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Abstract—Most current square root implementations for FP-
GAs use a digit recurrence algorithm which is well suited to
their LUT structure. However, recent computing-oriented FPGAs
include embedded multipliers and RAM blocks which can also be
used to implement quadratic convergence algorithms, very high
radix digit recurrences, or polynomial approximation algorithms.
The cost of these solutions is evaluated and compared, and a
complete implementation of a polynomial approach is presented
within the open-source FloPoCo framework. This polynomial
approach allows a shorter latency and higher frequency than
the digit recurrence approach, and improves over previous
multiplicative approaches. However, the cost of IEEE-compliant
correct rounding is shown to be very high.

Index Terms—FPGA; square root; floating-point

I. INTRODUCTION

A. Algorithms for floating-point square root

There are two main families of algorithms which can be
used to extract square roots.

The first family is that of digit recurrence algorithms, which
provide one digit (often one bit) of the result at each itera-
tion. Each iteration consists of additions and digit-by-number
multiplications [1]. Such algorithms have been widely used in
microprocessors that didn’t include hardware multipliers. Most
FPGA implementations in vendor tools or in the literature [2],
[3], [4] use this approach, which was the obvious choice for
early FPGAs which did not yet include embedded multipliers.
This approach is also implemented in the FloPoCo project1.
There, an approximate model of the delay of an iteration [5]
is used to group several iterations in a single cycle if this
is compatible with the user-specified target frequency. As the
width of the computation increases as iterations progress, it is
possible to pack more iterations in a cycle at the beginning
of the computation than at the end. For instance, for a single
precision square root pipelined for 100 MHz for Virtex-4, the
25 iterations are grouped as 7 + 5 + 5 + 4 + 4. Table I shows
that this leads to state-of-the-art performance.

The second family of algorithms uses multiplications, and
was studied as soon as processors included hardware multipli-
ers. It includes quadratic convergence recurrences derived from
the Newton-Raphson iteration, used in AMD IA32 processors
starting with the K5 [6], in more recent instruction sets
such as Power/PowerPC and IA64 whose floating-point unit
is built around the fused multiply-and-add [7], [8], and in
the INVSQRT core from the Altera MegaWizard [9]. Other
variations involve piecewise polynomial approximations [10],

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

TABLE I
PIPELINED DIGIT-RECURRENCE SQUARE ROOTS ON A VIRTEX-4

(4VFX100FF1152-12) USING ISE 11.3.

Precision Tool input cycles Synth. results

SP

FloPoCo 50 MHz 3 49 MHz, 253 sl.
FloPoCo 100 MHz 6 107 MHz, 268 sl.
LogiCore 6 cycles 6 86 MHz, 301 sl.
FloPoCo 200 MHz 12 219 MHz, 327 sl.
LogiCore 12 cycles 12 140 MHz, 335 sl.
FloPoCo 400 MHz 25 353 MHz, 425 sl.
LogiCore 28 cycles 28 353 MHz, 464 sl.

DP

FloPoCo 50 MHz 7 48 MHz, 1014 sl.
FloPoCo 100 MHz 15 99 MHz, 1169 sl.
FloPoCo 200 MHz 40 206 MHz, 1617 sl.
FloPoCo 300 MHz 53 307 MHz, 1770 sl.
LogiCore 57 cycles 57 265 MHz, 1820 sl.

[11]. On FPGAs, the VFLOAT project [12] uses an argument
reduction based on tables and multipliers, followed by a
polynomial evaluation of the reduced argument.

To sum up, digit recurrence approaches allow one to build
minimal hardware, while multiplicative approaches allow one
to make the best use of available resources when these include
multipliers. As a bridge between both approaches, a very high
radix algorithm introduced for the Cyrix processors [13] is a
digit-recurrence approach where the digit is 17-bit wide, and
digit-by-number multiplication uses the 17x69-bit multiplier
designed for floating-point multiplication.

Now that high-end FPGAs embed several thousands of
small multipliers, the purpose of this article is to study how
this resource may be best used for computing square roots. We
evaluate a multiplier-based square root based on polynomial
evaluation which is, to our knowledge, original in the context
of FPGAs. The wider goal of this work is to provide the best
possible square root implementations in FloPoCo.

B. Floating-point issues for square root

We compute the square root of a floating-point number X
in a format similar to IEEE-754:

X = 2E × 1.F

where E is an integer, and F is the fraction part of the man-
tissa, written in binary on wF bits: 1.F = 1.f−1f−2 · · · f−wF

(the indices denote the bit weights).
There are classically two cases to consider.
• If E is even,

√
X = 2E/2 ×

√
1.F .
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TABLE II
COMPARISON OF DOUBLE-PRECISION SQUARE ROOT OPERATORS. NUMBERS IN ITALIC ARE ESTIMATIONS.

