + Yi is higher than 9 or equal to 9 respectively. When a

130

0

LUT-6

1

zi,3

0

1 1

LUT-6

1

0

LUT-6

1

0

LUT-6

1

0

zi,2 zi,1 zi,0

pzi,2 pzi,1 pzi,0pzi,3

(4) (2) (1)(8)

xi,0

Ci

Ci+1

gzi,0

yi,0
1 1

xi,1 yi,1
1 1

xi,2 yi,2
1 1

xi,3 yi,3

gzi,3 gzi,2 gzi,1

LUT-6

zi,4 (16)

1

0

LUT-6

1

LUT-6LUT-6LUT-6

1 11

1

0

1

0

1

0

pi,2 pi,1 pi,0pi,3

0

gi,1gi,2

Ci

si,3 si,2 si,1 si,0(4) (2) (1)(8)

Gi
Pi

Figure 6. BCD Carry-Chain Adder (1-digit). Prior Art [22]

LUT-6

1

si,3

0

1 1

LUT-6

1

0

LUT-6

1

0

LUT-6

1

0

si,2 si,1 si,0

pi,2 pi,1 pi,0pi,3

4 2 18

xi,0

CiCi+1

gi,0

yi,0

LUT-6

33

gUi

YUi = y i,3 8 + yi,2 4 + yi,1 2

XUi = x i,3 8 + xi,2 4 + xi,1 2

00

Figure 7. Proposed BCD Carry-Ripple Adder (1 digit)

decimal carry-out Ci+1 is produced, the binary sum must be

corrected by 6 (0110) to obtain the BCD sum digit Si, that is

Si = Zi +6 Ci+1 +Ci. The problem of this design is its high

hardware cost, equivalent to eight LUT-6, and that ts−path is

more than double the delay of a 4-bit binary carry-ripple adder,

because the sum path goes through two successive levels of

LUT-6 separated by the global routing.

We propose a different method for BCD carry-propagate

addition [24] that lead to the implementation of Fig. 7. In this

method, a correction factor of 6 (0110) is added to the BCD

input digits Xi, Yi when the sum XU
i +Y U

i is equal or higher

than 8. We denote by XU
i , Y U

i the 3 most significant bits

of Xi and Yi respectively. This conditional addition of 6 is

merged with the binary addition of Xi + Yi + Ci using the

Virtex-5/6 slice configuration of Fig. 7. Another boolean signal

gU
i , which indicates when XU

i + Y U
i ≥ 10, is computed in a

fifth LUT-6. In this way, the decimal carries Ci+1 are obtained

from a single binary carry-propagate addition of the modified

BCD input operands. The BCD sum digit Si is equal to the

4-bit binary sum

Zi =
{

(Xi + Yi + 6 + Ci) mod 16 if XU
i + Y U

i ≥ 8
(Xi + Yi + Ci) mod 16 else

Table II
SYNTHESIS RESULTS FOR THE COMBINATIONAL IMPLEMENTATION

BCD Mult. size Hardware Cost Delay
(pX × pY) (# LUT-6) (ns)
4 × 4 336 4.91
8 × 4 642 5.17
8 × 8 1268 6.41
16 × 8 2396 6.90
16 × 16 4880 8.38
34 × 16 10010 9.48
34 × 34 21611 14.39

except when Zi ∈ {14(1110), 15(1111)}. In this case, the +6

factor has been added in excess and the correct BCD sum

digits are Si ∈ {8(1110), 9(1001)}. To avoid corrections be-

tween levels of the adder tree, we allow the 4-bit combinations

(1110), (1111) to be valid representations of decimal values 8

and 9. Only the output digits Zi of the adder tree are corrected

as

Pi = zi,3 8 + (zi,2zi,3) 4 + (zi,1zi,3) 2 + zi,0 (8)

to obtain the digits Pi of the final BCD product using two 1-bit

flip-flops of the Virtex-5/6 slice configured as two logical AND

gates with an inverted input. With this method, the equivalent

hardware cost of 1-digit BCD adder is reduced to 5 LUTs per

digit and tc−path, ts−path are roughly the delays of the carry

and sum paths of a 4-bit binary carry-ripple adder.

