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Abstract

This article studies two common situations where the
flexibility of FPGAs allows one to design application-
specific floating-point operators which are more efficient
and more accurate than those offered by processors and
GPUs. First, for applications involving the addition of a
large number of floating-point values, an ad-hoc accumula-
tor is proposed. By tailoring its parameters to the numerical
requirements of the application, it can be made arbitrarily
accurate, at an area cost comparable to that of a standard
floating-point adder, and at a higher frequency. The sec-
ond example is the sum-of-product operation, which is the
building block of matrix computations. A novel architecture
is proposed that feeds the previous accumulator out of a
floating-point multiplier whose rounding logic has been re-
moved, again improving the area/accuracy tradeoff. These
architectures are implemented within the FloPoCo genera-
tor, freely available under the LGPL.

1. Introduction

Most general-purpose processors have included floating-

point (FP) units since the late 80s, following the IEEE-

754 standard. The feasibility of FP on FPGA was studied

long before it became a practical possibility [23, 17, 19].

As soon as the sizes of FPGAs made it possible, many

libraries of floating-point operators were published (see

[3, 16, 18, 22, 8] among other). FPGAs could soon provide

more FP computing power than a processor in single preci-

sion [18, 22], then in double-precision [25, 10, 7]. Here sin-

gle precision (SP) is the standard 32-bit format consisting of

a sign bit, 8 bits of exponent and 23 bits of significand (or

∗This work was partly supported by the XtremeData university pro-

gramme, the ANR EVAFlo and TCHATER projects and the Egide

Brâncuşi programme 14914RL.

mantissa), while double-precision (DP) is the standard 64-

bit format with 11 bits of exponent and 52 significand bits.

Since then, FPGAs have increasingly been used to accel-

erate scientific, financial and other FP-based computations.

This acceleration is essentially due to massive parallelism

[24], as basic FP operators in an FPGA are typically slower

than their processor counterparts by one order of magnitude.

Most of the aforementionned applications are very close,

from the arithmetic point of view, to their software imple-

mentations. They use the same basic operators, although

the internal architecture of the operators may be highly op-

timised for FPGAs [17, 20, 20, 12]. For such applications,

it is expected that GPUs will soon outperform FPGAs.

However, FPGAs are more flexible than that. For exam-

ple, most published FP libraries are fully parameterisable in

significand length and exponent length [16, 8], but applica-

tions that exploit this flexibility are rare [22, 25].

The FloPoCo project1 studies how the flexibility of the

FPGA target can be better exploited in the floating-point

realm. In particular, it looks for operators which are radi-

cally different from those present in microprocessors. In the

present article, such an operator is presented for the ubiqui-

tous operation of floating-point accumulation, and applied

to sums of products.

These operators are demonstrated in the FloPoCo core

generator. One goal of FloPoCo is to fine-tune the architec-

tural parameters to the target hardware (currently Virtex-4

and Stratix II) and to an objective frequency. This is also

demonstrated.

2. Floating-point accumulation

Summing many independent terms is a very common op-

eration. Scalar product, matrix-vector and matrix-matrix

products are defined as sums of products. Numerical in-

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
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Figure 1. Iterative accumulator

tegration usually consists in adding many elementary con-

tributions. Monte-Carlo simulations also involve sums of

many independent terms. Many other applications involve

accumulations of floating-point numbers, and some related

work will be surveyed in section 6.

If the number of summands is small and constant, one

may build trees of adders, but to accomodate the general

case, it is necessary to design an iterative accumulator, il-

lustrated by Figure 1.

It is a common situation that the error due to the com-

putation of one summand is independent of the other sum-

mands and of the sum, while the error due to the summation

grows with the number of terms to sum. This happens in in-

tegration and sum of products, for instance. In this case,

it makes sense to have more accuracy in the accumulation

than in the summands.

A first idea is to use a standard FP adder, possibly with a

larger significand than the summands. The problem is that

FP adders have long latencies: typically l = 3 cycles in a

processor, up to tens of cycles in an FPGA (see Table 1).

This is explained by the complexity of their architecture,

illustrated on Figure 2.

