
Floating point or LNS:
Choosing the right arithmetic on an application basis

Sylvain Collange Jérémie Detrey Florent de Dinechin
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
46, allée d’Italie

F-69364 Lyon cedex 07

{Sylvain.Collange, Jeremie.Detrey, Florent.de.Dinechin }@ens-lyon.fr

Abstract

For applications requiring a large dynamic range, real
numbers may be represented either in floating-point (FP),
or in the logarithm number system (LNS). Which system is
best for a given application is difficult to know in advance,
because the cost and performance of LNS operators depend
on the target accuracy in a highly non linear way. In doubt,
designers will choose floating-point. This article demon-
strates a methodology for a better informed choice thanks
to FPLibrary, a freely available, dual FP/LNS arithmetic
operator library. FPLibrary may be used in the prototype
phase of an application to obtain, with low design effort, ac-
curate measures of performance, cost and accuracy of both
LNS and FP approaches. Two case studies demonstrate the
benefits of this methodology.

1 Introduction

When an application requires a large dynamic range in

the numbers processed, floating-point (FP) arithmetic is a

well-known solution, but it is not the only one. An alterna-

tive is the Logarithmic Number System (LNS), where a pos-

itive real number is represented by its logarithm (usually in

radix 2), and the hardware operators compute on these log-

arithms. The main interest of this coding is that multiplica-

tions, divisions and square roots are trivial with logarithms:

They are implemented respectively by fixed-point addition

and subtraction (as on a slide rule), and bit shift. Besides,

contrary to their FP counterpart, LNS multiplication and di-

vision entail no rounding error. Conversely, LNS addition

and subtraction are much more complicated than their FP

equivalent. Overall, several publications have shown appli-

cations (ASIC or FPGA) for which LNS is more efficient in

terms of speed and area than floating-point [3, 15, 17].

However, many designers are unaware of LNS, or un-

willing to try it. The main reason is probably that floating-

point is well-known and well standardised, being imple-

mented in virtually all contemporary processors. This also

allows an efficient and reliable numerical simulation of an

application before it is cast to hardware. Another reason is

simply the lack of exposure of LNS in general, be it lit-

erature, textbooks, supporting design tools and libraries.

Finally, and perhaps more importantly, for those design-

ers aware of the existence of LNS, there is the knowledge

that LNS only rarely outperforms floating-point, and that in

these rare cases where LNS stands a chance of having some

benefit, the cost of the design efforts required to confirm

this benefit outweigh the possible benefit itself. For reasons

exposed in the next section, it is difficult for a designer to

get a fiable intuition of the relevance of LNS for a given

application.

The purpose of this article is to help designers make a

more informed choice between floating-point and LNS, at

an acceptable cost. We describe a generic comparison tool

which a designer may target to his application, with its bud-

get and constraints. This tool is a dual library – implement-

ing both LNS and floating-point – of arithmetic operators.

The purpose is to help a designer chose the best arithmetic

for a given application by simply synthesising both alterna-

tives. As each operator is parametrised in terms of range

(exponent size) and precision (mantissa size), the accura-

cy/performance/cost trade-offs can be explored relatively

easily, and independently for each arithmetic. The library

tries to avoid biased comparison by reflecting the state of

the art of operator design in both arithmetic systems.

The next section presents in more details the issues in-

volved in the accuracy/cost/performance trade-offs in LNS

and in FP. Section 3 then briefly presents the comparison

tool, and section 4 presents case studies of comparisons.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

2 Accuracy, cost and performance trade-offs
in FP and in LNS

Qualitatively, it is clear that LNS arithmetic can be com-

petitive only if the application matches two conditions:

