
Automatic generation of polynomial-based hardware architectures
for function evaluation

Florent de Dinechin, Mioara Joldes, Bogdan Pasca
LIP (CNRS/INRIA/ENS-Lyon/UCBL)

Université de Lyon
{Florent.de.Dinechin, Mioara.Joldes, Bogdan.Pasca}@ens-lyon.fr

Abstract—Polynomial approximation is a very general tech-
nique for the evaluation of a wide class of numerical functions
of one variable. This article details an architecture generator
that inputs the specification of a function and outputs a synthe-
sizable description of an architecture evaluating this function
with guaranteed accuracy. It improves upon the literature
in two aspects. Firstly, it uses better polynomials, thanks to
recent advances related to constrained-coefficient polynomial
approximation. Secondly, it refines the error analysis of poly-
nomial evaluation to reduce the size of the multipliers used.
An open-source implementation is provided in the FloPoCo
project, including architecture exploration heuristics designed
to use efficiently the embedded memories and multipliers of
high-end FPGAs. High-performance pipelined architectures for
precisions up to 64 bits can be obtained in seconds.

Keywords-elementary function; hardware evaluator; polyno-
mial approximation; FPGA;

I. INTRODUCTION AND MOTIVATION

In this article, we consider real functions f(x) of one
real variable x, and we are interested in a fixed-point
implementation of this function over some interval. We
assume that f is continuously differentiable over this interval
up to a certain order. The literature provides many examples
of such functions for which a hardware implementation is
required.

• Fixed-point sine, cosine, exponential and logarithms are
routinely used in signal processing algorithms.

• Random number generators with a Gaussian distribu-
tion may be built using the Box-Muller method, which
requires logarithm, square root, sine and cosine [1].
Arbitrary distributions may be obtained by the inversion
method, in which case one needs a fixed-point evaluator
for the inverse cumulative distribution function (ICDF)
of the required distribution [2]. There are as many ICDF
as there are statistical distributions.

• Approximations of the inverse 1/x and inverse square
root 1/

√
x functions are used in recent floating-point

units to bootstrap division and square root computation
[3].

• flog(x) = log(x + 1/2)/(x − 1/2) over [0, 1], and
fexp(x) = ex − 1 − x over [0, 2−k] for some small
k, are used to build hardware floating-point logarithm
and exponential in [4].

• fcos(x) = 1 − cos
�

π
4 x

�
, and fsin(x) = π

4 −
sin(π

4 x)
x

over [0, 1], are used to build hardware floating-point
trigonometric functions in [5].

• s2(x) = log2(1 + 2x) and d2(x) = log2(1 + 2x) are
used to build adders and subtracters in the Logarithm
Number System (LNS), and many more functions are
needed for Complex LNS [6].

Many function-specific algorithms exist, for example vari-
ations on the CORDIC algorithm provide low-area, long-
latency evaluation of most elementary functions [7]. Our
purpose here is to provide a generic method, that is a method
that works for a very large class of functions. The main
motivation of this work is to facilitate the implementation
of a full hardware mathematical library (libm) in FloPoCo, a
core generator for high-performance computing on FPGAs1.
We present a complete implementation in this context,
however, most of the methodology is independent of the
FPGA target and could apply to other hardware targets such
as ASIC circuits.

A. Related work and contributions

Articles describing specific polynomial evaluators are too
numerous to be mentioned here, and we just review works
that describe generic methods.

Several table-based, multiplier-less methods for linear (or
degree-1) approximation have evolved from the original
paper by Sunderland et al [8]. See [9] or [7] for a review.
These methods have very low latency but do not scale well
beyond 20 bits: the table sizes scale exponentially, and so
does the design-space exploration time.

The High-Order Table-Based Method (HOTBM) by De-
trey and one of us [10] extended the previous methods to
higher-degree polynomial approximation. An open-source
implementation is available in FloPoCo. However it is not
suited to recent FPGAs with powerful DSP blocks and large
embedded memories. In addition, it doesn’t scale beyond 32
bits.