This long latency means that an accumulator based on an

FP adder will either add one number every l cycle, or com-

pute l independent sub-sums which then have to be added

together somehow. This will add to the complexity and

cost of the application, unless at least l accumulation can

be interleaved, which is the case of large matrix operations

[26, 4].

In addition, an accumulator built out of a floating-point

adder is inefficient, because the significand of the accumu-

lator has to be shifted, sometimes twice (first to align both

operands and then to normalise the result, see Figure 2).

These shifts are in the critical path of the loop of Figure 1.

In this paper, we suggest to build an accumulator of

floating-point numbers which is tailored to the numerics of

each application in order to ensure that 1/ its significand

never needs to be shifted, 2/ it never overflows and 3/ it

eventually provides a result that is as accurate as the appli-

cation requires. We also show that it can be clocked to any

frequency that the FPGA supports. We show that, for many

applications, the determination of operator parameters en-

suring the required accuracy is easy, and that the area can

be much smaller for a better overall accuracy. Finally, we
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Figure 2. A typical floating-point adder (wE

and wF are the exponent and significand
sizes)

combine the proposed accumulator with a modified, error-

less FP multiplier to obtain an accurate application-specific

dot-product operator.

3. A fast and accurate accumulator

This section presents the architecture of the proposed ac-

cumulator. Section 4 will discuss the determination of its

many parameters in an application-specific way.

3.1. Overall architecture

The proposed accumulator architecture, depicted on Fig-

ure 3, removes all the shifts from the critical path of the loop

by keeping the current sum as a large fixed-point number.

Only the registers on the accumulator itself are shown. The

rest of the design is combinatorial and can be pipelined arbi-

trarily. There is still a loop, but it is now a fixed-point addi-

tion for which current FPGAs are highly efficient. Specif-

ically, the loop involves only the most local routing, and

the dedicated carry logic of current FPGAs provides good

performance up to 64 bits. For instance, a Virtex-4 with

speed grade −12 runs such a 64-bit accumulator at more

than 220MHz, while consuming only 64 CLBs. Section 3.3

will show how to reach even larger frequencies and/or ac-

cumulator sizes.

For clarity, some details are not shown on this figure.
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Figure 3. The proposed accumulator (top)
and post-normalisation unit (bottom).

In particular, LongAcc also outputs three sticky bits (in-

put overflow, input underflow, and accumulator overflow),

and both operators manage exceptional cases (infinities and

Not-a-Number).

Figure 4 illustrates the accumulation of several floating-

point numbers (represented by their significands shifted by

their exponent) into such an accumulator.

The shifters now only concern the summand (see Fig-

ure 3), and, being combinatorial, can be pipelined as deep

as required by the target frequency.

As seen on Figure 3, the accumulator stores a two’s com-

plement number while the summands use a sign/magnitude

representation, and thus need to be converted to two’s com-

plement. This can be performed without carry propagation:

If the input is negative, it is first complemented (fully in par-

allel), then a 1 is added as carry in to the accumulator. All

this is out of the loop’s critical path, too.

3.2. Parameterisation of the accumulator

Let us now introduce, with the help of Figure 4, the pa-

rameters of this architecture.

• wE and wF are the exponent size and significand size

of the summands
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Figure 4. Accumulation of floating-point num-
bers into a large fixed-point accumulator

• MSBA is the position of the most-significant bit

(MSB) of the accumulator. If the maximal expected

sum is smaller than 2MSBA , no overflow ever occurs.

• LSBA is the position of the least-significant bit of the

accumulator. It will determine the final accuracy as

Section 4 will show.

• For simplicity we note wA = MSBA−LSBA the width

of the accumulator.

• MaxMSBX is the maximum expected position of the

MSB of a summand. MaxMSBX may be equal to

MSBA, but very often one is able to tell that each sum-

mand is much smaller in magnitude than the final sum.

In this case, providing MaxMSBX < MSBA will save

hardware in the input shifter.

The main claim of the present article is the following:

For most applications accelerated using an FPGA, values of

MaxMSBX , MSBA and LSBA can be determined a priori,

using a rough error analysis or software profiling, that will

lead to an accumulator smaller and more accurate than the

one based on an FP adder. This claim will be justified in

section 4.