Algorithm precision latency frequency slices DSP BRAM
FloPoCo digit recurrence 0.5 ulp 53 cycles 307 MHz 1740 0 0

Radix-217 digit recurrence [14], [15] 0.5 ulp 30 cycles 300 MHz ? 23 1
VFLOAT [12] 2.39 ulp 17 cycles >200 MHz 1572 24 116

Polynomial paper and pencil estimation (degree 4) 1 ulp 25 cycles 300 MHz ? 18 20
Altera (1/

√
x) [9] 1 ulp? 32 cycles ? 900 ALM 27 32 M9K

• If E is odd,
√
X = 2(E−1)/2 ×

√
2× 1.F .

In both cases the computation of the exponent of the result
is straightforward, and the problem is reduced to computing√
Z for Z ∈ [1, 4).
A detailed survey of multiplicative algorithms for floating-

point square root in the context of FPGAs may be found in the
extended version of this article [16]. The results, summarized
in Table II, led us to implement a polynomial-based algorithm,
which we now detail.

II. THE COST OF CORRECT ROUNDING

Given a floating-point format with wF bits of mantissa, it
makes no sense to build an operator which is accurate to less
than wF bits: it would mean wasting storage bits, especially
on an FPGA where it is possible to use a smaller wF instead.
However, the literature distinguishes two levels of accuracy.

• IEEE-754 correct rounding: the operator returns the FP
number nearest to

√
X . This corresponds to a maximum

error of 0.5 ulp with respect to the exact mathematical
result, where an ulp (unit in the last place) represents the
binary weight of the last mantissa bit of the correctly
rounded result – with our notations, the ulp value is
2−wF . Correct rounding is the best that the format allows.

• Faithful rounding: the operator returns one of the two FP
numbers closest to

√
X , but not necessarily the nearest.

This corresponds to a maximum error strictly smaller than
1 ulp.

In general, to obtain a faithful evaluation of a function
such as

√
X to wF bits, one needs to first approximate it

to a precision higher than that of the result (we denote this
intermediate precision wF + g where g is a number of guard
bits), then round this approximation to the target format. This
final rounding performs an incompressible error of almost 0.5
ulp in the worst case, therefore it is difficult to directly obtain
a correctly rounded result: one needs a very large g, typically
g ≈ wF [17]. It is much less expensive to obtain a faithful
result: a small g (typically less than 5 bits) is enough to obtain
an approximation on wF + g bits with a total error smaller
than 0.5 ulp, to which we then add the final rounding error of
another 0.5 ulp to obtain the 1-ulp bound of faithful rounding.

However, in the specific case of square root, there is a
specific technique that converts a faithful square root on wF +1
bits to a correctly rounded one on wF bits. This technique is,
to our knowledge, due to [10], and its use in the context of a
hardware operator is novel.

We first compute a value of the square root r̃ on wF +
1 bits, faithfully rounded to that format (total error smaller
than 2−wF−1). This is relatively cheap. Now, with respect to
the wF -bit target format, r̃ is either a floating-point number,
or the exact middle between two consecutive floating-point
numbers. In the first case, the total error bound of 2−wF−1

on r̃ entails that it is the correctly rounded square root. In the
second case, squaring r̃ and comparing it to X tells us (thanks
to the monotonicity of the square root) if r̃ <

√
X or r̃ >

√
X

(it can be shown that the case r̃ =
√
X is impossible). This

is enough to conclude which of its two neighbouring floating-
point numbers is the correctly rounded square root on wF bits.

The following algorithm is a simple rewriting of this idea:

◦(
√
X) =

{
r̃ truncated to wF bits if r̃2 ≥ X ,
r̃ + 2−wF−1 truncated to wF bits otherwise.

(1)
With respect to performance/cost, one may observe that the

overhead of correct rounding over faithful rounding is
• a faithful evaluation on wF + 1 bits – this is only

marginally more expensive than on wF bits;
• a square on wF + 1 bits – even with state-of-the-art

dedicated squarers [18], this is expensive. Actually, as
we are not interested in the high-order bits of the square,
some of the hardware should be saved here, but this has
not been explored yet.

This overhead (both in area and in latency) may be con-
sidered a lot for an accuracy improvement of one half-ulp.
Indeed, on an FPGA, if no strict IEEE compliance is required,
it may make sense to favor faithful rounding on a larger format
(wF + 1 bits) over correct rounding on wF bits, for the same
relative accuracy bound.