Lee et al [11] have published many variations on a generic
datapath optimization tool called MiniBit to optimize poly-
nomial approximation. They use ad-hoc mixes of analytical

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

978-1-4244-6965-9/10/$26.00 c� 2010 IEEE 216 ASAP 2010

techniques such as interval analysis, and heuristics such as
simulated annealing to explore the design space. However,
the design space explored in these articles does not include
the architectures we describe in the present paper: All the
multipliers in these papers are larger than strictly needed,
therefore they miss the optimal. In addition, this tool is
closed-source and difficult to evaluate from the publications,
in particular it is unclear if it scales beyond 32 bits.

Tisserand studied the optimization of low-precision (less
than 10 bits) polynomial evaluators [12]. He finetunes a
rounded minimax approximation using an exhaustive ex-
ploration of neighboring polynomials. He also uses other
tricks on smaller (5-bit or less) coefficients to replace the
multiplication by such a coefficient by very few additions.
Such tricks do not scale to larger precisions.

Compared to these publications, the present work has the
following distinctive features.

• This approach scales to precisions of 64 bits or more,
while being equivalent or better than the previous
approaches for smaller precisions.

• We use for polynomial approximation minimax poly-
nomials provided by the Sollya tool2, which is the
state-of-the-art for this application, as detailed in Sec-
tion II-B.

• We attempt to use the smallest possible multipliers. As
others, we attempt to minimize the coefficient sizes. In
addition, we also truncate, at each computation step,
the input argument to the bare minimum of bits that
are needed at this step. Besides, we will use truncated
multipliers [19], [14] in the near future.

• This approach is fully automated, from the parsing of
an expression describing the function to VHDL gen-
eration. An open-source implementation is available as
the FunctionEvaluator class in FloPoCo, starting with
version 2.0.0. This implementation is fully operational,
to the point that Table II was obtained in less one hour.

• The resulting architecture evaluates the function with
last-bit accuracy. It may be automatically pipelined to
a user-specified frequency thanks FloPoCo’s pipelining
framework [13].

B. Relevant features of recent FPGAs

Here are some of the features of recent FPGAs that can
be used in polynomial evaluators.

• Embedded multipliers features are summed up in Ta-
ble. I It is possible to build larger multipliers by as-
sembling these embedded multipliers. The DSP blocks
include specific adders and shifters designed for this
purpose [14].

• Memories have a capacity of 9Kbit or 144Kbit (Altera)
or 18Kbit (Xilinx) and can be configured in shape, for
instance from 216 × 1 to 29 × 36 for the Virtex-4.

2http://sollya.gforge.inria.fr/

Family Multipliers

Virtex II to Virtex-4 18x18 signed or 17x17 unsigned
Virtex-5/Virtex-6 18x25 signed or 17x24 unsigned
Stratix II/III/IV 18x18 signed or unsigned

Table I
MULTIPLIER BLOCKS IN RECENT FPGAS

A given FPGA typically contains a comparable number of
memory blocks and multipliers. It therefore makes sense
to try and balance the consumption of these two resources.
However, the availability of these resources also depends on
the wider context of the application, and it is even better to
expose a range of trade-offs between them.

II. FUNCTION EVALUATION BY POLYNOMIAL

APPROXIMATION

Polynomial approximation is the generic mathematical
tool that reduces the evaluation of a function to additions
and multiplications. For these operations, we can either
build architectures (in FPGAs or ASICs), or use built-in
operators (in processors or DSP-enabled FPGAs). A good
primer on polynomial approximation for function evaluation
is Muller’s book [7].

Building a polynomial evaluator for a function may be
decomposed into two subproblems: 1/ approximation: find-
ing a good approximation polynomial, and 2/ evaluation:
evaluating it using adders and multipliers. The smaller the
input argument, the better these two steps will behave,
therefore a range reduction may be applied first if the input
interval is large.

We now discuss each of these steps in more detail, to
build the implementation flow depicted on Figure 1. In this
paper we will consider, without loss of generality, a function
f over the input interval x ∈ [0, 1).

In our implementation, the user inputs a function (as-
sumed on [0, 1), the input and output precisions (both ex-
pressed as LSB weight), and the degree d of the polynomials
used. This last parameter could be determined heuristically,
but we leave it as a means for the user to trade-off multipliers
and latency for memory size.

