
LARGE MULTIPLIERS WITH FEWER DSP BLOCKS

Florent de Dinechin, Bogdan Pasca

LIP (CNRS/INRIA/ENS-Lyon/UCBL)

École Normale Supérieure de Lyon — Université de Lyon

email: {Florent.de.Dinechin,Bogdan.Pasca}@ens-lyon.fr

ABSTRACT

Recent computing-oriented FPGAs feature DSP blocks in-

cluding small embedded multipliers. A large integer multi-

plier, for instance for a double-precision floating-point mul-

tiplier, consumes many of these DSP blocks. This arti-

cle studies three non-standard implementation techniques

of large multipliers: the Karatsuba-Ofman algorithm, non-

standard multiplier tiling, and specialized squarers. They

allow for large multipliers working at the peak frequency of

the DSP blocks while reducing the DSP block usage. Their

overhead in term of logic resources, if any, is much lower

than that of emulating embedded multipliers. Their latency

overhead, if any, is very small. Complete algorithmic de-

scriptions are provided, carefully mapped on recent Xilinx

and Altera devices, and validated by synthesis results.

1. INTRODUCTION

A paper-and-pencil analysis of FPGA peak floating-point

performance [1] clearly shows that DSP blocks are a rela-

tively scarse resource when one wants to use them for accel-

erating double-precision (64-bit) floating-point applications.

This article presents techniques reducing DSP block us-

age for large multipliers. Here, “large” means: any mul-

tiplier that, when implemented using DSP blocks, con-

sumes more than two of them, with special emphasis on the

multipliers needed for single-precision (24-bit) and double-

precision (53-bit) floating-point.

There are many ways of reducing DSP block usage, the

simplest being to implement multiplications in logic only.

However, a LUT-based large multiplier has a large LUT

cost (at least n2 LUTs for n-bit numbers, plus the flip-flops

for pipelined implementations). In addition, there is also a

large performance cost: a LUT-based large multiplier will

either have a long latency, or a slow clock. Still, for some

sizes, it makes sense to implement as LUTs some of the sub-

multipliers which would use only a fraction of a DSP block.

We focus here on algorithmic reduction of the DSP cost,

and specifically on approaches that consume few additional

This work was partly supported by the XtremeData university pro-

gramme and the ANR EVAFlo and TCHATER projects.

LUTs, add little to the latency (and sometime even reduce

it), and operate at a frequency close to the peak DSP fre-

quency.

Unless explicitly stated otherwise, all the results in this

article are post place-and-route results obtained using ISE

11.1 / LogiCore Multiplier 11, with default options.

Contributions

After an introduction in Section 2 to the implementation of

large multipliers in DSP-enhanced FPGAs, this article has

three distinct contributions.

Section 3 studies the Karatsuba-Ofman algorithm [2, 3,

4], commonly used in multiple-precision software and, on

FPGAs, for large multiplications in finite fields. This algo-

rithm trades multiplications for additions, thus reducing the

DSP cost of large multipliers from 4 to 3, from 9 to 6, or

from 16 to 10. This technique works for any DSP-enhanced

FPGA from Xilinx or Altera, but is actually less efficient on

more recent chips, which are less flexible.

Section 4 introduces a tiling-based technique that widens

the multiplier design space on Virtex-5 (or any circuit featur-

ing rectangular multipliers). It is illustrated by two original

multipliers, a 41-bit one in 4 DSP48E and a 58-bit one in 8

DSP48E, the latter suitable for double-precision.

Finally, Section 5 focuses on the computation of squares.

Squaring is fairly common in FPGA-accelerated computa-

tions, as it appears in norms, statistical computations, poly-

nomial evaluation, etc. A dedicated squarer saves as many

DSP blocks as the Karatsuba-Ofman algorithm, but without

its overhead.

For each of these techniques, we present an algorithmic

description followed by a discussion of the match to DSP

blocks of relevant FPGA devices, and experimental results.

2. CONTEXT AND STATE OF THE ART

2.1. Large multipliers using DSP blocks

Let k be an integer parameter, and let X and Y be 2k-bit

integers to multiply. We will write them in binary X =
∑2k−1

i=0
2ixi and Y =

∑2k−1

i=0
2iyi.

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 250

Let us now split each of X and Y into two subwords of k
bit each:

X = 2kX1 + X0 and Y = 2kY1 + Y0

X1 is the integer formed by the k most significant bits of X ,

and X0 is made of the k least significant bits of X .