This claim sums up the essence of the advantage of FP-

GAs over the fixed FP units available in processors, GPUs

or dedicated floating-point accelerators: We advocate an ac-

cumulator specifically tailored for the application to be ac-

celerated, something that would not be possible or econom-

ical in a general-purpose FPU.

3.3. Fast accumulator design using partial
carry-save

If the dedicated carry logic of the FPGA is not enough

to reach the target frequency, a partial carry-save represen-

tation allows to reach any arbitrary frequency supported by

the FPGA. As illustrated by Figure 5, the idea is to cut the

large carry propagation into smaller chunks of k bits (k = 4
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Figure 5. Accumulator with 4-bit partial carry-
save. The boxes are full adders, bold dashes
are 1-bit registers, and the dots show the crit-
ical path.

on the figure), simply by inserting �(MSBA − LSBA)/k�
registers. The critical path is now that of a k-bit addition,

and the value of k can therefore be chosen to match the tar-

get frequency. This is a classical technique which was in

particular suggested by Hossam, Fahmy and Flynn [11] for

use as an internal representation in processor FPUs. For

k = 1 one obtains a standard carry-save representation, but

larger values of k are prefered as they take advantage of ded-

icated carry logic while reducing the register overhead. The

FloPoCo implementation computes k out of the target fre-

quency. For illustration, k = 32 allows to reach 400MHz on

Virtex-4 and StratixII. The additional hardware cost is just

the few additional registers – 1/4 more in our figure, and

1/32 more for 400MHz accumulation on current FPGAs.

Of course a drawback of the partial carry-save accumu-

lator is that it holds its value in a non-standard redundant

format. To convert to standard notation, there are two op-

tions. One is to dedicate �(MSBA−LSBA)/k� cycles at the

end of the accumulation to add enough zeroes into the ac-

cumulator to allow for carry propagation to terminate. This

comes at no hardware cost. The other option, if the running

value of the accumulator is needed, is to perform this carry

propagation in a pipelined way before the normalisation –

this is the carry propagation box on Figure 3. The impor-

tant fact is again that this carry propagation is outside of the

critical loop.

3.4. Post-normalisation unit, or not

Figure 3 also shows the FloPoCo LongAcc2FP post-

normalisation unit, which performs the conversion of the

long accumulator result to floating-point.

Let us first remark, using a few examples, that this com-

ponent is probably much less useful than the accumulator

itself.

In [6], the FPGA computes a very large integration – sev-

eral hours – and only the final result is relevant. In such

applications, it makes no sense to dedicate hardware to the

conversion of the accumulator back to floating-point. FPGA

resources will be better exploited at speeding up the com-

putation as much as possible, and FloPoCo provides a small

helper program to perform this conversion in software.

Another common case is that one needs one normalisa-

tion every N accumulations. For instance, a dot product

of vectors of size N accumulates N numbers before need-

ing to convert the result back to floating-point. Therefore,

in matrix operations, one pipelined LongAcc2FP may be

shared between N dot product operators [26], at the cost

of some multiplexers and routing. Alternatively, one may

use N instances of LongAcc2FP running at 1/N the fre-

quency of the accumulator – they will be smaller. In both

cases, it makes sense to provide LongAcc2FP as a sepa-

rate component, as on Figure 3. In the following we give

separate synthesis results for the accumulators themselves

and the post-normalisation unit.

Note that the same discussion holds for an accumulator

based on an FP adder of latency l (that actually computes

l intermediate subsums). If only the final sum is needed,

it may be computed in software at no extra hardware cost.

However, if the running sum is needed at each cycle, it will

take l − 1 additions to get it [26, 4].

Back to LongAcc2FP, it mostly consists in leading-

zero/one counting and shifting, followed by conversion

from 2’s complement to sign/magnitude, and rounding. If

the accumulator holds a partial carry-save value, the car-

ries need to be propagated. This simply requires �wA/k�
pipeline levels, each consisting of one k-bit adder and

�wA/k�−1 registers of k bits, and it can actually be merged

with the 2’s complement conversion. Again, all this may be

performed at each cycle and pipelined arbitrarily.