A. Range reduction

In this work, we use the simple range reduction that
consists in splitting the input interval in 2k sub-intervals,
indexed by i ∈ {0, 1, ..., 2k − 1}. The index i may be
obtained as the leading bits of the binary representation
of the input: x = 2−ki + y with y ∈ [0, 2−k). This
decomposition comes at no hardware cost. We now have
∀i ∈ {0, . . . , 2k − 1} f(x) = fi(y), and we may ap-
proximate each fi by a polynomial pi. A table will hold
the coefficients of all these polynomials, and the evaluation
of each polynomial will share the same hardware (adders

217 ASAP 2010

Approximation
generation

CodeEvaluation

optimizer

VHDL

compute approximation error
compute evaluation error

function

degree εapprox

coeff tables

architecture

parameters
precision

increase the gπ
j and gy

j
vary coefficient sizes
increase k

Figure 1. Automated implementation flow

and multipliers), which therefore have to be built to accom-
modate the worst-case among these polynomial. Figure 3
describes the resulting architecture.

Compared to a single polynomial on the interval, this
range reduction increases the storage space required, but de-
creases the cost of the evaluation hardware for two reasons.
First, for a given target accuracy εtotal, the degree of each of
the pi decreases with k. There is a strong threshold effect
here, and for a given degree there is a minimal k that allows
to achieve the accuracy. Second, the reduced argument y has
k bits less than the input argument x, which will reduce the
input size of the corresponding multipliers. If we target an
FPGA with DSP blocks, there will also be a threshold effect
here on the number of DSP blocks used.

Many other range reductions are possible, most related to
a given function or class of functions, like the logarithmic
segmentation used in [2]. For an overview, see Muller [7].
Most of our contributions are independent of the range
reduction used.

B. Polynomial approximation

One may use the well-known Taylor or Chebyshev ap-
proximation polynomials of arbitrary degree d [7]. These
polynomials can be obtained analytically, or using computer
algebra systems. A third method of polynomial approxima-
tion is Remez’ algorithm, a numerical process that, under
some conditions, converges to the minimax approximation:
the polynomial of degree d that minimizes the maximal dif-
ference between the polynomial and the function. We denote
εapprox the approximation error, defined as the maximum
absolute difference between the polynomial and the function.

Between approximation and evaluation, for an efficient
machine implementation, one has to round the coefficients
of the minimax polynomial (which has real numbers in
theory, and are computed with large precision in practice) to
smaller-precision numbers suitable for efficient evaluation.
On a processor, one will typically try to round to single-
or double-precision numbers. On an FPGA, we may build
adders and multipliers of arbitrary size, so we have one
more question to answer: what is the optimal size of these
coefficients? In [11], this question is answered by an error
analysis that considers separately the error of rounding each

coefficient of the minimax polynomial (considered as a real-
coefficient one) and tries to minimize the bit-width of the
rounded coefficients while remaining within acceptable error
bounds.

However, there is no guarantee that the polynomial ob-
tained by rounding the coefficients of the real minimax
polynomial is the minimax among the polynomials with
coefficients constrained to these bit-width. Indeed, this as-
sumption is generally wrong. One may obtain much more
accurate polynomials for the same coefficient bit-width using
a modified Remez algorithm due to Brisebarre and Chevil-
lard [15] and implemented as the fpminimax command of
the Sollya tool. This command inputs a function, an interval
and a list of constraints on the coefficient (e.g. constraints
on bitwidths), and returns a polynomial that is very close to
the best minimax approximation polynomial among those
with such constrained coefficients.

Since the approximation polynomial now has constrained
coefficients, we will not round these coefficients anymore. In
other words, we have merged the approximation error and
the coefficient truncation error of [11] into a single error,
which we still denote εapprox. The only remaining rounding
or truncation errors to consider are those that happen during
the evaluation of the polynomial.