IV. PARALLEL BCD MULTIPLIERS

Combinational and pipelined versions of the proposed par-

allel BCD multiplier were designed in VHDL for arbitrary

px×py-digit wide multiplications using the Xilinx ISE Design

Suite 11.4. The basic building blocks of the multiplier were

instantiated into components of the Xilinx Virtex-6 library to

have more control over the mapping process. The architectures

were synthesized in a Virtex-6 XC6VLX75T device with speed

grade-3 using the XST compiler and simulated with Modelsim

SE 6.5.

A. Combinational Architecture

We have synthesized the combinational BCD multiplier of

Fig. 3 for different operand sizes. A 16×16-digit BCD multi-

plier is required for the multiplication of BCD significands

in the IEEE Decimal64 format. For the IEEE Decimal128

format, the BCD multiplication size supported must be 34×34.

Besides, we have included several rectangular multipliers in

this list. The area and delay synthesis results are presented in

Table II.

The hardware cost is expressed in terms of equivalent LUT-

6 units and the delay in ns.

B. Pipelined Architecture

We consider a 2-stage pipeline for the multiplicand recoding

and generation of partial product. We place each level of the

adder tree in a different pipeline stage. Besides, each carry-

ripple adder is pipelined in chunks of m bits at most. The total

number of pipelined stages is equal to 2+�8p/m	+log2(p). In

131

4p+4

PPU[0] PPL[0]
4p+4 4p+4

6p
2p

p p p p p p

4 p p pp

p-4p p p8

p
p

4
p

p

p
p

p
p

4

4 p-4ppp 4

8p

P

4p+8

p-8p p p16

8 p-8ppp 8

4p+16

p p p16

pppp p

p

16-bit
Shift
Register
LUTs

Path with maximum
number of pipeline stages

Figure 8. Detail of a pipelined 16×16-digit BCD Multiplier (m = p = 16)

Fig. 8 we show this register placement for the least significant

part of the partial product reduction tree of a 16 × 16-digit

BCD multiplier and m = p = 16. A significant amount of

registers is required for input synchronization [25]. To reduce

the hardware cost, these synchronization registers are placed

in the first pipeline level of the tree and packed together as

16-bit shift register LUTs.

We have pipelined in this way the 16 × 16 BCD parallel

multiplier and implemented for different values of m. The

synthesis results are presented in Table III.

V. COMPARISON

We compare our synthesis results with three different par-

allel implementations of decimal multiplication on FPGAs

recently reported [14], [18], [19]. Vestias and Neto [19] present

results for 8×8-digit and 16×16-digit multipliers in a Virtex-

4 SX35-12 FPGA. These designs can make use of embedded

binary multipliers to reduce the number of utilized LUTs.

Their 16 × 16 multiplier uses 16 embedded DSP blocks and

3005 LUTs with a delay of 68 ns, or equivalently 6493 LUTs

with a delay of 65 ns.

On the other hand, our combinational 16 × 16 multiplier

has a cost of 4880 LUTs and a latency of 8.38 ns on Virtex-

6 with speed grade -3, though these figures are difficult to

extrapolate to Virtex-4 for a fair comparison with [19]. To

give a notion of how Virtex-4 and Virtex-6 implementations

could compare, we show in Table IV the area and latency

figures of a 53×53-bit binary multiplier provided by the Xilinx

Core generator. Virtex-6 performance is practically doubled

compared to Virtex-4 due to feature size reduction of the

underlying VLSI technology. These results are shown in Table

IV.

Although in terms of area both implementations are compa-

rable, our 16×16 BCD combinational multiplier is more than

7 times faster than any of the designs presented by Vestias

and Neto [19].

Sutter et al. [18] reported results for combinational im-

plementations of BCD multipliers up to 32 × 16 digits.

The 16 × 16 BCD multiplier has a latency of 26.9 ns and

occupies 22033 LUTs on a Virtex-4 with speed grade -11.

Again, a direct comparison of this implementation with our

Virtex-6 implementation is quite unfair. However, we observe

that the reduction in latency is more than 3 times between

the implementation of Sutter et al. [18] (Virtex-4) and our

combinational multiplier (Virtex-6). For hardware cost, the

reduction is around a factor of 4.5. Therefore, these significant

improvements cannot be explained only by the use different

implementation technologies. We have also included in this

Table the synthesis results of a 16×16 BCD multiplier reported

by Baesler et al. [14] in a Virtex-II Pro XC2VP30 with speed

grade -6.