3.5. Synthesis results

All the results in this article are synthesis results (before

place-and-route) obtained for Virtex-4, speedgrade -12, us-

ing ISE10.1. Post place-and-route results will depend on

the FPGA occupation and floorplanning. Very similar re-

sults have been obtained for Altera Stratix II.

Table 1 illustrates the performance of the proposed accu-

mulator compared to one built using a floating-point adder

from the Xilinx CoreGen tool. These operators are not func-

tionnaly equivalent. The proposed accumulator is more ac-

curate (Section 4.3 will study this quantitatively), but does

not return a normalised result as the accumulator based on

an FP adder.

For each summand size, we build accumulators of

twice the size of the input significand (MSBA = wE ,

LSBA = −wE) for two configurations: a small one where

MaxMSBX = 1, and a larger one where MaxMSBX =
MSBA = wE . Again, these results are for illustration only:

An accumulator should be built in an application-specific

way. As section 4 will show, a typical accumulator will be

between these two configurations.

Table 2 provides results for the LongAcc2FP post-

normalisation unit. These results are preliminary: the target

frequency of 400MHz is not reached, due to limits of the
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summand (wE , wF ) CoreGen FP adder (wE , wF ) 2wF accumulator, MaxMSBX = 1 2wF accumulator, MaxMSBX = MSBA

(7,16) 304 slices + 1 DSP, 12 cycles @ 359 MHz 129 slices, 8 cycles @ 472 MHz 176 slices, 9 cycles @ 484 MHz

(8,23) SP 317 slices + 4 DSP, 16 cycles @ 450 MHz 165 slices, 8 cycles @ 434 MHz 229 slices, 9 cycles @ 434 MHz

(10,37) 631 slices + 1 DSP, 14 cycles @ 457 MHz 295 slices, 10 cycles @ 428 MHz 399 slices, 11 cycles @ 428 MHz

(11,52) DP 771 slices + 3 DSP, 15 cycles @ 366 MHz 375 slices, 11 cycles @ 414 MHz 516 slices, 12 cycles @ 416 MHz

Table 1. Compared synthesis results for an accumulator based on FP adder, versus proposed accu-
mulator with MSBA = wE , LSBA = −wE , all targetted for 400MHz on a Virtex-4.

current pipelining framework of FloPoCo.

4. Application-specific accumulator design

Let us now justify the claim, made in 3.2, that the few pa-

rameters of the proposed accumulator are easy to determine

on a per-application basis. We acknowledge that the main

purpose of floating-point is to free the designer from the

painful task of converting a computation on real numbers

to fixed-point. Indeed, the proposed accumulator is defi-

nitely a floating-point operator, and we hope to convince

the reader that the effort it requires to set up is minimal.

4.1. A performance/ accuracy tradeoff

First note that a designer has to provide a value for

MSBA and MaxMSBX , but these values do not have to be

accurate. For instance, adding 10 bits of safety margin to

MSBA has no impact on the latency and very little impact

on area. Now from the application point of view, 10 bits

mean 3 orders of magnitude. For most applications, it is

huge. A designer in charge of implementing a given com-

putation on FPGA is expected to understand it well enough

to bound the expected result with a margin of 3 orders of

magnitude. An actual example is detailed below in 4.2. As

another example, consider a Monte Carlo simulation where

the accumulation computes an estimate of the value of a

share. No share will go beyond, say, $100,000 before some-

thing happens that makes the simulation invalid anyway.

It may be more difficult to evaluate MaxMSBX . In

doubt, MaxMSBX = MSBA will do, but in many cases

(wE , wF ) LongAcc2FP, 2wF → wF

(7,16) 124 slices, 5 cycles @ 343 MHz

(8,23) SP 158 slices, 5 cycles @ 338 MHz

(10,37) 325 slices, 7 cycles @ 267 MHz

(11,52) DP 413 slices, 7 cycles @ 266 MHz

Table 2. Preliminary synthesis results for a
LongAcc2FP compatible with Table 1, round-
ing an accumulator of size 2wF to an FP num-
ber of size wF .

application knowledge will help reduce it, hence reducing

the input shifter size. For instance, in Monte Carlo simu-

lations, probabilities are smaller than 1. Another option is

profiling. A typical instance of the problem may be run in

software, instrumented to output the max and min of the

absolute values of summands. Again, the trust in such an

approach comes from the possibility of adding 20 bits of

margin for safety.