Let us now provide a good heuristic for determining the
coefficient constraints. Let p(y) = a0+a1y+a2y

2+...+ady
d

be the polynomial on one of the sub-intervals (for clarity, we
remove the indices corresponding to the sub-interval). The
constraints taken by fpminimax are the minimal weights

a0

a1y

a2y
2

k

2k

any
n

2−p

Figure 2. Alignment of the monomials

218 ASAP 2010

of the least significant bit (LSB) of each coefficient. To reach
some target precision 2−p, we need the LSB of a0 to be of
weight at most 2−p. This provides the constraint on a0. Now
consider the developed form of the polynomial, as illustrated
by Figure 2. As coefficient aj is multiplied by yj which is
smaller than 2−kj , the accuracy of the monomial ajy

j will
be aligned on that of the monomial a0 if its LSB is of weight
2−p+kj . This provides a constraint on aj .

The heuristic used is therefore the following. Remember
that the degree d is provided by the user. The constraints
on the d + 1 coefficients are set as just explained. For
increasing k, we try to find 2k approximation polynomials
pi of degree d respecting the constraints, and fulfilling
the target approximation error (which will be defined in
Section II-D). We stop at the first k that succeeds. Then, the
2k polynomials are scanned, and the maximum magnitude of
all the coefficients of degree j provides the most significant
bit that must be tabulated, hence the memory consumed by
this coefficient.

C. Polynomial evaluation

Given a polynomial, there are many possible ways to
evaluate it. The HOTBM method [10] uses the developed
form p(y) = a0 + a1y + a2y

2 + ... + ady
d and attempts to

tabulate as much of the computation as possible. This leads
to short-latency architecture since each of the aiy

i may be
evaluated in parallel and added thanks to an adder tree, but
at a high hardware cost.

In this article, we chose a more classical Horner evaluation
scheme, which minimizes the number of operations, at the
expense of the latency: p(y) = a0 + y × (a1 + y × (a2 +
.... + y× ad)...). Our contribution is essentially a fine error
analysis that allows us to minimize the size of each of the
operations. It is presented below in II-D.

There are intermediate schemes that could be explored.
For large degrees, the polynomial may be decomposed into
an odd and an even part: p(y) = pe(y

2) + y × po(y
2). The

two sub-polynomial may be evaluated in parallel, so this
scheme has a shorter latency than Horner, at the expense of
the precomputation of x2 and a slightly degraded accuracy.
Many variations on this idea, e.g. the Estrin scheme, exist
[7], and this should be the subject of future work. A
polynomial may also be refactored to trade multiplications
for more additions [16], but this idea is mostly incompatible
with range reduction.

D. Accuracy and error analysis

The maximal error target εtotal is an input to the algorithm.
Typically, we aim at faithful rounding, which means that
εtotal must be smaller than the weight of the LSB of the
result, noted u. In other words, all the bits returned hold
useful information. This error is decomposed as follows:
εtotal = εapprox + εeval + εfinalround where

1 110 000101

address

01 00 1.

a1 a0ad

ỹ1

i

Coefficient ROM

σ�d−1

ỹd
π̃�dπ�d σ�d

y

round

trunc

trunc trunc

x

r

Figure 3. The function evaluation architecture

• εapprox is the approximation error, the maximum abso-
lute difference between any of the pi and the corre-
sponding fi over their respective intervals. This com-
putation belongs to the approximation step and is also
performed using Sollya [17].

• εeval is the total of all rounding errors during the
evaluation;

• εfinalround is the error corresponding to the final rounding
of the evaluated polynomial to the target format. It is
bounded by u/2.

We therefore need to ensure εapprox + εeval < u/2. The
polynomial approximation algorithm iterates until εapprox <
u/4, then reports εapprox. The error budget that remains for
the evaluation is therefore εeval < u/2 − εapprox and is
between u/4 and u/2.

In p(y) = a0 + a1y + a2y
2 + ... + ady

d, the input y is
considered exact, so p(y) is the value of the polynomial
if evaluated in infinite precision. What the architecture
evaluates is p�(y), and our purpose here is to compute a
bound on εeval(y) = p�(y)− p(y).