III. SQUARE ROOT BY POLYNOMIAL APPROXIMATION

As stated earlier, we address the problem of computing√
Z for Z ∈ [1, 4). We are classically splitting the interval

[1, 4) into sub-intervals, and using for each sub-interval an
approximation polynomial whose coefficients are read from a
table. The state of the art for obtaining such polynomials is
the fpminimax command of the Sollya tool. The polynomial
evaluation hardware is shared by all the polynomials, therefore
they must be of same degree d and have coefficients of the
same format (here a fixed-point format). We evaluate the
polynomial in Horner form, computing just right at each step
by truncating all intermediate results to the bare minimum.
Space is missing to provide all the details, which can be found
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in [19] or in the open-source FloPoCo code itself. Let us focus
here on specific optimizations related to the square root.

A first idea to address the coefficient table is to use the
most significant bits of Z. However, as Z ∈ [1, 4), the values
00xxx are unused, which would mean that one quarter of the
table is never addressed. Besides, the function

√
Z varies more

for small Z, therefore for a given degree d, polynomials on
the left of [1, 4) are less accurate than those on the right. A
solution to both problems is to make two cases according to
exponent parity: [1, 2) (even case) will be split in as many sub
intervals as [2, 4), and the sub-intervals on [1, 2) will be twice
as small as those on [2, 4).

Here are the details of the algorithm. Let k be an integer
parameter that defines the number of sub-intervals (2k in total).
The coefficient table has 2k entries.
• If E is even, let τeven(x) =

√
1 + x for x ∈ [0, 1): we

need a piecewise polynomial approximation for τeven. The
interval [0, 1) is split into 2k−1 sub-intervals [ i

2k−1 ,
i+1
2k−1 )

for i from 0 to 2k−1 − 1. The index (and table address)
i consists of the bits f−1f−2 · · · f−k+1 of the mantissa
1.F . On each of these sub-intervals, τeven(1 + i

2k−1 + y)
is approximated by a polynomial pi(y) of degree d.

• If E is odd, we need to compute
√

2× 1.F . Let τodd(x) =√
2 + x for x ∈ [0, 2). The interval [0, 2) is also split into

2k−1 sub-intervals [ j
2k−2 ,

j+1
2k−2 ) for j from 0 to 2k−1−1.

The reader may check that the index j consists of the
same bits f−1f−2 · · · f−k+1 as in the even case. On each
of these sub-intervals, τodd(1+ j

2k−2 +y) is approximated
by a polynomial qj of same degree d.

The error budget for a faithful evaluation may be summa-
rized as follows. Let r be the value, represented on wF +g bits,
computed by the polynomial pipeline before the final rounding.

For a faithful approximation, we have to ensure a total
error smaller than 2−wF . We must reserve 2−wF−1 for the
final rounding: εfinal < 2−wF−1. This final rounding may be
obtained at no cost by truncation of r to wF bits, provided
we have added one half-ulp (2−wF−1) to each coefficient c0
stored in the table (we use bze = bz + 1/2c).

The remaining 2−wF−1 error budget is tentatively split
evenly between polynomial approximation error: εapprox =
|τ(y) − p(y)| < 2−wF−2, and the total rounding error in the
evaluation: εtrunc = |r − p(y)| < 2−wF−2.

Therefore, the degree d is chosen to ensure εapprox <
2−wF−2. As such, d is a function of k and wF .

This way we obtain 2k polynomials, whose coefficients are
stored in a ROM with 2k entries addressed by
A = e0f−1f−2 · · · f−k+1. Here e0 is the exponent parity, and
the remaining bits are i or j as above.

The reduced argument Y that will be fed to the polynomials
is built as follows.
• In the even case we have 1.f−1 · · · f−wF

= 1 + 0.f−1 · · · f−k+1 + 2−k+10, f−k · · · f−wF
.

• In the odd case, we need the square root of 2× 1.F
= 1f−1.f−2 · · · f−wF

= 1 + f−1.f−2 · · · f−k+1 + 2−k+20, f−k · · · f−wF
.

As we want to build a single fixed-point architecture for both
cases, we align both cases:
y = 2−k+2 × 0, 0f−k · · · f−wF

in the even case, and
y = 2−k+2 × 0, f−k · · · f−wF

0 in the odd case.
Figure 1 presents the generic architecture used for the

polynomial evaluation. More details can be found in [19].

IV. RESULTS, COMPARISONS, AND SOME HANDCRAFTING

Table III summarizes the actual performance obtained from
the polynomial square root operator FPSqrtPoly from
FloPoCo version 2.0.0. All these operators have been tested
for faithful rounding, using FloPoCo’s testbench generation
framework [5].