VI. CONCLUSION AND FUTURE WORK

In this work we presented the design of a BCD multiplier

and its implementation on a Virtex-5/6 FPGA. We performed

a survey of prior techniques of BCD multiplication to find

the most adequate for low-latency area-efficient FPGA imple-

mentations. The proposed architecture is based on a parallel

generation of the decimal partial products using a signed-

digit radix-5 recoding of the multiplier operand. The partial

product reduction is performed in a tree of BCD carry-

ripple adders. We developed new methods for an efficient

implementation of both generation and reduction techniques

on the Virtex-5/6 slice. Combinational and pipelined versions

of the BCD multiplier were synthesized in a Virtex-6 speed

grade-3 device and the results compared with those of three

recent FPGA implementations of parallel BCD multipliers. We

show that the proposed design is a very competitive option

for high-performance low-latency implementations of BCD

multiplication on Virtex-5/6 FPGAs at a moderate hardware

cost.

Future work includes the extension of the proposed BCD

multiplier architectures to decimal floating-point. Also, we are

planning to integrate the proposed multiplier in a core of the

FloPoCo project1, a generator of arithmetic cores for FPGAs,

and to support more FPGA targets than Virtex-5/6 families.

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

132

Table III
SYNTHESIS RESULTS FROM PIPELINING OF THE 16 × 16 BCD MULTIPLIER

m #pipe. Clock Freq. Delay Hardware Cost
(bits) stages (Mhz) latency× #stages #LUT-6 #FF
64 8 453 Mhz 17.7 ns (2.21 × 8) 5008 6926
32 10 579 Mhz 17.2 ns (1.72 × 10) 6032 6957
16 14 672 MHz 20.9 ns (1.49 × 14) 6544 7020
8 22 731 Mhz 30.1 ns (1.37 × 22) 6800 7148

Table IV
COMPARISON OF 16 × 16 BCD MULTIPLIERS

Design Delay Hardware Cost
(ns) (# components)

Combinational 8.4 ns 4880 LUT
Pipelined (8-stage) 17.7 ns (8@453 Mhz) 5008 LUT 6926FF
Virtex-6 53 × 53-bit Binary Mult. 26.6 ns (12@450 Mhz) 150LUT-FF 133LUT 276FF 10DSP
Vestias et al. w/DSP [19] 68 ns 3005 LUT 16 DSP
Vestias et al. wo/DSP [19] 65 ns 6493 LUT
Sutter et al. [18] 26.9 ns 22033 LUT
Virtex-4 53 × 53-bit Binary Mult. 45 ns (18@400 Mhz) 279Slices 386LUT 437FF 16DSP
Baesler et al. [14] (Virtex-II Pro) 54 ns (6@111 Mhz) 5289 LUT

ACKNOWLEDGMENT

The authors would like to thank Bogdan Pasca for his

valuable help and many interesting suggestions throughout the

preparation of this paper.

REFERENCES

[1] M. Cowlishaw, “Decimal floating-point: Algorism for computers,” in
Proc. 16th IEEE Symposium on Computer Arithmetic (ARITH16), San-
tiago de Compostela, Spain, Jul. 2003, pp. 104–111.

[2] L. Eisen et al., “IBM POWER6 accelerators: VMX and DFU,” IBM
Journal Research and Development, vol. 51, no. 6, pp. 663–684, Nov.
2007.

[3] E. Schwarz, J. Kapernick, and M. Cowlishaw, “Decimal floating-point
support on the IBM System z10 processor,” IBM Journal Research and
Development, vol. 51, no. 1, pp. 4:1–4:10, Jan./Feb. 2009.

[4] IEEE Std 754(TM)-2008, IEEE Standard for Floating-Point Arithmetic,
IEEE Computer Society Std., Aug. 2008.

[5] L. Dadda and A. Nannarelli, “A variant of a radix-10 combinational
multiplier,” in Proc. IEEE Int. Symposium in Circuits and Systems
(ISCAS 2008), Santiago de Compostela, Spain, May 2008, pp. 3370–
3373.

[6] M. A. Erle and M. J. Schulte, “Decimal multiplication via carry-save
addition,” in Proc. of the IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (ASAP 2003), The
Hague, The Netherlands, Jun. 2003, pp. 348–358.

[7] M. A. Erle, E. M. Schwarz, and M. J. Schulte, “Decimal multiplication
with efficient partial product generation,” in Proc. 17th IEEE Symposium
on Computer Arithmetic (ARITH17), Cape Cod, MA, USA, Jun. 2005,
pp. 21–28.