The product X × Y may be written

X × Y = (2kX1 + X0) × (2kY1 + Y0)

or

XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0 (1)

This product involves 4 sub-products. If k is the input size

of an embedded multiplier, this defines an architecture for a

2k multiplier that requires 4 embedded multipliers. This ar-

chitecture can also be used for any input size between k + 1
and 2k. Besides, it can be generalized: For any p > 1, num-

bers of size between pk−k +1 and pk may be decomposed

into p k-bit numbers, leading to an architecture consuming

p2 embedded multipliers.

Earlier FPGAs had only embedded multipliers, but the

more recent DSP blocks [5, 6, 7, 8] include internal adders

designed in such a way that most of the additions in Equa-

tion (1) can also be computed inside the DSP blocks. Let us

now review these features in current mainstream architec-

tures, focusing on the capabilities of the DSP blocks relevant

to this paper.

2.2. Overview of DSP block architectures

The Virtex-4 DSP block (DSP48) contains one signed 18x18

bit multiplier followed by a 48-bit addition/subtraction unit

[5]. As the multiplier decomposition (1) involves only pos-

itive numbers, the multipliers must be used as unsigned 17-

bit multipliers, so for these devices we will have k = 17.

The multiplier output may be added to the output of the

adder from the previous DSP48 in the row (using the dedi-

cated PCOUT/PCIN port), possibly with a fixed 17-bit shift

– this allows for 217 factors as in Equation (1).

In Virtex-5 DSP blocks (DSP48E), the 18x18 multipli-

ers have been replaced with asymmetrical ones (18x25 bits

signed). This reduces the DSP cost of floating-point single-

precision (24-bit significand) from 4 to 2. The fixed shift

on PCIN is still 17-bit only [6]. Another improvement is

that the addition unit is now capable of adding a third term

coming from global routing.

The Stratix II DSP block consists of four 18x18 multipli-

ers which can be used independently. It also includes two

levels of adders, enabling the computation of a complete

36x36 product or a complete 18-bit complex product in one

block [7]. With respect to this article, the main advantage

it has over the Virtex-4 is the possibility to operate on un-

signed 18-bit inputs: Altera devices may use k = 18, which

3872 55

37 37

Fig. 1. Stratix-III and IV operating modes using four 18x18

multipliers. Each rectangle is the 36-bit output of an 18x18

multiplier. All constant shifts are multiples of 18 bits.

is an almost perfect match for double-precision (53-bit sig-

nificand) as 54 = 3 × 18.

In Stratix III, the previous blocks are now called half-

DSP blocks and are grouped by two [8]. A half-DSP block

contains 4 18x18 multipliers, 2 36-bit adders and one 44-

bit adder/accumulator, which can take its input from the

half-DSP block just above. This direct link enables in-DSP

implementation of some of the additions of (1). Unfortu-

nately, the Stratix-III half-DSP is much less flexible than

the Stratix-II DSP. Indeed, its output size is limited, mean-

ing that the 36x36 multiplier of a half-DSP may not be split

as four independent 18x18 multipliers. More precisely, the

four input pairs may be connected independently, but the

output is restricted to one of the addition patterns described

by Figure 1. The Stratix IV DSP block is mostly identical to

the Stratix III one.

All these DSP blocks also contain dedicated registers that

allow for pipelines working at high frequencies (from 300 to

600 MHz depending on the generation).

3. KARATSUBA-OFMAN ALGORITHM

3.1. Two-part splitting

The classical step of Karatsuba-Ofman algorithm is the fol-

lowing. First compute DX = X1 −X0 and DY = Y1 − Y0.

The results are signed numbers that fit on k +1 bits in two’s

complement1. Then compute the product DX × DY us-

ing a DSP block. Now the middle term of equation (1),

X1Y0 + X0Y1, may be computed as:

X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY (2)

Then, the computation of XY using (1) only requires three

DSP blocks: one to compute X1Y1, one for X0Y0, and one

for DXDY .

There is an overhead in terms of additions. In principle,

this overhead consists of two k-bit subtractions for comput-

ing DX and DY , plus one 2k-bit addition and one 2k-bit

subtraction to compute equation (2). There are still more

additions in equation (1), but they also have to be computed

1There is an alternative Karatsuba-Ofman algorithm computing X1 +

X0 and Y1 + Y0. We present the subtractive version, because it uses the

Xilinx 18-bit signed-only multipliers fully, while working on Altera chips

as well.

