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Abstract— As FPGAs are increasingly being used for floating-
point computing, a parameterized floating-point logarithm oper-
ator is presented. In single precision, this operator uses a small
fraction of the FPGA’s resources, has a smaller latency than
its software equivalent on a high-end processor, and provides
about ten times the throughput in pipelined version. Previous
work had shown that FPGAs could use massive parallelism
to balance the poor performance of their basic floating-point
operators compared to the equivalent in processors. As this work
shows, when evaluating an elementary function, the flexibility of
FPGAs provides much better performance than the processor
without even resorting to parallelism. The presented operator
is freely available from http://www.ens-lyon.fr/LIP/
Arenaire/.

I. INTRODUCTION

A recent trend in FPGA computing is the increasing use of
floating-point. Many libraries of floating-point operators for
FPGAs now exist [15], [6], [1], [9], [3], usually offering the
basic operators +, −, ×, / and

√
. Published applications in-

clude matrix operations, convolutions and filtering. As FPGA
floating-point is typically clocked 10 times slower than the
equivalent in contemporary processors, only massive paral-
lelism (helped by the fact that the precision can match closely
the application’s requirements) allows these applications to be
competitive to software equivalent [10], [2], [8].

More complex floating-point computations on FPGAs will
require good implementations of elementary functions such as
logarithm, exponential, trigonometric, etc. These are the next
useful building blocks after the basic operators. This paper
describes both the logarithm and exponential functions, a first
attempt to a library of floating-point elementary functions for
FPGAs.

Elementary functions are available for virtually all computer
systems. There is currently a large consensus that they should
be implemented in software [14]. Even processors offering
machine instructions for such functions (mainly the x86/x87
family) implement them as micro-code. On such systems, it is
easy to design faster software implementations: Software can
use large tables which wouldn’t be economical in hardware
[16]. Therefore, no recent instruction set provides instructions
for elementary functions.

Implementing floating-point elementary functions on FP-
GAs is a very different problem. The flexibility of the FPGA
paradigm allows to use specific algorithms which turn out to

be much more efficient than a processor-based implementa-
tion. We show in this paper that a single precision function
consuming a small fraction of FPGA resources has a latency
equivalent to that of the same function in a 2.4 GHz PC, while
being fully pipelinable to run at 100 MHz. In other words,
where the basic floating-point operator (+, −, ×, /,

√
) is

typically 10 times slower on an FPGA than its PC equivalent,
an elementary function will be more than ten times faster at
least for precisions up to single precision.

Writing a parameterized elementary function is a com-
pletely new challenge: to exploit FPGAs’ flexibility, one
should not use the same algorithms as used for implementing
elementary functions in software [16], [12], [11]. This paper
describes an approach to this challenge, which builds upon
previous work dedicated to fixed-point elementary function
approximations (see [5] and references therein).

The authors are aware of only two previous works on
floating-point elementary functions for FPGAs, studying the
sine function [13] and studying the exponential function [7].
Both are very close to a software implementation. As they
don’t exploit the flexibility of FPGAs, they are much less
efficient than our approach, as section III will show.

II. A FLOATING-POINT LOGARITHM

Notations

The input and output of our operator will be (3 + wE +
wF )-bit floating-point numbers encoded in the freely available
FPLibrary format [3] as follows:

• FX : The wF least significant bits represent the fractional
part of the mantissa MX = 1.FX .

• EX : The following wE-bit word is the exponent, biased
by E0 = 2wE−1 − 1.

• SX : The next bit is the sign of X .
• exnX : The two most significant bits of X are internal

flags used to deal more easily with exceptional cases, as
shown in Table I.

A. Evaluation algorithm

1) Range reduction: We consider here only the case where
X is a valid positive floating-point number (ie. exnX = 01
and SX = 0), otherwise the operator simply returns NaN. We
therefore have:

X = 1.FX · 2EX−E0 .
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exnX X

00 0
01 (−1)SX · 1.FX · 2EX−E0

10 (−1)SX · ∞

11 NaN (Not a Number)

TABLE I

VALUE OF X ACCORDING TO ITS EXCEPTION FLAGS exnX .

If we define R = log X , we obtain:

R = log(1.FX) + (EX − E0) · log 2.

In this case, we only have to compute log(1.FX) with
1.FX ∈ [1, 2). The product (EX − E0) · log 2 is then added
back to obtain the final result.

In order to avoid catastrophic cancellation when adding the
two terms, and consequently maintain low error bounds, we
use the following equation to center the output range of the
fixed-point log function around 0:

R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log(1.FX) + (EX − E0) · log 2

when 1.FX ∈ [1,
√

2),

log

(
1.FX

2

)
+ (1 + EX − E0) · log 2

when 1.FX ∈ [
√

2, 2).