[8] B. J. Hickman, A. Krioukov, M. A. Erle, and M. J. Schulte, “A
parallel IEEE P754 decimal floating-point multiplier,” in Proc. 25th
IEEE Conference on Computer Design (ICCD’07), Lake Tahoe, CA,
USA, Oct. 2007, pp. 296–303.

[9] R. D. Kenney, M. J. Schulte, and M. A. Erle, “High-frequency decimal
multiplier,” in Proc. 2004 IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD 2004), San Jose, CA,
USA, Oct. 2004, pp. 26–29.

[10] T. Lang and A. Nannarelli, “A radix-10 combinational multiplier,” in
Proc. 40th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, USA, Oct. 2006, pp. 313–317.

[11] G. Jaberipur and A. Kaivani, “Binary-coded decimal digit multipliers,”
IET Comput. Digit. Tech., vol. 1, no. 4, pp. 377–381, Jul. 2007.

[12] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of high-
performance parallel decimal multipliers,” in Proc. 18th IEEE Sym-
posium on Computer Arithmetic (ARITH18), Montpellier, France, Jun.
2007, pp. 195–204.

[13] ——, “Improved design of high-performance parallel decimal multipli-
ers,” IEEE Trans. Comput., vol. 59, no. 5, pp. 679–693, May 2010.

[14] M. Baesler and T. Teufel, “Fpga implementation of a decimal floating-
point accurate scalar product unit with a parallel fixed-point multiplier,”
in Proc. IEEE International Conference on Reconfigurable Computing
and FPGAs 2009 (ReConFig’09), Cancun, Mexico, Dec. 2009, pp. 6–11.

[15] R. James, K. Jacob, and S. Sasi, “Performance analysis of double
digit decimal multiplier on various FPGA logic families,” in Proc. V
Southern Programmable Logic Conference (SPL09), Sao Carlos, Brazil,
Apr. 2009, pp. 165–170.

[16] R. McIlhenny and M. Ercegovac, “On the design of a radix-10 online
floating-point multiplier,” in Proc. SPIE on Advanced Signal Processing
Algorithms, Architectures, and Implementations, San Diego, CA, USA,
Aug. 2009.

[17] C. Minchola and G. Sutter, “A FPGA IEEE 754-2008 Decimal64
floating-point multiplier,” in Proc. IEEE International Conference on
Reconfigurable Computing and FPGAs 2009 (ReConFig’09), Cancun,
Mexico, Dec. 2009, pp. 59–64.

[18] G. Sutter, E. Todorovich, G. Bioul, M. Vazquez, and J.-P. Deschamps,
“FPGA implementations of BCD multipliers,” in Proc. IEEE Inter-
national Conference on Reconfigurable Computing and FPGAs 2009
(ReConFig’09), Cancun, Mexico, Dec. 2009, pp. 36–41.

[19] M. P. Vestias and H. C. Neto, “Parallel decimal multipliers using binary
multipliers,” in VI Southern Programmable Logic Conference, (SPL
2010), Ipojuca, Brazil, Mar. 2010, pp. 73–78.

[20] “Virtex-6 configurable logic block user guide,” http://www.xilinx.com/,
Xilinx Inc., Sep. 2009.

[21] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and
E. Gvozdev, “A software implementation of the IEEE 754R decimal
floating-point arithmetic using the binary encoding format,” IEEE Trans.
Comput., vol. 58, no. 2, pp. 148–162, Feb. 2009.

[22] G. Bioul, M. Vazquez, J.-P. Deschamps, and G. Sutter, “Decimal
addition in FPGA,” in Proc. V Southern Programmable Logic Confer-
ence(SPL09), Sao Carlos, Brazil, Apr. 2009, pp. 101–108.

[23] A. Svoboda, “Decimal adder with signed-digit arithmetic,” IEEE Trans.
Comput., vol. C, pp. 212–215, Mar. 1969.

[24] A. Vazquez and F. de Dinechin, “Multi-operand decimal tree adders for
FPGAs,” INRIA, Research Report, Sep. 2010.

[25] F. de Dinechin, H. D. Nguyen, and B. Pasca, “Pipelined FPGA
adders,” École Normale Supérieure de Lyon, LIP Research Report ensl-
00475780, Apr. 2010.

133