In some cases, the application will dictate MaxMSBX

but not MSBA. In this case, one has to consider the number

n of terms to add. Again, one will usually be able to provide

an upper bound, be it the extreme case of 1 year running at

500MHz, or 253 cycles. In a worst-case scenario on such

simulation times, this suggests the relationship MSBA =
MaxMSBX + 53 to avoid overflows. For comparison, 53
is the precision of a DP number, so the cost of this worst

case scenario is simply a doubling of the accumulator itself,

but not of the input shifter which shifts up to MaxMSBX

only. It will cost just slightly more than 53 LUTs in the

accumulator (although much more in the post-normalisation

unit if one is needed).

The last parameter, LSBA, allows a designer to manage

the tradeoff between precision and performance. First, re-

mark that if a summand has its LSB higher than LSBA (case

of the 5 topmost summands on Figure 4), it is added ex-

actly, entailing no rounding error. Therefore, the proposed

accumulator will compute exactly if the accumulator size

is large enough so that its LSB is smaller than those of all

the inputs. Conversely, if a summand has an LSB smaller

than LSBA (case of the bottommost summand on Figure 4),

adding it to the accumulator entails a rounding error of at

most 2LSBA−1. In the worst case, when adding n numbers,

this error will be multiplied by n and invalidate the log2 n
lower bits of the accumulator. A designer may lower LSBA

to absorb such errors, an example is given below in 4.2. A

practical maximum is again an increase of 53 bits for 1 year

of computation at 500MHz.

Here we have only discussed the errors due to the ac-

cumulation process. In practice, even when a summand is

added exactly, it is usually the result of some rounding, so it

carries an error of the order of its LSB, which it adds to the

accumulator. These summand errors, which are outside of

the scope of this article (they can be reduced by increasing
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wF ), will typically dwarf the rounding errors due to the ac-

cumulator. This suggests that the previous worst-case anal-

ysis will typically lead to an accumulator that is much more

accurate (and bulky) than the application actually requires.

All considered, it is expected that an accumulator will

rarely need to be designed larger than 100 bits. Note that

the fast carry chain of the smallest Virtex-4 already extends

to 128-bit.

Finally, thanks to the sticky output bits for overflows in

the summands and in the accumulator, the validity of the

result can be checked a posteriori.

4.2. A case study

In the inductance computation of [6], physical expertise

tells that the sum will be less than 105 (using arbitrary units

due to factoring out some physical constants), while profil-

ing showed that the absolute value of a summand was al-

ways between 10−2 and 2.

Converting to bit positions, and adding two orders of

magnitude (or 7 bits) for safety in all directions, this de-

fines MSBA = �log2(102 × 105)� = 24, MaxMSBX = 8
and LSBA = −wF − 15 where wF is the significand width

of the summands. For wF = 23 (SP), we conclude that an

accumulator stretching from LSBA = −23− 15 = −38
(least significant bit) to MSBA = 24 (most significant bit)

will be able to absorb all the additions without any rounding

error: No summand will add bits lower than 2−38, and the

accumulator is large enough to ensure it never overflows.

The accumulator size is therefore wA = 24 + 38 + 1 = 63
bits.

Remark that only LSBA depends on wF , since the other

parameters (MSBA and MaxMSBX ) are related to physical

quantities, regardless of the precision used to simulate them.

This illustrates that LSBA is the parameter that allows one

to manage the accuracy/area tradeoff for an accumulator.

4.3. Accuracy measurements

Table 3 compares for accuracy and performance the pro-

posed accumulator to one built using Xilinx CoreGen in the

context of the previous case study. To evaluate the accura-

cies, we computed the exact sum using multiple-precision

software on a small run (20,000,000 summands), and the

accuracy of the different accumulators was computed with

respect to this exact sum. The proposed accumulator is both

smaller, faster and more accurate than the ones based on

FP adders. This table also shows that for production runs,

which are 1000 times larger, a single-precision FP accumu-

lator will not offer sufficient accuracy.

