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Abstract: In the last years the interest for magnetic stimulation of the human nervous tissue has increased 
considerably, because this technique has proved its utility and applicability both as a diagnostic and as a 
treatment instrument. Research in this domain is aimed at removing some of the disadvantages of the 
technique: the lack of focalization of the stimulated region and the reduced efficiency of the energetic 
transfer from the stimulating coil to the tissue. Better stimulation coils can solve these problems. Designing 
coils is so far a trial-and error process, relying on very compute-intensive simulations. In software, such a 
simulation has a very high running time. This paper proposes and demonstrates an FPGA-based hardware 
implementation of this simulation, which reduces the computation time by 4 orders of magnitude. Thanks to 
this powerful tool, some significant improvements in the design of the coils have already been obtained. 

1 INTRODUCTION 

The preoccupation for improving the quality of life, 
for persons with different handicaps, led to extended 
research in the area of functional stimulation. Due to 
its advantages compared to electrical stimulation, 
magnetic stimulation of the human nervous system 
is now a common technique in modern medicine 
(Mozek and Flak, 1999). 

A difficulty of this technique is the need for 
accurate focal stimulation. Another one is the low 
efficiency of power transfer from the coil to the 
tissue. To address these difficulties, coils with 
special geometries must be designed. 

This process requires testing a huge number of 
geometries to find an adequate solution for the 
desired application (Griškoval and Höppner, 2006). 

One of the major problems that appear in the 
design phase is the computation of the inductivity of 
the stimulating coil. For simple shapes of the coils 
(circular), one can determine analytical computation 
formulas. When, however, the shape and the spatial 
distribution of the coil’s turns do not belong to one 

of the known structures, a numerical method needs 
to be used for determining the inductivity. 

The idea is to divide the coils in small portions. 
Starting from this method, two computation systems 
are presented in the paper: 
• The first one is classical and it just consists of a 

software implementation (Matlab); 
• The second one consists of realizing a hardware 

architecture that exploits the intrinsic parallelism 
of the problem. The physical support of this 
architecture is an FPGA device. 
The problem with the software implementation is 

its running time. Coils are designed by trial-and-
error, and this approach is impractical if each trial 
requires half a day of computation. Besides, as this 
time grows with the complexity of the coil, it 
prevents designing complex coils. This paper shows 
that FPGA-based hardware acceleration is able to 
solve this bottleneck. 

The simulation of magnetic stimulators with 
complex forms requires dividing their coils in 
several parts. The self-inductance of the circuit, 
divided in n parts, can be computed with formula 
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(1). This mainly adds up the self-inductivities of the 
separate segments with the mutual inductivities of 
all the involved segments. The method is well 
described in (Creţ et. al., 2007); the operations 
involved in computing the inductivity of a coil are: 
logarithm, division, addition and multiplication. 
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2  SOFTWARE 
IMPLEMENTATION 

A coil is made up of a certain number of turns rolled 
around a central rod. Each turn can be considered as 
a perfect circle. The coil is structured on several 
vertical stages. On each stage there are more turns 
(horizontal turns). The coils parameters are: the 
radius, the diameter of the metallic turn and the 
distance (insulation) between consecutive turns. 

 
Figure 1: Coil approximation using a finite number of 
points. 

It is possible to have a different number of turns 
on every vertical stage. It is also possible to have a 
variable number of vertical stages, as shown in 
Figure 1. A complete magnetic stimulation device 
contains a Slinky coil. Considering a coil with N 
turns, the “Slinky-k” coil is generated by spatially 
locating these turns at successive angles of 

( )1/180x −ki  degrees, were i = 0, 1, …, k-1. If the 
current passing through this coil is I, then the central 
leg carries the total current N x I. These coils are 
shown in Figure 2, where each rectangle represents a 
leaf of the coil, viewed in perspective. 

The turns are approximated by a finite number of 
points. We considered, after a series of tests, that a 
suitable amount of points on a turn is 64. 