There has to be many easy operations (×, /, x2 and
√

x)

with respect to difficult ones (+ and −), and the required

precision has to be quite low (less than 16 bits), as the cost

of these difficult operations in LNS grows exponentially

with precision, as the sequel will show. Quantitatively, it

is much more difficult to have a precise answer. The best

application-based comparative study was that of Coleman et
al. [3]: It considers several representative algorithms in two

precisions, and studies both accuracy and performance. It is

however clear that the authors took less care while design-

ing floating-point operators than LNS ones, and the compar-

isons are biased. For example, their floating-point square

root is a Newton iteration, which is quite inefficient in this

context. Moreover, they only target ASIC applications. For

FPGAs, there is a paper by Matoušek et al. [15], but this

case study concerns an iteration with only has one addition

for two divisions, three multiplications, two squares and one

square root. Such an uncommon algorithm will not con-

vince a designer to try LNS for more classical circuits.

It is difficult for a designer to get an accurate intuition

of the problem beforehand. A first problem is that the costs

of the difficult LNS operators with respect to precision (or

number size) are highly non-linear. These costs also depend

on the target technology, and a variety of algorithms expose

wide area/speed trade-offs – probably wider than those in

floating-point operators. Another problem is the evaluation

of the overall accuracy of the application (or its signal to

noise ratio). On one side, both systems, for the same num-

ber of bits, represent numbers with comparable range and

precision. On the other side, the rounding errors due to op-

erations may be very different. In FP, all the operations may

involve a rounding error. In LNS, multiplications and divi-

sions are exact (as they are implemented as fixed-point ad-

dition and subtraction) but addition and subtraction involve

rounding errors which may be larger than that of FP. The

net effect of combining these errors in one’s application is

difficult to predict. In practise, one of the number systems

may provide a better overall accuracy for a given number

size, as illustrated in Section 4.2.

The conclusion is that it is probably impossible in a pub-

lication to exhaustively cover the set of parameters control-

ling the speed/area/precision trade-offs for both LNS and FP

so that a designer can make an informed choice. As an ex-

ample, a comparison by Haselman et al [11] only covers the

standard IEEE-754 single and double precision, although

the authors claim they implemented a parametrised library.

Due to the high non-linearity of the cost, it will not help

if the application can accommodate lower or intermediate

precisions, as is commonly the case for signal processing.

Therefore, our approach is not to publish comparisons,

but a generic comparison tool which is presented in the re-

mainder of this paper. The library itself is briefly presented

in next section, and cases studies of application-specific

comparisons enabled by FPLibrary are presented in sec-

tion 4.

3 FPLibrary

FPLibrary is a library of arithmetic operators support-

ing both floating-point and LNS formats. This library

is freely downloadable from http://www.ens-lyon.
fr/LIP/Arenaire/. It allows to choose the precision

and the dynamic range of numbers, and the operators for the

two number system share a common syntax and exceptional

case handling, easing the switch from one to the other. It

provides operators for addition, subtraction, multiplication,

division and square root, along with some useful conver-

sions, in combinatorial or pipelined flavour. It is written in

portable VHDL, and all the operators have been designed

with equivalent optimisation effort.

3.1 Number representation

The representation of a real number in the library is

parametrised by two integers, wE which determines the

dynamic range of the represented numbers, and wF their

precision. The sets of representable values for a given

(wE , wF) are not identical for both formats, but are as close

as possible given the intrinsic differences between the for-

mats. More accurately, relative coding errors between those

two formats are within a log(2) ratio, as can be deduced

from the following Equations (1) and (2).

For floating-point numbers, a format inspired by the

IEEE-754 standard [1] is adopted: A number X is repre-

sented on 3 + wE + wF bits by two bits for coding excep-

tional cases, followed by a sign bit SX , an exponent EX

biased by E0 on wE bits, and the fractional part FX of the

mantissa on wF bits. The mantissa is normalised in [1; 2[,
so its most significant bit is always 1 and is implicit in the

coding:

X = (−1)SX × 1.FX × 2EX−E0 . (1)

Our format diverges from the IEEE-754 standard in that

it does not support subnormal numbers [10], and uses two

additional bits to code other exceptional cases (±∞, Not

a Number, Zero), where IEEE-754 reserves special expo-

nents. As exception handling is identical between FP and

LNS, we shall not detail it any further.