Let us decompose the Horner evaluation of p as a recur-
rence:

σ0 = ad

πj = y × σj−1 ∀j ∈ {1...d}
σj = ad−j + πj ∀j ∈ {1...d}
p(y) = σd

This would compute the exact value of the polynomial, but
at each evaluation step, we may perform two truncations, one
on y, and one on πj . As a rule of thumb, each step should
balance the effect of these two truncations on the final error.
For instance, in an addition, if one of the addends is much
more accurate than the other one, it probably means that it
was computed too accurately, wasting resources.

To understand what is going on, consider step j. In the
addition σj = ad−j+πj , the πj should be at least as accurate
as ad−j , but not much more accurate: let us keep gπ

j bits to
the right of the LSB of ad−j , where gπ

j is a small positive
integer (0 ≤ gπ

j < 5 in our experiments). The parameter gπ
j

219 ASAP 2010

defines the truncation of πj , and also the size of σj (which
also depends on the weight of the MSB of ad−j).

Now since we are going to truncate πj = y×σj−1, there
is no need to input to this computation a fully accurate y.
Instead, y should be truncated to the size of the truncated
πj , plus a small number gy

j of guard bits.
The computation actually performed is therefore the fol-

lowing:

σ�0 = ad

π�j = ỹj × σ�j−1 ∀j ∈ {1...d}
σ�j = ad−j + π̃�j ∀j ∈ {1...d}
p�(y) = σ�d

In both previous equations, the additions and multipli-
cations should be viewed as exact: the truncations are
explicited by the tilded variables, e.g. π̃�j is the truncation
of π�j to gπ

j bits beyond the LSB of ad−j . There is no need
to truncate the result of the addition, as the truncation of π�j
serves this purpose already.

We may now compute the rounding error:

εeval = p�(y)− p(y) = σ�d − σd

where

σ�j − σj = π̃�j − πj

= (π̃�j − π�j) + (π�j − πj)

Here we have a sum of two errors. The first, π̃�j −π�j , is the
truncation error on π� and is bounded by a power of two
depending on the parameter gπ

j . The second is computed as

π�j − πj = ỹj × σ�j−1 − y × σj−1

= (ỹjσ
�
j−1 − yσ�j−1) + (yσ�j−1 − yσj−1)

= (ỹj − y)σ�j−1 + y × (σ�j−1 − σj−1)

Again, we have two error terms which we may bound
separately. The first bound is the truncation error on y, which
depends on the parameter gy

j , and is multiplied by a bound
on σ�j−1 which has to be computed recursively itself. The
second term recursively uses the computation of σ�j − σj ,
and the bound y < 2−k.

The previous error computation is implemented in C++.
From the values of the parameters gπ

j and gy
j , it decides

if the architecture defined by these parameters is accurate
enough.

E. Parameter space exploration for the FPGA target

The last problem to solve is to find values of these
parameters that minimize the cost of an implementation.
This optimization problem is very dependent on the target
technology, and we now present an exploration heuristic that
is specific to DSP-enabled FPGAs: our objective will be to
minimize the number of DSP blocks.

Let us first consider the gy
j parameter. The size of this

truncation directly influences the DSP count. Here, we
observe that once a DSP block is used, it saves us almost

nothing to under-use it. We therefore favor truncations which
reduce the size of y to the smallest multiple of a multiplier
input size that allows us to reach the target accuracy. For
Virtex4 and StratixII, the size of y should target a multiple of
17 and 18 respectively. On Virtex5 and Virtex6, multiples of
17 or 24 should be investigated. Consequently, each gy

j can
take a maximum of three possible values: 0, corresponding
to no truncation, and one or two soft spots corresponding to
multiples of multiplier input size.

The determination of the possible values of gπ
j also

depends on the DSP multiplier size, as the truncation of π�j
defines the size of the sum σ�j , which is input to a multiplier.
There are two considerations to be made: First, it makes no
sense to keep guard bits to the right of the LSB of π̃�j .
This gives us an upper bound on gπ

j . Secondly, as we are
trying to reduce DSP count, we should not allow a number
of guard bits that increases the size of σ�j over a multiple of
the multiplier input size. This gives us a second upper bound
on gπ

j . The real upper-bound in computed as a minimum of
the two precomputed upper-bounds.