We have to take each of the 64 points and 
combine them into segments made up of one point 
and the consecutive one. After this, each segment is 
held as a reference. Then, formula (1) is applied 
using this reference segment and all the other 
segments on the coil. For each pair of segments a 
value is obtained. These values must be added in 
order to obtain the coil’s total inductance. 

 

Slinky_1 

Slinky_2 

Slinky_3 

Slinky_4 

Slinky_5  
Figure 2: Magnetic coil structures of the stimulation 
device. 

There are two phases in the functioning of the 
software implementation: 

• In Phase 1, the coordinates of the points are 
generated. These are computed using 
trigonometric functions. The results 
produced in this phase are also used in the 
hardware implementation. 

• In Phase 2, the actual computation of the 
values is performed. Finally, we 
accumulate the values corresponding to the 
mutual and self inductivities. 

The accumulation value includes some 
intermediate values (var1 to 5) according to (Creţ et. 
al., 2007): 
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The software implementation’s main drawback 
is the extremely high running time, which can be in 
the order of tens of minutes even for simple 
configurations. For complex geometries of the coils, 
it can exceed several hours (for instance, for a 58-
turns coil, about 5 hours run time on a recent PC). 

3 HARDWARE 
IMPLEMENTATION 

3.1 FPLibrary 

A Field-Programmable Gate Array (FPGA) is a 
semiconductor device containing programmable 
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logic components (“logic blocks”), and interconnect. 
Logic blocks can be programmed to perform simple 
or more complex functions. In most FPGAs, the 
logic blocks also include memory elements, from 
flip-flops to more complete blocks of memories. 

The hierarchy of programmable interconnects 
allows logic blocks to be interconnected as needed 
by the system designer, somewhat like a one-chip 
programmable breadboard. Logic blocks and 
interconnects can be programmed by the 
customer/designer, after the FPGA is manufactured, 
to implement any logical function (Guell et. al., 
2007). 

Several libraries of floating-point operators for 
FPGAs have been published. In this work, we use 
FPLibrary, developed at Ecole Normale Supérieure 
de Lyon (Detrey and De Dinechin, 2005) and freely 
downloadable (Detrey and De Dinechin, 2007). 
Mantissa size and exponent size parameterize each 
operator in FPLibrary, allowing one to choose the 
precision and the dynamic range of the numbers. It 
provides operators for addition, subtraction, 
multiplication, division and square root, some useful 
conversions and some elementary functions 
(currently exponential, logarithm and sine/cosine). It 
is written in portable VHDL (Collange et al., 2006). 

3.2 System Architecture 

The hardware implementation implies the same two 
phases as the software one, but Phase 1 is not 
computation-intensive and its implementation is kept 
in software. 

In the Figure 3 below a block diagram of the 
system is displayed. Three main blocks can be 
distinguished. The most important block is the 
pipeline stage, which receives values, computes 
them, and in a final stage accumulates them. 

 
Figure 3: Architecture of the hardware system. 

The coordinates are stored in a Block RAM 
memory. There are 3 memories, one for each 
coordinate, X, Y, and Z. The synchronization logic, 
which gives the data to the pipeline, is implemented 
in a special interface. This interface consists of 
counters and latches. The counters are orchestrated 
to generate the proper addresses, while the latches 
are needed to implement a caching logic, which 
saves some of the memory used. 

The design of the Accumulator is the most 
important part of the pipeline’s architecture, since it 
computes intermediary values and at the end 
provides the final result. As mentioned above, 
special considerations need to be made with regard 
to the accumulator because of the latencies 
introduced by the adders in the FPlibrary (3 cycles). 

 
Figure 4: Second stage. Computing accumulation value. 

The values that will be accumulated come and 
enter the final stage, which is an accumulator having 
a classical structure, using a feedback input.  