Table 4 provides other examples of the final relative ac-

curacy, with respect to the exact sum, obtained by using an

FP adder, and using the proposed accumulator with twice

accuracy area latency

SP FP adder acc 1.2 · 10−3 317 sl, 4 DSP 16 @ 450 MHz

DP FP adder acc 2.8 · 10−15 771 sl, 3 DSP 15 @ 366 MHz

proposed acc 2.0 · 10−16 247 sl 10 @ 454 MHz

Table 3. Compared performance and accu-
racy of different accumulators for SP sum-
mands from [6].

sum size rel. error for unif[0, 1] rel. error for unif[-1, 1]

FP adder long acc. FP adder long acc.

1000 -5.76e-05 1.05e-07 -1.59e-05 1.40e-04

10,000 -2.74e-04 1.07e-08 -3.04e-04 2.36e-04

100,000 -4.31e-04 1.07e-09 2.54e-03 -2.73e-04

1,000,000 -0.738 -3.57e-09 3.18e-03 -4.47e-05

Table 4. Accuracy of accumulation of
FP(7,16) numbers, using an FP(7,16) adder,
compared to using the proposed accumula-
tor with 32 bits (MSBA = 20, LSBA = −11).

as large a significand. In the first column, we are adding n
numbers uniformly distributed in [0,1]. The sum is expected

to be roughly equal to n/2, which explains that the result

becomes very inaccurate for n = 1, 000, 000: As soon as

the sum gets larger than 217, any new summand in [0,1]

is simply shifted out and counted for zero. This problem

can be anticipated by using a larger significand, or a larger

MSBA in the accumulator as we do. In the second column,

numbers are uniformly distributed in [-1,1]. The sum grows

as well (it is a random walk) but much more slowly. As

we have taken a fairly small accumulator (LSBA = −11),

for the first sums floating-point addition is more accurate:

While the sum is smaller than 1, its LSB is smaller than

−16. However, as more numbers are added, the sum grows.

More and more of the bits of a summand are shifted out

in the FP adder, but kept in the long accumulator, which

becomes more accurate. Note that by adding only 5 bits

to it (LSBA = −16 instead of −11), the relative error be-

comes smaller than 10−10 in all cases depicted in Table 4:

Again, LSBA is the parameter allowing to manage the ac-

curacy/area tradeoff.

We have discussed in this section only the error of the

long fixed-point accumulator itself (the upper part of Fig. 3).

If its result is to be rounded to an FP(7,16) number using the

post-normalisation unit of Figure 3, there will be a relative

rounding error of at most 2−17 ≈ 0.76 · 10−5. Compar-

ing this value with the relative errors given in Table 4, one

concludes that the proposed accumulator, with the given pa-

rameters, always leads to a result accurate to the two last bits

of an FP(7,16) number.
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CoreGen, SP ×, SP + 484 sl + 8 DSP, 26 cycles @ 366 MHz

ours, SP ×, DP acc 319 sl + 4 DSP, 13 cycles @ 363 MHz
CoreGen, SP ×, DP + 973 sl + 7 DSP, 26 cycles @ 366 MHz

CoreGen, DP ×, DP + 1241 sl + 19 DSP, 37 cycles @ 366 MHz

ours, DP ×, 105-bit acc 1441 sl + 9 DSP, 23 cycles @279 MHz

Table 5. Preliminary results for Sum-Of-
Products

5. Accurate Sum-of-Products

We now extend the previous accumulator to a highly ac-

curate sum-of-product operator. The idea is simply to ac-

cumulate the exact results of all the multiplications. To this

purpose, instead of standard multipliers, we use exact mul-

tipliers which return all the bits of the exact product: For

1+wF -bit input significand, they return an FP number with

a 2+2wF -bit significand. Such multipliers incur no round-

ing error, and are actually cheaper to build than the stan-

dard (wE , wF ) ones. Indeed, the latter also have to compute

2wF + 2 bits of the result, and in addition have to round it.