The LNS format on 3+wE +wF bits is composed of the

two exception bits, a sign bit SX , and a fixed-point 2’s com-

plement representation of the logarithm LX = log2(X),

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

coded with wE bits for its integer part ELX
and wF bits for

its fractional part FLX
:

X = (−1)SX × 2ELX
.FLX . (2)

3.2 Operator architectures

The library operators are described in detail in the

FPLibrary documentation (http://www.ens-lyon.
fr/LIP/Arenaire/) as well as in a companion research

report [5]. This section briefly exposes the design philoso-

phy for these operators.

The library has two main goals which often conflict: be

portable, and reflect the state of the art for both floating-

point and LNS operators, to allow an unbiased comparison.

Concerning portability, the library is written in portable

VHDL without use of any vendor-specific library. For in-

stance, fixed-point multipliers are expressed as * in the

code, and we rely on the synthesis tools to use whatever

best implementation of such multipliers is available. This

also ensures flexibility, as synthesis tools may provide sev-

eral multiplier variants optimised for various area/speed

trade-off. For example, on Xilinx Virtex-II, the synthesis

tools can use the embedded small multipliers specific to this

FPGA. Of course, using such a generic multiplier may be

slightly sub-optimal [2].

Another example is tables of values used in the LNS op-

erators, whose optimal implementation is very technology-

dependent. Again, such tables are expressed in the most

portable way.

There is another, deeper sub-optimality issue: The archi-

tectures themselves may involve many parameters. This is

the case for the floating-point divide and square root which

use high-radix SRT algorithms [9, 8], and for LNS operators

[4] which use sophisticated table-based methods for func-

tion evaluation [6]. In such cases, these parameters have

been optimised for Virtex FPGAs, and the architecture may

be sub-optimal for other FPGAs, or when targeting ASICs.

The solution here is to write more flexible operator genera-

tors, which is one of our future research directions.

Concerning more specifically the architectures of our

floating-point operators, the subject is very mature with

good recent books [9, 8]. The reader is referred to [5] for

detailed architecture discussion and description.

Concerning LNS, multiplication, division and square

root are implemented respectively by addition, subtraction

and right shift of the logarithms of the operands. Addition

and subtraction are performed as follows (X and Y are both

positive numbers such that X > Y) :

LX+Y = log2(2LX + 2LY)
= LX + f⊕(LY − LX),

with f⊕(r) = log2(1 + 2r),
LX−Y = log2(2LX − 2LY)

= LX + f�(LY − LX),
with f�(r) = log2(1 − 2r).

The LNS addition and subtraction therefore resumes

to the evaluation of the two non-linear functions f⊕ and

f�. The literature discusses many algorithms for that

[18, 14, 16, 3, 13, 4, 11] with a range of area/speed trade-

offs. FPLibrary currently offers two flavours for the LNS

adder. The first (noted method 1 on Figure 1) uses a sim-

ple argument reduction, and is fast but bulky and limited

in practise to wF ≤ 13 bits. The second (noted method
2 on Figure 1) uses a range reduction from [16], which is

much smaller but also slower. Both implementations use ad-

vanced table-based techniques [6] for the evaluation of f⊕
and f�. These two implementations reflect the state of the

art, at least as far as precisions lower than single-precision

are concerned.

4 Case studies

In this section, all the estimations are given by the Xilinx

ISE 5.2 tool suite for a Virtex-II XC2V2000-4 FPGA.

4.1 Norm
√

A2 + B2

Figure 2 shows the VHDL implementation of a 2D norm

using our library. As written here, it handles floating-point

data, with a dynamic range of wE = 6 bits, and a precision

of wF = 13 bits. Those three parameters are represented

in the code by the constants “fmt”, “wE” and “wF” respec-

tively (defined lines 13, 14 and 15).

To change the number representation format, the user

just has to change the value of “fmt” from “FP” (for

floating-point) to “LNS” (for logarithmic representation).