These upper bounds define the parameter space to explore.
We also observe that the size of the multiplications increases
with j in our Horner evaluation scheme. We therefore favor
truncations in the last Horner steps, as these truncations can
save more DSP blocks. This defines the order of exploration
of the parameter space. The parameters gπ

j and gy
j are

explored using the above rules until the error εeval satisfies
the bound εeval < u/2− εapprox.

This is a fairly small parameter space exploration, and
its execution time is negligible with respect to the few
seconds it may take to compute all the constrained minimax
approximations.

III. EXAMPLES AND COMPARISONS

Table II presents the input and output parameters for
obtaining the approximation polynomials for several rep-
resentative functions mentioned in the introduction. The
functions f are all considered over [0, 1], with identical input
and output precision. Three precisions are given in Table 1.
Table 2 provides synthesis results for the same experiments.

It is difficult to compare to previous works, especially as
none of them reaches the large precisions we attain. Our
approach brings no savings in terms of DSP blocks for
precisions below 17 bits. We may compare to the logarithm
unit in [1] which computes log(1 + x) on 27 bits using a
degree-2 approximation. Our tool instantly finds the same
coefficient sizes of 30, 22 and 13, and our implementation
uses 5 DSP blocks where [1] uses 6: one multiplier is saved
thanks to the truncation of y. For larger precisions, the
savings would also be larger.

We should compare the polynomial approach to the
CORDIC family of algorithm which can be used for many
elementary functions [7], [18]. Table IV compares imple-
mentations for 32-bit sine and cosine, using for CORDIC

220 ASAP 2010

f(x) I S
23 bits (single prec.) 36 bits 52 bits (double prec.)

d k Coeffs size d k Coeffs size d k Coeffs size

√
1 + x [0, 1] 1

2

2 64 26, 20, 14 3 128 39, 32, 25, 18 4 512 55, 46, 37, 28, 19
1 2048 26, 15 2 2048 39, 28, 17 3 2048 55, 44, 33, 22

π
4
−

sin(π
4

x)

x
[0, 1] 23 2 128 26, 19, 12 3 128 39, 32, 25, 18 4 256 55, 47, 39, 31, 23

1 4096 26, 14 2 2048 39, 28, 17 3 2048 55, 44, 33, 22

1− cos(π
4
x) [0, 1] 2

2 128 26, 19, 12 3 256 39, 31, 23, 15 4 256 55, 47, 39, 31, 23
1 4096 26, 14 2 2048 39, 28, 17 3 4096 55, 43, 31, 19

log2(1 + x) [0, 1] 1
2 128 26, 19, 12 3 256 39, 31, 23, 15 4 256 55, 45, 35, 25, 15
1 4096 26, 14 2 4096 39, 27, 15 3 4096 55, 43, 31, 19

log(x+1/2)
x−1/2

[0, 1] 1
2

2 256 26, 18, 10 3 512 39, 30, 21, 12 4 1024 55, 45, 35, 25, 15
1 4096 26, 14 2 4096 39, 27, 15 3 8192 55, 42, 29, 16

Table II
EXAMPLES OF POLYNOMIAL APPROXIMATIONS OBTAINED FOR SEVERAL FUNCTIONS. S REPRESENTS THE SCALING FACTOR SO THAT THE FUNCTION

IMAGE IS IN [0,1]

f(x) I
23 bits (single prec.) 36 bits 52 bits (double prec.)

d l slices DSP BRAM d. l slices DSP BRAM d l slices DSP BRAM

√
1 + x [0, 1]

2 9 118 3 2* 3 18 351 9 3 4 32 893 21 5
1 5 62 1 5 2 12 231 5 9 3 24 668 15 17

π
4
−

sin(π
4

x)

x
[0, 1]

2 9 119 3 2* 3 20 435 11 4 4 36 1196 29 6
1 5 64 1 11 2 12 238 5 10 3 28 809 19 18

1− cos(π
4
x) [0, 1]