(1)

We therefore have to compute log M with the input operand
M ∈ [

√
2/2,

√
2), which gives a result in the interval

[− log 2/2, log 2/2).
We also note in the following E = EX −E0 when 1.FX ∈

[1,
√

2), or E = 1 + EX − E0 when 1.FX ∈ [
√

2, 2).
2) Fixed-point logarithm: As we are targeting floating-

point, we need to compute log M with enough accuracy in
order to guarantee faithful rouding — ie. an error of less than
one unit in the last place (ulp) of the result —, even after a
possible normalization of the result. As log M can be as close
as possible to 0, a straightforward approach would require at
least a precision of 2wF bits, as the normalization could imply
a left shift of up to wF bits, and wF bits would still be needed
for the final result.

But one can remark that when M is close to 1, log M is
close to M − 1. Therefore, a two-step approach consisting of
first computing log M/(M−1) with a precision of wF +g0 bits
and then multiplying this result by M −1 (which is computed
exactly) leads to the targeted accuracy at a smaller cost.

The function f(M) = log M/(M −1) is then computed by
a generic polynomial method [5]. The order of the considered
polynomial obviously depends on the precision wF .

3) Reconstruction: As the evaluation of f(M) is quite long,
we can in parallel compute the sign of the result: If E =
0, then the sign will be the sign of log M , which is in turn
positive if M > 1 and negative if M < 1. And if E �= 0, as
log M ∈ [

√
2/2,

√
2), the sign will be the sign of E · log 2,

which is the sign of E.
We can then compute in advance the opposite of E and

M − 1 and select them according to the sign of the result.
Therefore, after the summation of the two products E · log 2

and Y = f(M) · (M − 1), we obtain Z the absolute value of
the result.

The last steps are of course the renormalization and round-
ing of this result, along with the handling of all the exceptional
cases.

B. Architecture

The architecture of the logarithm operator is given on
Figure 1. It is a straightforward implementation of the algo-
rithm presented in Section II-A. Due to its purely sequential
dataflow, it can be easily pipelined. The values for the two
parameters g0 and g1 are discussed in Section II-C.
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1 + wF

1 + wF

wE

2 1 wE wF
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√
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normalize / round
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R̃ ≈ log X

E
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Z

Y

Fig. 1. Architecture of the logarithm operator.

Some comments about this architecture:

• Remark that the boundary between the two cases of
Equation (1) does not have to be exactly

√
2, as both

alternatives are valid on the whole of [1, 2). This means
that the comparison between the mantissa 1.FX and

√
2

may be performed on a few bits only, saving hardware.
We do not have any longer that M ∈ [

√
2/2,

√
2) and
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log M ∈ [− log 2/2, log 2/2), but we use the smallest
approximation to

√
2 that do not increase the bounds of

these intervals to the next power of two. Thus the savings
in this step do not lead to increased hardware on the
subsequent steps.

• The sign of the result is the sign of E when E �= 0. If
E = 0, we also need to take into account the result of
the comparison between 1.FX and

√
2.

• The function f(x) is evaluated using the Higher-Order
Table-Based Method (HOTBM) presented in [5]. It in-
volves a piecewise polynomial approximation, with vari-
able accuracy for the coefficients and where all the terms
are computed in parallel.

• The normalization of the fixed-point number Z uses a
leading-zero counter, and requires shifting Z by up to
wF bits on the left and up to wE bits on the right.

• Underflow cases are detected by the sign & exception
handling unit.

As the tables sizes grow exponentially with the precision,
this architecture is well suited for precisions up to single
precision (wF = 23 bits), and slightly more. Area on Virtex
circuits will be given for a range of precision in Section III.

C. Error analysis

In order to guarantee faithful rounding for the final result
we need to have a constant bound on the relative error of the
fixed-point number Z = log X :

|Z − Z̃|
2�log2

|Z|�
< 2−wF −1,

so that when rounding the result mantissa to the nearest, we
obtain a total error bound of 2−wF .

We need to consider several cases depending on the value
of E:

• When |E| > 3, |Z| > 2 and the predominant error is
caused by the discretization error of the log 2 constant,
which is multiplied by E.

• When E = 0, on the other hand, the only error is caused
by the evaluation of f(M), which is then scaled in the
product f(M) · (M − 1). As the multiplicand M − 1 is
computed exactly, this product does not entail any other
error.

• When |E| = 2 or 3, both the discretization error from
log 2 and the evaluation error from f(M) have to be taken
into account. However, in this case, we have |Z| > 1.
Therefore no cancellation will occur, and the discretiza-
tion error will not be amplified by the normalization of
Z .

• When |E| = 1, we have:

0.34 <
1

2
log 2 ≤ |Z| ≤ 3

2
log 2 < 1.04.

In this case, a cancellation of up to 2 bits can occur,
which will multiply the log 2 discretization error by at
most 4.

One can then find that using g1 = 3 guard bits for the
log 2 constant and bounding the evaluation error εf < 2−wF −3

satisfies all these constraints. The number of guard bits g0 is
given by the evaluation scheme used for f(M), and is typically
comprised between 1 and 5 bits.

All these choices have been proven valid by exhaustively
testing our operators on a Celoxica RC-1000 board (with
a VirtexE-2000 FPGA) against a double precision software
function, for the whole parameter space defined by wE ∈ [3, 8]
and wF ∈ [6, 23]. This exhaustive testing showed that the
the result was always faithful, and was correctly rounded to
nearest in more than 98% of the cases.