The same principle applies for wE and wF , that can be

modified by changing the value of “wE” or “wF”, and of

course adjusting the value of the width of the component

ports (lines 7, 8 et 9).

For pipelined operators, the method is sensibly more

complex, as the pipeline depth of the operators varies with

the number representation and the precision. Scheduling

the operations depends on these parameters. A reason-

able approach is therefore to study the various parameter

choices on a combinatorial circuit (while reserving area for

the pipeline overhead), and then benchmark the pipelined

version only for the most interesting parameter sets.

Figure 1 compares the area and latency of the norm op-

erator for floating-point and LNS. Only the precision wF

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

R

BA
FP

LNS

LNS, method 2

LNS, method 1

 3500

 3000

 2500

 2000

 1500

 1000

 500

 0
 6 8 10 12 14 16 18 20 22 24

area (slices)

wF

FP
LNS

LNS, method 1

LNS, method 2

 24 6 8 10 12 14 16 18 20 22
 0

 20

 40

 80

 60

 100

 120

 140

 160

 180
latency (ns)

wF

Figure 1. Area and speed for the norm operator R =
√

A2 + B2 implemented on a VirtexII.

1 l i b r a r y i e e e ;
2 use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
3 l i b r a r y f p l i b ;
4 use f p l i b . p k g _ f p l i b . a l l ;
5

6 e n t i t y Norm i s
7 port (A : in s t d _ l o g i c _ v e c t o r (6+13+2 downto 0) ;
8 B : in s t d _ l o g i c _ v e c t o r (6+13+2 downto 0) ;
9 R : out s t d _ l o g i c _ v e c t o r (6+13+2 downto 0)) ;

10 end e n t i t y ;
11

12 a r c h i t e c t u r e a r c h of Norm i s
13 c o n s t a n t fmt : f o r m a t := FP ;
14 c o n s t a n t wE : p o s i t i v e := 6 ;
15 c o n s t a n t wF : p o s i t i v e := 1 3 ;
16

17 s i g n a l A2 : s t d _ l o g i c _ v e c t o r (wE+wF+2 downto 0) ;
18 s i g n a l B2 : s t d _ l o g i c _ v e c t o r (wE+wF+2 downto 0) ;
19 s i g n a l R2 : s t d _ l o g i c _ v e c t o r (wE+wF+2 downto 0) ;
20 begin
21 mul_a_a : Mul
22 g e n e r i c map (fmt , wE, wF)
23 port map (A, A, A2) ;
24

25 mul_b_b : Mul
26 g e n e r i c map (fmt , wE, wF)
27 port map (B , B , B2) ;
28

29 add_a2_b2 : Add
30 g e n e r i c map (fmt , wE, wF)
31 port map (A2 , B2 , R2) ;
32

33 s q r t _ r 2 : S q r t
34 g e n e r i c map (fmt , wE, wF)
35 port map (R2 , R) ;
36 end a r c h i t e c t u r e ;

Figure 2. VHDL code for a 2D norm (R =√
A2 + B2).

varies, as the dependence on wE (the dynamic range) is very

similar in both arithmetic systems, and is more or less linear

both for area and delay.

This example is interesting because area and latency val-

ues are lower than expected, especially for the LNS opera-

tor. This is because the VHDL synthesiser realises that both

A2 and B2 are non-negative, and thus the subtraction part

of the adder/subtracter operator is useless. This simplifica-

tion is quite important in the case of LNS, as the subtraction

tables contribute to a large part of the area of the operator.

This effect, unsuspected when looking at the operators in

isolation, illustrates the usefulness of a comparison in con-

text.

In this example, the designer will conclude that LNS is

very interesting for precisions up to wF = 15 bits (smaller

and faster than floating point). LNS remains faster up to

single precision (23 bits), but with increasing overhead in

term of area.