In the exact FP multiplier, results do not need to be rounded,

and do not even need to be normalised, as they will be im-

mediately sent to the fixed-point accumulator. There is an

additional cost, however, in the accumulator, whose input

shifter is twice as large.

This idea was advocated by Kulisch [14, 13] for inclu-

sion in microprocessors, but a generic DP version requires

a 4288 bits accumulator, which manufacturers always con-

sidered too costly to implement. On an FPGA, one may de-

sign an application-specific version with an accumulator of

100-200 bits only. This is being implemented in FloPoCo,

and Table 5 provides preliminary synthesis results for single

and double precision input numbers, with the same 2wF ac-

cumulators as in Table 1. Some work is still needed to bring

the FloPoCo multiplier generator to CoreGen level.

6. Comparison with related work

Much research has been dedicated to converting floating-

point computations to fixed-point. When an input vector

is to be multiplied by a constant matrix (as happens in fil-

ters, FFTs, etc), one may use block floating-point (BFP), a

technique known since the 50s and recently applied to FP-

GAs [1, 2]. It consists in an initial alignment of all the in-

put significands to the largest one (bringing them all to the

same exponent), after wich all the computations (multipli-

cations by constants and accumulation) can be performed in

fixed-point. The proposed accumulator could be used as a

building block for BFP, however it was designed for a much

larger class of application, and with a motivation of accu-

racy inspired by Kulisch’s work [14, 13].

The group-alignment based floating-point accumulation

technique of He et al [12] applies BFP to arbitrary accu-

mulation. The inputs are first buffered into blocks (called

groups here) of size m (with m = 16 in the paper). The

numbers in a group are added using BFP. Then, these partial

sums are fed to a final stage of FP accumulation that may

run at 1/m the frequency of the first stage, and may there-

fore use a standard unpipelined FP adder. This is a very

complex design (for SP, 443 slices without the last stage,

716 with it). Besides, the frequency of the BFP accumula-

tor will not scale well to higher precisions without resorting

to techniques similar to our partial carry save.

Luo and Martonosi [21] have described an architecture

for the accumulation of SP numbers that uses two 64-bit

fixed-point adders. It first shifts the input data according

to the 5 lower bits of the exponent, then sends it to one of

the fixed-point accumulators depending on the higher expo-

nent bits. If these differ too much, either the incoming data

or the current accumulator is discarded completely, just as

in an FP adder. The critical path of the accumulator loop

includes one 64-bit adder and a 3-2 compressor. The main

problem with this approach (besides its complexity) is that it

is a fixed design that will not scale beyond single-precision.

Another one is that the detection of accumulator overflow

may stall the operator, leading to a variable-latency design.

The authors suggest a workaround that imposes a limit on

the number of summands to add.

Zhuo and Prasanna [26], then Bodnar et all [4] have de-

scribed high-throughput matrix operations using carefully

scheduled standard FP adders. Performance-wise, this ap-

proach should be comparable to ours. Still, the proposed

accumulator is more generic and exposes a finer control of

the accuracy-performance tradeoff.

7. Conclusion and future work

The accumulator design presented in this article per-

fectly illustrates the philosophy of the FloPoCo project:

Floating-point on FPGA should make the best use of the

flexibility of the FPGA target, not re-implement operators

available in processors. The proposed accumulator is delib-

erately application-specific. In addition it may be tailored

to be arbitrarily faster and arbitrarily more accurate than a

naive floating-point approach, without requiring more re-

sources.

This approach requires the designer to provide bounds

on the orders of magnitudes of the values accumulated. We

have shown that these bounds can be taken lazily. In re-

turn, the designer gets not only improved performance, but

also a provably accurate accumulation process. We believe

that this return is worth the effort, especially considering

the overall time needed to implement a full floating-point

application on an FPGA.
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FloPoCo already includes many other operators, from

constant multipliers [5] to elementary functions generators

[9]. In addition to developping new operators, the challenge

is now to integrate them in the emerging C-to-FPGA com-

pilers [15]. In parallel, FloPoCo should be extended with

tools that help a designer set up a complete floating-point

datapath, managing synchronisation issues but also accu-

racy ones. Such tools are still at the drawing board.
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