251

latency freq. slices DSPs

LogiCore 6 447 26 4

LogiCore 3 176 34 4

K-O-2 3 317 95 3

Table 1. 34x34 multipliers on Virtex-4 (4vlx15sf363-12).

Y1

X1

z

X0

X1

Y0

Y1

z

X0

Y0

DSP48

DSP48

DSP48

P

X0 ∗ Y0

51 68

X0 ∗ Y0(16 : 0)

X1 ∗ Y1

X1 ∗ Y1 + X0 ∗ Y0 − DX ∗ DY

X0 ∗ Y0(33 : 17)

17

17

17

17

18

18

34

36

34

34

35

Fig. 2. 34x34bit multiplier using Virtex-4 DSP48

by the classical multiplication decomposition, and are there-

fore not counted in the overhead.

Counting one LUT per adder bit2, and assuming that the

k − bit addition in LUT can be performed at the DSP oper-

ating frequency, is we get a theoretical overhead of 6k LUT.

However, the actual overhead is difficult to predict exactly,

as it depends on the scheduling of the various operations,

and in particular in the way we are able to exploit registers

and adders inside DSPs. There may also be an overhead in

terms of latency, but we will see that the initial subtraction

latency may be hidden, while the additional output additions

use the cycles freed by the saved multiplier.

At any rate, these overheads are much smaller than the

overheads of emulating one multiplier with LUTs at the peak

frequency of the DSP blocks. Let us now illustrate this dis-

cussion with a practical implementation on a Virtex-4.

3.2. Implementation issues on Virtex-4

The fact that the differences DX and DY are now signed

18-bit is actually a perfect match for a Virtex-4 DSP block.

Figure 2 presents the architecture chosen for implement-

ing the previous multiplication on a Virtex-4 device. The

shift-cascading feature of the DSPs allows the computation

of the right-hand side of equation (2) inside the three DSPs

at the cost of a 2k-bit subtraction needed for recovering

X1Y1. Notice that here, the pre-subtractions do not add to

the latency.

2In all the following we will no longer distinguish additions from sub-

tractions, as they have the same LUT cost in FPGAs.

This architecture was described in VHDL (using + and

* from the ieee.std_logic_arith package), tested,

and synthesized. The corresponding results are given in Ta-

ble 1, and compared to LogiCore operator results.

3.3. Three-part splitting

Now consider two numbers of size 3k, decomposed in three

subwords each:

X = 22kX2 +2kX1 +X0 and Y = 22kY2 +2kY1 +Y0

We have

XY = 24kX2Y2

+ 23k(X2Y1 + X1Y2)
+ 22k(X2Y0 + X1Y1 + X0Y2)
+ 2k(X1Y0 + X0Y1)
+ X0Y0

(3)

After precomputing X2−X1, Y2−Y1, X1−X0, Y1−Y0,

X2 − X0, Y2 − Y0, we compute (using DSP blocks) the six

products

P22 = X2Y2 P21 = (X2 − X1) × (Y2 − Y1)
P11 = X1Y1 P10 = (X1 − X0) × (Y1 − Y0)
P00 = X0Y0 P20 = (X2 − X0) × (Y2 − Y0)

and equation (3) may be rewritten as

XY = 24kP22

+ 23k(P22 + P11 − P21)
+ 22k(P22 + P11 + P00 − P20)
+ 2k(P11 + P00 − P10)
+ P00

(4)

Here we have reduced DSP usage from 9 to 6 which, ac-

cording to Montgomery [4], is optimal. There is a first over-

head of 6k LUTs for the pre-subtractions (again, each DSP

is traded for 2k LUTs). Again, the overhead of the remain-

ing additions is difficult to evaluate. Most may be imple-

mented inside DSP blocks. However, as soon as we need to

use the result of a multiplication twice (which is the essence

of Karatsuba-Ofman algorithm), we can no longer use the

internal adder behind this result, so LUT cost goes up. Ta-

ble 2 provides some synthesis results. The critical path is in

one of the 2k-bit additions, and could be reduced by pipelin-

ing them. We note that the results for K-O-3* operator are

obtained with ISE 9.2i and could not be reproduced with ISE

11.1.