4.2 3D transformation pipeline

This other example demonstrates the use of FPLibrary

to obtain information on the overall accuracy of an appli-

cation. Current 3D engines generate an image from a scene

described as a list of vertices, a list of triangles and the posi-

tion of the camera. The transformation stage transforms the

vertices from the scene coordinates to the camera’s viewing

frustum coordinates, including perspective computations.

From an algorithmic point of view, this stage can be triv-

ially parallelised, and only requires a dimension 4 matrix-

vector product and two divisions as shown in Figure 3. This

stage is sensitive, as it determines the on-screen position of

the triangles, and therefore requires some precision not to

distort the objects.

The circuit has been fully implemented and tested on

a Xilinx Virtex-E XCV2000E based Celoxica RC1000-PP

board. The complete application is also freely available,

along with the library. Some screenshots are given in Fig-

ures 4 and Figure 5.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Figure 3. Architecture of the 3D transforma-
tion operator.

Figure 4 shows that low precision (wF = 8) is enough

for a good visual feedback. The distortions due to low-

precision arithmetic become visible as one zooms into the

picture – how much one is allowed to zoom is a parameter of

the application. Figure 5 shows a given zoom with a range

of arithmetic parameters, each with its area and delay. The

delays are expressed in cycles as the pipelined operators are

used (their target frequency is 100MHz on Virtex-II). Con-

versions from and to LNS are performed on the host PC.

As far as the FP vs LNS comparison is concerned, these

screenshots give a new information: For the same preci-

sion, FP gives images which provide slightly better visual

quality than LNS. The rule of thumb observed here is that

FP(5, wF) provides a visual quality better than LNS(5, wF)
but worse than LNS(5, wF + 1). For this specific appli-

cation, cost/performance should be compared accordingly.

There was no easy way to get an intuition of this before-

hand, and it shouldn’t be generalised: For some applica-

tions, LNS will provide better overall accuracy or signal-to-

noise ratio than FP. As LNS multiplications and divisions

are without errors, this will indeed probably happen to ap-

plications for which LNS is also competitive.

We also observe that LNS is always almost twice as fast,

but becomes almost twice as large if one wants acceptable

visual quality at the zoom levels of Figure 5. Again, this

example is still a toy example, as there is no hope that

an FPGA will match the cost/performance ratio of current

graphics cards. It serves is purpose to illustrate how the li-

brary can be used to evaluate in situation the performance

and accuracy of a whole application.

5 Conclusion and future work

We hope to show with this work that, in order to dis-

cuss the compared pros and cons of floating-point and log-

arithmic number systems, it is much more profitable to re-

lease a library of finely crafted operators than to publish

application-specific comparisons. Of course, a non neglect-

able side-effect to this work is the existence of this library,

Figure 4. Low-precision LNS image (wE =
5, wF = 8)

which we will carry on extending and developing.

Improving the floating-point operators is probably dif-

ficult, considering for instance the convergence between

our library and that of Lee [12], developed independently.

Our current focus is on developing parametrised elementary

functions (exp, log, trigonometric) for this library [7].

The LNS addition, however, can be improved further, by

proposing more implementation methods. This will give

more freedom to the designer in the performance/cost as-

pects. We also need to automate the (currently mostly man-

ual) optimisation process which defines the parameters of

an architecture. If we want this process to target efficiently

ASICs and non-Xilinx FPGAs, we have to define cost func-

tions for the various building blocks (adders, multipliers,

ROM tables, ...)

Our current approaches to LNS addition will not allow

to go much further than single precision. We share this

concern with Haselman et al, whose double-precision LNS

adder [11] does not even fit in a Virtex-II 2000 FPGA.

Reaching double-precision will require either a higher-

order method, or an improvement in the range reduction

– all this probably at the expense of the delay. Therefore,

before researching this direction, we have to convince our-

selves that there exists applications for which LNS will be

competitive with floating-point at such large precisions.