2 9 119 3 2* 3 20 427 11 4* 4 36 1197 29 6
1 5 64 1 11 2 13 240 5 10 3 24 672 15 38

log2(1 + x) [0, 1]
2 9 119 3 2* 3 20 425 11 4* 4 33 1039 24 10
1 5 64 1 11 2 11 214 5 22 3 26 722 17 38

log(x+1/2)
x−1/2

[0, 1]
2 9 116 3 2* 3 18 349 9 3 4 33 1036 24 11
1 5 64 1 11 2 12 232 5 21 3 23 657 15 74

Table III
SYNTHESIS RESULTS USING ISE 11.1 ON VIRTEXIV XC4VFX100-12. l IS THE LATENCY OF THE OPERATOR IN CYCLES. ALL THE OPERATORS

OPERATE AT A FREQUENCY OF 320 MHZ. A STAR INDICATES THAT A BLOCKRAM IS SEVERELY UNDERUSED.

LogiCore CORDIC 4.0 sin+cos
32 cyles@296MHz, 3812 LUT, 3812 FF

This work, sin alone
14 cycles@386MHz, 3 BlockRam, 7 DSP48E, 335 FF, 407 LUT

This work, cos alone
14 cycles@386MHz, 3 BlockRam, 7 DSP48E, 332 FF, 398 LUT

Table IV
COMPARISON WITH CORDIC FOR 32-BIT SINE/COSINE FUNCTIONS ON

VIRTEX5

the implementation from Xilinx LogiCore [18]. This table
illustrates that these two approaches address different ends
of the implementation spectrum. The polynomial approach
provides smaller latency, higher frequency and low logic
consumption (hence predictability in performance indepen-
dently of routing pressure). The CORDIC approach con-
sumes no DSP nor memory block. Variations on CORDIC
using higher radices could improve frequency and reduce
latency, but at the expense of an even higher logic cost. A
deeper comparison remains to be done.

IV. CONCLUSION, OPEN ISSUES AND FUTURE WORK

Application-specific systems sometimes need application-
specific operators, and this includes operators for function

evaluation. This work has presented a fully automatic design
tool that allows one to quickly obtain architectures for the
evaluation of a polynomial approximation with a uniform
range reduction for large precisions, up to 64 bits. The
resulting architectures are better optimized than what the
literature offers, firstly thanks to state-of-the-art polynomial
approximation tools, and secondly thanks to a finer error
analysis that allows for truncating the reduced argument.
They may be fully pipelined to a frequency close to the
nominal frequency of current FPGAs.

This work will enable the design, in the near future, of
elementary function libraries for reconfigurable computing
that scale to double precision. However, we also wish to
offer to the designer a tool that goes beyond a library: a
generator that produces carefully optimized hardware for his
very function. Such application-specific hardware may be
more efficient than the composition of library components.

Towards this goal, this work can be extended in several
directions.

• There is one simple way to further reduce the multiplier
cost, by the careful use of truncated multipliers [19],
[14]. Technically, this only changes the bound on the
multiplier truncation error in the error analysis of II-D.
This improvement should be implemented soon.

221 ASAP 2010

• Another way, for large multiplications, is the use of
the Karatsuba technique, which is also implemented in
FloPoCo [20]. It is even compatible with the previous
one.

• Non-uniform range reduction schemes should be ex-
plored. The power-of-two segmentation of the input
interval used in [2] has a fairly simple hardware
implementation using a leading zero or one counter.
This will enable more efficient implementation of some
functions.

• More parallel versions of the Horner scheme should be
explored to reduce the latency.

• Parameter space exploration is tuned for minimizing
DSP usage, it should also be tuned to make the best
possible usage of available configurations of embedded
memory blocks.

• Our tools could attempt to detect if the function is
odd or even [21], and consider only odd or even
polynomials for such case [7], [21]. Whether this works
along with range reduction remains to be explored.

• We currently only consider a constant target error
corresponding to faithful rounding, but a target error
function could also be input.

• Designing a pleasant and universal interface for such a
tool is a surprisingly difficult task. Currently, we require
the user to input a function on [0, 1), and the input
and output LSB weight. Most functions can be trivially
scaled to fit in this framework, but many other specific
situations exist.

Acknowledgements

This work was partly supported by the ANR EVAFlo
project and Stone Ridge Technology.