3.3 Hardware Implementation Issues 

The performance and feasibility of the hardware 
implementation largely depends on its physical 
support. Our hardware platform was a Digilent Inc. 
board populated with a Xilinx Virtex2PRO30 FPGA 
device. The problem with this implementation was 
that it is quite large: it depleted the space of the 
FPGA device we had available at this moment. To 
estimate the total space needed, we synthesized the 
design for a larger FPGA device (a Virtex4 160LX). 
A report of the device utilization is shown below: 
 
Selected Device:   4vlx160ff1148-12  
Number of Slices:                  23656 out of 67584      35%   
Number of Slice Flip Flops:  20834 out of 135168    15%   
Number of 4 input LUTs:      44515 out of 135168    32%   
Maximum frequency:  137.552 MHz. 
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The implementation fits without problems on 
this Virtex4 board. Regarding an implementation on 
our Virtex2Pro board two options were available. 

The first option was to reduce the precision at 
which the pipeline operated. This ensured a 
reduction of both the buffer stages that provided the 
synchronization between the stages and a reduction 
in size of the operators. 

This option was first implemented. We reduced 
the mantissa of the operands by 10 bits. Instead of a 
large mantissa having 23 bits, the mantissa now had 
only 13 bits. Although the design fitted on a Virtex-
II Pro board at about 98% of its capacity, the results 
obtained with this method were discouraging. They 
were more then 30% off from the actual result 
provided by Matlab. Therefore another method 
needed to be found. 

The next option was to reduce the frequency at 
which the pipeline stage operates and time-multiplex 
some of the resources (square root – three 
occurrences in design, some of the adders). This has 
the advantage of preserving the pipeline’s precision, 
the cost being a reduction in speed: the operating 
frequency was 85.714, MHz related to the weaker 
characteristics of the FPGA device and the more 
precise timing requirements. 

4 EXPERIMENTAL RESULTS 

The main achievement of the hardware 
implementation over the software one is the 
reduction in computation time. By performing one 
accumulation per clock cycle the hardware solution 
is indeed efficient and can be used even for the most 
complex magnetic stimulation systems. 

In terms of complexity, both implementations, in 
software and in hardware, have the same 
complexity, O(n2) with n being the number of 
distinct segments. As mentioned in Section 4, the 
specific hardware structure performs one 
accumulation per clock cycle. That means that each 
clock cycle, a mutual inductivity between two 
segments is evaluated. The software implementation 
performs the same computations in a longer time. 

We have analyzed our software and hardware 
implementations using the Slinky_1, Slinky_2 and 
Slinky_3 configurations (Figure 2). The values are 
given in Table 1, where a comparison is shown 
between the results provided by the software and the 
hardware solutions.  

First we analyze simpler cases, 1 to 4 turns. The 
outer turns are the widest turns on the coil, while the 
inner ones are the neighbors of the outer turns 

located closer to the center. Then, the results for 
these configurations are presented. The analyzed 
quantity was the inductivity. The number of 
segments represents an indicator of the complexity. 

The results of the two methods analyzed for the 
three configurations mentioned always stayed in the 
range of 3-4% of each other, with the Matlab results 
being slightly bigger than the results given by the 
hardware implementation. This can be attributed to 
the fact that Matlab uses by default double precision 
while in our system we have used only single 
precision operations. Indeed, a rough worst-case 
error analysis tells us that the accumulation, in the 
largest coil test, of 10.1920² floating-point numbers 
introduces a cumulative rounding error that may 
invalidate up to log2(10.1920²) = 25 bits of the 
result, when the mantissa of a single-precision 
number holds 24 bits only.  

This is a worst-case situation: in an actual 
simulation, the rounding errors compensate each 
other – this is why our results are still accurate. 
However, it shows that we will require increasing 
the precision of the floating-point format to use this 
architecture on larger coils. Fortunately, this extra 
precision is mostly useful in the final accumulator.  

Table 1: Comparison of results. 

Configuration Inductivity 
(Hardware) 

[μH] 

Inductivity 
(Software) 

[μH] 

Number 
of 

segments
1 outer turn 0.097 0.097 64
2 outer  turns 0.30 0.30 128
4 turns (2 out. 2 
in.) 