3.4. Four-part splitting and more

Due to space limit, we do not present the 4-part splitting

in detail here3. There is one remark to make, though. The

3The interested reader will find it in the technical report http://

prunel.ccsd.cnrs.fr/ensl-00356421/

252

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3* 6 317 331 6

Table 2. 51x51 multipliers on Virtex-4 (4vlx15sf363-12).

classical presentation of Karatsuba-Ofman is recursive. For

instance, for 68 bits, use two-part splitting to reduce 34x34

sub-multiplier count from 4 to 3, then use it again on each

obtained sub-multiplier, leading to a total of 9 DSPs in-

stead of the initial 16. The problem is that the second

splitting of the DXDY multiplier will entail a second ad-

dition/subtraction before one of the DSP blocks. This could

be managed by careful scheduling, but due to these two ad-

ditions, one of the sub-multipliers will now have to multiply

19-bit numbers, which doesn’t fit well our DSP blocks – it

will entail reducing k. We therefore prefer not to recurse on

the DXDY sub-multiplier, leading to a 10-DSP block im-

plementation.

A reader interested in even larger multipliers should read

Montgomery’s study [4].

3.5. Issues with the most recent devices

The Karatsuba-Ofman algorithm is useful on Virtex-II to

Virtex-4 as well as Stratix-II devices, to implement single

and double precision floating-point multiplication.

The larger (36 bit) DSP block granularity (see Sec-

tion 2.2) of Stratix-III and Stratix-IV prevents us from us-

ing the result of a 18x18 bit product twice, as needed by the

Karatsuba-Ofman algorithms. This pushes their relevance

to multipliers classically implemented as at least four 36x36

half-DSPs. The additive version should be considered, as it

may improve speed by saving some of the sign extensions.

The frequency will be limited by the input adders if they are

not pipelined or implemented as carry-select adders.

On Virtex-5 devices, the Karatsuba-Ofman algorithm can

be used if each embedded multiplier is considered as a

18x18 one, which is suboptimal. For instance, single pre-

cision K-O requires 3 DSP blocks, where the classical im-

plementation consumes 2 blocks only. We still have to find

a variant of Karatsuba-Ofman that exploits the 18x25 multi-

pliers to their full potential. X may be split in 17-bit chunks

and Y in 24-bit chunks, but then, in Equation (2), DX and

DY are two 25-bit numbers, and their product will require a

25x25 multiplier.

We now present an alternative multiplier design technique

which is specific to Virtex-5 devices.

4. NON-STANDARD TILINGS

This section optimizes the use of the Virtex-5 25x18 signed

multipliers. In this case, X has to be decomposed into 17-bit

chunks, while Y is decomposed into 24-bit chunks. Indeed,

in the Xilinx LogiCore Floating-Point Generator, version

3.0, a double-precision floating-point multiplier consumed

12 DSP slices (see Figure 3(a)): X was split into 3 24-bit

subwords, while Y was split into 4 17-bit subwords. This

splitting would be optimal for a 72x68 product, but quite

wasteful for the 53x53 multiplication required for double-

precision, as illustrated by Figure 3(a). In version 4.0 of

Floating-Point Generator, and in LogiCore multiplier start-

ing with version 11.0, DSP blocks are aranged in a different

way, detailed—as pointed out by one of the referrees—in [6,

p.78], and illustrated by Figure 3(b).

Figure 3(c), and the following equation, present an orig-

inal way of implementing double-precision (actually up to

58x58) multiplication, using only eight 18x25 multipliers.

XY = X0:23Y0:16 (M1)

+ 217(X0:23Y17:33 (M2)

+ 217(X0:16Y34:57 (M3)

+ 217X17:33Y34:57)) (M4)

+ 224(X24:40Y0:23 (M8)

+ 217(X41:57Y0:23 (M7)

+ 217(X34:57Y24:40 (M6)

+ 217X34:57Y41:57))) (M5)

+ 248X24:33Y24:33

(5)

The reader may check that each multiplier is a 17x24 one

except the last one. The proof that Equation (5) indeed com-

putes X × Y consists in considering

X × Y = (
57
∑

i=0

2ixi) × (
57
∑

j=0

2jyj) =
∑

i,j∈{0...57}

2i+jxiyj

and checking that each partial bit product 2i+jxiyj appears

once and only once in the right-hand side of Equation (5), as

illustrated by Figure 3(c).