When the polynomials are obtained completely automati-
cally [19], there is a large design space to explore, and we
are still improving the heuristics for that. A difficulty is to
integrate the staircase effects in the costs due to the discrete
sizes of the multipliers and of the embedded memories. For
the important case of single precision, we hardcoded a good
choice of parameters (ensuring that the multiplications are all
smaller than 17×17 bits) that the current heuristic would miss,
hence the hand-tuned comment in Table III. This is transparent
to the FloPoCo user.

We also hand-crafted a correctly rounded version of the
single-precision square root, adding the squarer and correction
logic described in Section II. One observes that it more than
doubles the DSP count and latency for single precision (we
were not able to attain the same frequency but we trust it
should be possible). For larger precisions, the overhead will
be proportionnally smaller, but disproportionnate nevertheless.
Indeed, the correctly rounded multiplicative version even con-
sumes more slices than the iterative one, so it only has the
advantage of latency.

Another optimization that concerns larger polynomials eval-
uators is the use of truncated multipliers [20] wherever this
may save DSP blocks (and still ensure faithful rounding
of course). This is currently being explored, and any im-
provement in FloPoCo’s generic polynomial evaluator will be
inherited by the polynomial-based square root.

V. CONCLUSION AND FUTURE WORK

This article discussed the best way to compute a square
root on a recent FPGA, trying in particular to make the

f−k...f−wF 01
0

Evaluator
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e0f−1...f−k+1

. . .
. . .

0f−k...f−wF
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ROM
Coef.

A ×

+

×

+

cn

cn−1

c0

trunc
trunc

trunc
trunc
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Fig. 1. Generic Polynomial Evaluator
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TABLE III
FLOPOCO POLYNOMIAL SQUARE ROOT FOR VIRTEX-4 4VFX100FF1152-12 AND VIRTEX5 XC5VLX30-3-FF324. THE COMMAND LINE USED IS

flopoco -target=Virtex4|Virtex5 -frequency=f FPSqrtPoly wE wF degree

(wE , wF ) Degree cycles Synth. results
(hand-tuned)

(8, 23)
2 5 339 MHz, 79 slices, 2 BRAM, 2 DSP

(hand-tuned, correct rounding) 2 12 237 MHz, 241 slices, 2 BRAM, 5 DSP

FloPoCo, Virtex4, 400 MHz

(9, 36) 3 20 318 MHz, 485 slices, 4 BRAM, 11 DSP
(10, 42) 3 20 318 MHz, 525 slices, 7 BRAM, 11 DSP

(11, 52)
3 23 320 MHz, 719 slices, 74 BRAM, 14 DSP
4 33 318 MHz, 1145 slices, 11 BRAM, 26 DSP

paper and pencil estimation was: 4 25 300 MHz, 20 BRAM, 18 DSP

FloPoCo, Virtex5, 400 MHz

(8, 23) 2 7 419 MHz, 177 LUT, 176 REG, 2 BRAM, 2 DSP
(9, 36) 3 15 376 MHz, 542 LUT, 461 REG, 4 BRAM, 9 DSP
(10, 42) 3 17 364 MHz, 649 LUT, 616 REG, 4 BRAM, 9 DSP
(11, 52) 4 27 334 MHz, 1156 LUT, 1192REG, 6 BRAM, 19 DSP

best use of available embedded multipliers. It compares a
state-of-the-art pipelining of the classical digit recurrence,
and an original polynomial evaluation algorithm. For large
precisions, the latter has the best latency, at the expense of
an increase of resource usage. We also observe that the cost
of correct rounding with respect to faithful rounding is very
large. Fortunately, in the wider context of FloPoCo, a faithful
square root is a useful building block for coarser operators, for
instance an operator for

√
x2 + y2 + z2 (based on the sum of

square presented in [5]) that would be faithful itself.
Considering the computing power they bring, we found

it surprisingly difficult to exploit the embedded multipliers
to surpass the classical digit recurrence in terms of latency,
performance and resource usage. However, as stated by Lang-
hammer [9], embedded multipliers also bring in other benefits
such as predictability in performance and power consumption.

Future works include a careful implementation of a high-
radix algorithm, and a similar study around division. Also, the
polynomial evaluator that was developed along this work will
be used in the near future as a building block for many other
elementary functions, up to double precision.

Stepping back, this work asks a wider-ranging question:
does it make any sense to invest in function-specific mul-
tiplicative algorithms such as the high-radix square root (or
the iterative exp and log of [21], or the high-radix versions
of Cordic [17], etc)? Or won’t a finely tuned polynomial
evaluator, computing just right at each step, be just as efficient
in all cases?
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