Acknowledgements

The authors would like to thank Arnaud Tisserand for

many interesting discussions on this topic, and also for ad-

ministrating the CAD tool server on which all the syntheses

presented in this paper were performed.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

FP(5,8), 4446 slices (23%), 25 cycles LNS(5,8), 5497 slices (28%), 14 cycles

FP(5,9), 4802 slices (25%), 25 cycles LNS(5,9), 7415 slices (38%), 14 cycles

FP(5,10), 5246 slices (27%), 26 cycles LNS(5,10), 9701 slices (50%), 14cycles

Figure 5. Accuracy/cost/performance trade-off in a graphic pipeline

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

References

[1] ANSI/IEEE. Standard 754-1985 for Binary Floating-Point
Arithmetic (also IEC 60559). 1985.

[2] J.-L. Beuchat and A. Tisserand. Small multiplier-based mul-

tiplication and division operators for Virtex-II devices. In

Field-Programmable Logic and Applications, volume 2438

of LNCS. Springer, Sept. 2002.
[3] J. N. Coleman and E. I. Chester. Arithmetic on the European

logarithmic microprocessor. IEEE Transactions on Comput-
ers, 49(7):702–715, July 2000.

[4] J. Detrey and F. de Dinechin. A VHDL library of LNS oper-

ators. In 37th Asilomar Conference on Signals, Systems and
Computers, Oct. 2003.

[5] J. Detrey and F. de Dinechin. A tool for unbiased

comparison between logarithmic and floating-point arith-

metic. Technical Report RR2004-31, LIP, École Normale

Supérieure de Lyon, Mar. 2004.
[6] J. Detrey and F. de Dinechin. Table-based polynomials for

fast hardware function evaluation. In 16th Intl Conference
on Application-specific Systems, Architectures and Proces-
sors. IEEE Computer Society Press, July 2005.

[7] J. Detrey and F. de Dinechin. Parameterized floating-point

logarithm and exponential functions for FPGAs. Journal of
Microprocessors and Microsystems, 2006. To appear.

[8] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan

Kaufmann, 2003.
[9] M. J. Flynn and S. F. Oberman. Advanced Computer Arith-

metic Design. Wiley-Interscience, 2001.

[10] D. Goldberg. What every computer scientist should know

about floating-point arithmetic. ACM Computing Surveys,

23(1):5–47, Mar. 1991.
[11] M. Haselman, M. Beauchamp, K. Underwood, and K. S.

Hemmert. A comparison of floating-point and logarithmic

number systems for FPGAs. In FPGAs for Custom Comput-
ing Machines, 2005.

[12] B. Lee and N. Burgess. Parameterisable floating-point oper-

ators on FPGAs. In 36th Asilomar Conference on Signals,
Systems, and Computers, pages 1064–1068, 2002.

[13] B. Lee and N. Burgess. A dual-path logarithmic number

system addition/subtraction scheme for FPGA. In Field-
Programmable Logic and Applications, Lisbon, Sept. 2003.

[14] D. M. Lewis. An architecture for addition and subtraction

of long word length numbers in the logarithmic number sys-

tem. IEEE Transactions on Computers, 39(11), Nov. 1990.
[15] R. Matoušek, M. Tichý, Z. Pohl, J. Kadlec, C. Softley, and

N. Coleman. Logarithmic number system and floating-point

arithmetics on FPGA. In Field-Programmable Logic and
Applications, pages 627–636, Montpellier, Sept. 2002.

[16] V. Paliouras and T. Stouraitis. A novel algorithm for accu-

rate logarithmic number system subtraction. In International
Symposium on Circuits and Systems, volume 4, pages 268–

271. IEEE, May 1996.
[17] J. Ruan and M. Arnold. Combined LNS adder/subtractors

for DCT hardware. In 1st Workshop on Embedded Systems
for Real-Time Multimedia, Oct. 2003.

[18] F. J. Taylor, R. Gill, J. Joseph, and J. Radke. A 20 bit log-

arithmic number system processor. IEEE Transactions on
Computers, 37(2), Feb. 1988.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