The last line of Equation (5) is a 10x10 multiplier (the

white square at the center of Figure 3(c)). It could consume

51

48

(a) standard tiling

0
0

16

33

163358

58

(b) Logicore tiling

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4
M5

M6

M7
M8

(c) proposed tiling

Fig. 3. 53-bit multiplication using Virtex-5 DSP48E. The

dashed square is the 53x53 multiplication.

253

latency Freq. REGs LUTs DSPs

LogiCore 14 440 300 249 10

LogiCore 8 338 208 133 10

LogiCore 4 95 208 17 10

Tiling 4 366 247 388 8

Table 3. 58x58 multipliers on Virtex-5 (5vlx50ff676-3). Re-

sults for 53-bits are almost identical.

an embedded multiplier, but due to its small size it is proba-

bly best implemented as logic.

Equation (5) has been parenthesized to make the best use

of the DSP48E internal adders: we have two parallel cas-

caded additions with 17-bit shifts.

This design was implemented in VHDL, tested, and syn-

thesized. Preliminary synthesis results are presented in Ta-

ble 3. The critical path is in the final addition, currently im-

plemented as LUTs. It could probably exploit the 3-input

addition capabilities of DSP48E instead. Or it could be

pipelined to reach the peak DSP48E frequency, at the cost

of one more cycle of latency. The LUT cost is also larger

than expected, even considering that the 10x10 multiplier is

implemented in LUTs and pipelined.

Figure 4 illustrates a similar idea for 41x41 and for 65x65

multiplications – the corresponding equations are left as an

exercise to the reader. The 65x65 example (which may even

be used up to 68x65) shows that a tiling doesn’t have to be

regular.

41x41
65x65

Fig. 4. Tilings for 41x41 and 65x65 multiplications.

Generating such multiplier tilings automatically is under

investigation.

5. SQUARERS

The bit-complexity of squaring is roughly half of that of

standard multiplication. Indeed, we have the identity:

X2 = (
n−1
∑

i=0

2ixi)
2 =

n−1
∑

i=0

22ixi +
∑

0<i<j<n

2i+1xi

This is is only useful if the squarer is implemented as

LUTs. However, a similar property holds for a splitting of

the input into several subwords:

(2kX1 + X0)
2 = 22kX2

1 + 2 · 2kX1X0 + X2
0 (6)

(22kX2 + 2kX1 + X0)
2 = 24kX2

2 + 22kX2
1 + X2

0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2kX1X0

(7)

Computing each square or product of the above equation in

a DSP block, there is again a reduction of the DSP count

from 4 to 3, or from 9 to 6. Besides, this time, it comes at

no arithmetic overhead.

5.1. Squarers on Virtex-4 and Stratix-II

Now consider k = 17 for a Virtex-4 implementation. Look-

ing closer, it turns out that we still lose something using

the above equations: The cascading input of the DSP48 and

DSP48E is only able to perform a shift by 17. We may use

it only to add terms whose weight differs by 17. Unfortu-

nately, in equation (6) the powers are 0, 18 and 34, and in

equation (7) they are 0, 18, 34, 35, 42, 64.

One more trick may be used for integers of at most 33

bits. Equation (6) is rewritten

(217X1 + X0)
2 = 234X2

1 + 217(2X1)X0 + X2
0 (8)

and 2X1 is computed by shifting X1 by one bit before in-

putting it in the corresponding DSP. We have this spare bit

if the size of X1 is at most 16, i.e. if the size of X is at most

33. As the main multiplier sizes concerned by such tech-

niques are 24 bit and 32 bit, the limitation to 33 bits is not a

problem in practice.

Table 4 provides synthesis results for 32-bit squares on a

Virtex-4. Such a squarer architecture can also be fine-tuned

to the Stratix II-family.

5.2. Non-standard tilings on Virtex-5

Figure 5 illustrates non-standard tilings for double-precision

square using six or five 24x17 multiplier blocks. Space pre-

vents expliciting the corresponding equations. These tilings

latency frequency slices DSPs bits

LogiCore 6 489 59 4

32LogiCore 3 176 34 4

Squarer 3 317 18 3

LogiCore 18 380 279 16

53LogiCore 7 176 207 16

Squarer 7 317 332 6

Table 4. 32-bit and 53-bit squarers on Virtex-4

(4vlx15sf676-12)

254

36

53

17

0

M1

M2

M3 M6M5

M4

0
41 24 0

19

36

53

M1

M2

M3

M4
M5

Fig. 5. Double-precision squaring on Virtex-5. Two possible

architectures.

are symmetrical with respect to the diagonal, so that each

symmetrical multiplication may be computed only once.