0.92 0.93 256

Slinky_1 coil 3.81 3.9 640
Slinky_2 coil 8.4 8.6 1,280
Slinky_3 coil 13.32 13.6 1,920

 
The flexibility of FPGAs allows us to use 

different precisions in different parts of the 
architecture. Besides, a format intermediate between 
single and double precision may be used. For us, a 
32- or 36-bit mantissa would already be overkill 
(double-precision has a 53-bits mantissa). We will 
test this as soon as we get hold of a board with a 
larger FPGA than the Virtex-II used here. It should 
be noted that this more accurate pipeline will require 
more hardware, but the same execution time: it will 
still compute one accumulation per cycle.  

One can see from Table 2 that the software 
running time is very large, so software computation 
becomes prohibitive for large systems. 
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Table 2: Comparison of performance. 

Configuration Duration 
(hardware) 
[no. of 
clock 
cycles] 

Running 
speed*  
(hardware) 
[seconds] 

Running 
speed 
(software)
[seconds]

1 outer turn 40,960 0.0004
7 

4.2

2 outer turns 163,84
0 

0.0019
4 

18

4 turns 
(2 out. 2 in.) 

655,36
0 

0.0076
4 

72

Slinky_1 coil 4,096,
000 

0.0470
5 

420 

Slinky_2 coil 16,384
,000 

0.1941
1 

1,680

Slinky_3 coil 36,864
,000 

0.4294
1 

3,600

* at 85.714 MHz, clock period 11.66 ns 

As a global comparison, the hardware solution 
runs approximately four orders of magnitude faster 
then the software one. The frequency is related to 
the physical board we had available, but for a more 
recent FPGA chip (i.e. Virtex4LX160, for which we 
did some simulations, or Virtex5), the device’s 
capacity as well as the working frequency will 
increase, thus leading to an improved performance. 

5 CONCLUSIONS AND FUTURE 
WORK 

An adequate geometry of the stimulation coil can 
lead to a better focality of the stimulus (the ability of 
a coil to stimulate a small area of the tissue) and it 
can also improve the efficiency of the energy 
transfer from the coil to the target tissue. The form 
and size of the turns, their position inside the coil, 
the insulation gap between turns are all important 
parameters that should be considered when 
designing a magnetic coil. Therefore, in order to 
establish the most suitable coil geometry for a 
specific medical application, a large number of 
structures have to be tested, making of coil design a 
trial-and-error process, even if the risk involved is 
only computation time. 

In (Creţ et. al., 2007), we analyzed the influence 
that space distribution of the magnetic coils’ turns 
has on the efficiency of energy transfer from the 
stimulator to the target tissue. The analysis was 
performed for a Slinky_3 coil configuration, with 
applications on transcranial magnetic stimulation 
(TMS). It turned out that the electrical energy 

dissipated in the circuit of the stimulator – required 
in order to achieve the activation threshold – is 25% 
lower for the most efficient configuration than for 
the less efficient one, and the coil heating per pulse 
is also 35% smaller! 

This estimation was based on the inductivity 
calculus described in this paper, and the large 
number of analyzed structures required a less time-
consuming computation technique, the hardware 
implementation described above. 

Since every medical application requires its own 
optimal structure of the magnetic coil, the results 
emphasized in this paper can play an important role 
for future work on coil design. 

Because of the large amount of operations 
involved (several tens of millions just for one coil) it 
is very hard to debug such a hardware system at 
least at an acceptable level, but the obtained results 
show an excellent concordance with those obtained 
in software. Our implementation has the advantage 
of greatly speeding up the computation time and 
hence shortening the design process. On larger 
FPGA devices the process can achieve a greater 
speed by accommodating more computational 
structures in parallel. These structures would 
evaluate multiple pairs of segments in parallel and 
accumulate them to the final value. 
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