III. RESULTS

We obtained area and delay estimations of the logarithm
operator for several precisions. These results were computed
using Xilinx ISE and XST 6.3 for a Virtex-II XC2V1000-4
FPGA. They are shown in Figure 2, and a summary is given in
Table II, in terms of slices and percentage of FPGA occupation
for the area, and in terms of nanoseconds for the latency.
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(a) Logarithm operator area
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(b) Logarithm operator latency

Fig. 2. Area and latency estimations depending on wE and wF for the
combinatorial operator with LUT-based multipliers.

In order to be as portable as possible, we do not require
the use of the specific Virtex-II embedded 18×18 multipliers.
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Logarithm
Precision Multipliers Area Latency
(wE ,wF ) (slices % mults) (ns)

(3, 6) LUT-based 123 (2%) – 34
18 × 18 89 (1%) 2 31

(5, 10) LUT-based 263 (5%) – 42
18 × 18 154 (3%) 3 39

(6, 13) LUT-based 411 (8%) – 48
18 × 18 233 (4%) 3 44

(7, 16) LUT-based 619 (12%) – 57
18 × 18 343 (6%) 6 55

(8, 23) LUT-based 1399 (27%) – 64
18 × 18 830 (16%) 9 61

TABLE II

SYNTHESIS RESULTS FOR THE OPERATOR ON XILINX VIRTEX-II.

Therefore we present the results obtained with and without
those multipliers in Figure 3.

Most of the results presented here are for the combinatorial
version. However, the operator is also available as a pipelined
operator, for a small overhead in area, as shown in Figure 4.
The pipeline depth, comprised between 5 and 11 cycles,
depends on the parameters wE and wF . The pipelined operator
is designed to run at 100 MHz on the targeted Virtex-II
XC2V1000-4 FPGA.

As a comparison, Table III presents the performances for the
logarithm operator in single precision, along with the measured
performances for a 2.4 GHz Intel Xeon processor, using the
single precision operator from the GNU glibc (which itself
relies on the micro-coded machine instruction fyl2x).

Architecture Cycles Latency Throughput
(ns) (106 op/s)

2.4 GHz Intel Xeon 196 82 12
100 MHz Virtex-II FPGA 11 64 100

TABLE III

PERFORMANCE COMPARISON BETWEEN INTEL XEON AND VIRTEX-II FOR

SINGLE PRECISION (wE = 8, wF = 23).

The only other comparable work we could find in the
litterature [7] reports 5564 slices for a single precision ex-
ponential unit which computes exponentials in 74 cycles fully
pipelined at 85 MHz on a Virtex-II 4000. Our approach is
much more efficient, because our algorithm is designed from
scratch specifically for the FPGA. In contrast, the authors
of [7] use an algorithm designed for microprocessors. In
particular, they internally use fully featured floating-point
adders and multipliers everywhere where we only use fixed-
point operators.

IV. CONCLUSION AND FUTURE WORK

Parameterized floating-point implementations for the log-
arithm function has been presented. For the 32-bit single
precision format, its latency matches that of a Xeon processor,
and its pipelined version provides several times the Xeon
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Fig. 3. Comparison of area and latency depending on wF (wE = 8),
when using LUT-based multipliers, and when using the embedded 18 × 18
multipliers.

throughput. Besides, it consumes a small fraction of the
FPGA’s resources.

We should moderate these results by a few remarks. Firstly,
our implementation is slightly less accurate than the Xeon
one, offering faithful rounding only, where the Xeon uses an
internal precision of 80 bits which ensures almost guaranteed
correct rounding. Implementations for the logarithm better
optimized for single precision could probably be written.
Secondly, more recent instruction sets allow for lower latency
for the elementary functions. The Itanium 2, for example, can
evaluate a single precision logarithm in about 40 cycles (or 20
ns at 2 GHz), and will therefore be just twice slower than our
pipelined implementation. However the argument of massive
parallelism will still apply.

A future research direction, already evoked, is that the
current architecture do not scale well beyond single precision:
some of the building blocks have a size exponential in the
precision. We will therefore explore algorithms which work
up to double precision, which is the standard in processors
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Fig. 4. Area estimations depending on wF (wE = 8) for the combinatorial
and pipelined versions of the operator with LUT-based multipliers.

- and soon in FPGAs [2], [8]. We are also investigating
other elementary functions to extend the library, such as the
exponential [4].

This work also suggests that a complete library for floating-
point on FPGAs is but an intermediate research goal: A longer-
term goal is the automatic or assisted generation of arbitrary
functions in an optimized way. For instance, if a given appli-
cation involves a compound floating-point function, such as
exp x2, a specific implementation of this compound function
will very probably be more efficient than the combination
of several library components. In fixed-point, methods like
HOTBM provide this adaptability and flexibility. Floating-
point, however, is much more challenging.

FPLibrary and the operator presented here are avail-
able under the GNU Public Licence from http://www.
ens-lyon.fr/LIP/Arenaire/.
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