However, there are slight overlaps on the diagonal: the

darker squares are computed twice, and therefore the cor-

responding sub-product must be removed. These tilings are

designed in such a way that all the smaller sub-products may

be computed in LUTs at the peak DSP frequency.

Note that a square multiplication on the diagonal of size

n, implemented as LUT, should consume only n(n + 1)/2
LUTs instead of n2 thanks to symmetry.

We currently do not have implementation results. It is

expected that implementing such equations will lead to a

large LUT cost, partly due to the many sub-multipliers, and

partly due to the irregular weights of each line (no 17-bit

shifts) which may prevent optimal use of the internal adders

of the DSP48E blocks.

6. CONCLUSION

This article has shown that precious DSP resources can be

saved in several situations by exploiting the flexibility of the

FPGA target. An original family of multipliers for Virtex-5

is also introduced, along with original squarer architectures.

The reduction in DSP usage sometimes even entails a reduc-

tion in latency.

Some of these multipliers and squarers are already part of

the FloPoCo project4. We believe that the place of some of

these algorithms is in vendor core generators and synthesis

tools, where they will widen the space of implementation

trade-off offered to a designer.

The fact that the Karatsuba-Ofman technique is poorly

suited to the larger DSP granularity of last-generation de-

vices inspires some reflexions. The trend towards larger

granularity, otherwise visible in the increase of the LUT

complexity, is motivated by Rent’s law: Routing consumes

a larger share of the resources in larger-capacity devices [9].

Following this trend, the top entry of the top 10 predictions

of the FFCM conference 5 reads “FPGAs will have floating

point cores”. We hope this turns out to be wrong! Consid-

ering that GPUs already offer in 2009 massive numbers of

4www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
5http://www.fccm.org/top10.php

floating-point cores, FPGAs should go further on their own

way, which has always been flexibility. Flexibility allows for

application-specific mix-and-match between integer, fixed

point and floating point numbers, between adders, multipli-

ers, dividers, and even more exotic operators [1, 10]. The

integer multipliers and squarers studied in this article are

not intended only for floating-point multipliers and squarers,

they are also needed pervasively in coarser operators such as

elementary functions, variations around the Euclidean norm
√

x2 + y2 + z2, etc.

For this reason, while acknowledging that the design

of a new FPGA is a difficult trade-off between flexibility,

routability, performance and ease of programming, we think

FPGAs need smaller / more flexible DSP blocks, not larger

ones.

7. REFERENCES

[1] D. Strenski, “FPGA floating point performance – a

pencil and paper evaluation,” HPCWire, Jan. 2007.

[2] A. Karatsuba and Y. Ofman, “Multiplication of multi-

digit numbers on automata,” Doklady Akademii Nauk

SSSR, vol. 145, no. 2, pp. 293–294, 1962.

[3] D. Knuth, The Art of Computer Programming, vol.2:

Seminumerical Algorithms, 3rd ed. Addison Wesley,

1997.

[4] P. L. Montgomery, “Five, six, and seven-term

Karatsuba-like formulae,” IEEE Transactions on Com-

puters, vol. 54, no. 3, pp. 362–369, 2005.

[5] XtremeDSP for Virtex-4 FPGAs User Guide (v2.7),

Xilinx Corporation, 2008.

[6] Virtex-5 FPGA XtremeDSP Design Considerations

(v3.3), Xilinx Corporation, 2009.

[7] Stratix-II Device Handbook, Altera Corporation, 2004.

[8] Stratix-III Device Handbook, Altera Corporation,

2006.

[9] F. de Dinechin, “The price of routing in FPGAs,” Jour-

nal of Universal Computer Science, vol. 6, no. 2, pp.

227–239, 2000.

[10] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and

R. Tudoran, “When FPGAs are better at floating-

point than microprocessors,” ÉNS Lyon, Tech. Rep.

ensl-00174627, 2007, http://prunel.ccsd.cnrs.fr/ensl-

00174627.

255