REFERENCES

[1] D.-U. Lee, J. Villasenor, W. Luk, and P. Leong, “A hardware
Gaussian noise generator using the Box-Muller method and
its error analysis,” IEEE Transactions on Computers, vol. 55,
no. 6, 2006.

[2] R. Cheung, D.-U. Lee, W. Luk, and J. Villasenor, “Hard-
ware generation of arbitrary random number distributions
from uniform distributions via the inversion method,” IEEE
Transactions on VLSI Systems, vol. 8, no. 15, 2007.

[3] P. Markstein, IA-64 and Elementary Functions: Speed and
Precision, ser. Hewlett-Packard Professional Books. Prentice
Hall, 2000.

[4] J. Detrey and F. de Dinechin, “Parameterized floating-point
logarithm and exponential functions for FPGAs,” Micropro-
cessors and Microsystems, Special Issue on FPGA-based
Reconfigurable Computing, vol. 31, no. 8, pp. 537–545, 2007.

[5] ——, “Floating-point trigonometric functions for FPGAs,” in
Field-Programmable Logic and Applications. IEEE, 2007,
pp. 29–34.

[6] M. G. Arnold and S. Collange, “A dual-purpose real/complex
logarithmic number system ALU,” in Proceedings of the 19th
IEEE Symposium on Computer Arithmetic, 2009, pp. 15–24.

[7] J.-M. Muller, Elementary Functions, Algorithms and Imple-
mentation, 2nd ed. Birkhäuser, 2006.

[8] D. A. Sunderland, R. A. Strauch, S. S. Wharfield, H. T. Peter-
son, and C. R. Role, “CMOS/SOS frequency synthesizer LSI
circuit for spread spectrum communications,” IEEE Journal
of Solid-State Circuits, vol. 19, no. 4, pp. 497–506, 1984.

[9] F. de Dinechin and A. Tisserand, “Multipartite table methods,”
IEEE Transactions on Computers, vol. 54, no. 3, pp. 319–330,
2005.

[10] J. Detrey and F. de Dinechin, “Table-based polynomials for
fast hardware function evaluation,” in Application-specific
Systems, Architectures and Processors. IEEE, 2005, pp. 328–
333.

[11] D. Lee, A. Gaffar, O. Mencer, and W. Luk, “Optimizing hard-
ware function evaluation,” IEEE Transactions on Computers,
vol. 54, no. 12, pp. 1520–1531, 2005.

[12] A. Tisserand, “High-performance hardware operators for
polynomial evaluation,” Int. J. High Performance Systems
Architecture, vol. 1, no. 1, pp. 14–23, 2007.

[13] F. de Dinechin, C. Klein, and B. Pasca, “Generating high-
performance custom floating-point pipelines,” in Field Pro-
grammable Logic and Applications. IEEE, Aug. 2009, pp.
59–64.

[14] S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran,
“Multipliers for floating-point double precision and beyond on
FPGAs,” in Highly-Efficient Accelerators and Reconfigurable
Technologies, 2010.

[15] N. Brisebarre and S. Chevillard, “Efficient polynomial L∞-
approximations,” in 18th Symposium on Computer Arithmetic.
IEEE, 2007, pp. 169–176.

[16] D. Knuth, The Art of Computer Programming, vol.2: Seminu-
merical Algorithms, 3rd ed. Addison Wesley, 1997.

[17] S. Chevillard, M. Joldes, and C. Lauter, “Certified and fast
computation of supremum norms of approximation errors,” in
19th Symposium on Computer Arithmetic. IEEE, 2009, pp.
169–176.

[18] CORDIC v4.0 (DSD249), Xilinx Corporation, 2009.

[19] M. Schulte and E. Swartzlander, “Truncated multiplication
with correction constant,” in Workshop on VLSI Signal Pro-
cessing, 1993, pp. 388–396.

[20] F. de Dinechin and B. Pasca, “Large multipliers with fewer
DSP blocks,” in Field Programmable Logic and Applications.
IEEE, Aug. 2009, pp. 250–255.

[21] C. Lauter and F. de Dinechin, “Optimising polynomials for
floating-point implementation,” in Real Numbers and Com-
puters, 2008, pp. 7–16.

222 ASAP 2010

