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LIP, ÉNS de Lyon

46 allée d’Italie
69364 Lyon cedex 07, France

Florent.de.Dinechin@ens-lyon.fr

Alexey V. Ershov
Intel Corporation

Alexey.Ershov@intel.com

Nicolas Gast
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Abstract

This article presents advances on the subject of cor-
rectly rounded elementary functions since the publication of
the libultim mathematical library developed by Ziv at
IBM. This library showed that the average performance and
memory overhead of correct rounding could be made negli-
gible. However, the worst-case overhead was still a factor
1000 or more. It is shown here that, with current processor
technology, this worst-case overhead can be kept within a
factor of 2 to 10 of current best libms. This low overhead
has very positive consequences on the techniques for imple-
menting and proving correctly rounded functions, which are
also studied. These results lift the last technical obstacles to
a generalisation of (at least some) correctly rounded double
precision elementary functions.

1 Introduction

1.1 Correct rounding and elementary functions

The IEEE-754 standard for floating-point arithmetic [3]
defines the usual floating-point formats (single and double
precision) and specifies precisely the behaviour of the basic
operators +,−,×,÷ and √ . The standard defines four
rounding modes (to the nearest, towards +∞, towards −∞
and towards 0) and demands that these operators return the
correctly rounded result according to the selected rounding
mode: the result should be as if the calculation had been
performed in infinite precision, and then rounded.

The adoption and widespread use of the IEEE-754 stan-
dard have increased the numerical quality of, and confi-
dence in floating-point code. In particular, it has improved
portability of such code and allowed construction of proofs
of numerical behaviour. Directed rounding modes (towards
+∞, −∞ and 0) are also the key to enable efficient interval
arithmetic [20, 13].

However, the IEEE-754 standard specifies nothing for el-
ementary functions, which limits these advances to code ex-
cluding such functions. Indeed, the mathematical libraries
(libm) provided by operating systems do not guarantee
correct rounding. Older libms give no guarantee at all,
but all the recent ones return a result with an error smaller
than one unit in the last place (ulp) and with a high prob-
ability of correct rounding. We will refer to such libraries
as accurate-faithful. Such functions are usually computed
using fast table-based methods [10, 11, 23], see the books
by Muller [22] or Markstein [18] for recent surveys on the
subject.

1.2 The Table Maker’s Dilemma

The main reason why no standard imposes correct round-
ing of elementary functions is the following. In most cases,
the image ŷ of a floating-point number x by an elementary
function f is not a floating point number, and can therefore
not be represented exactly in standard numeration systems.
The correctly rounded result will be the floating-point num-
ber that is closest to this mathematical value (or immedi-
ately above or immediately below, depending on the round-
ing mode). A computer will evaluate an approximation y
to the real number ŷ with precision ε, meaning that the real
value ŷ belongs to the interval [y(1 − ε), y(1 + ε)]. The
dilemma (named in reference to the early builders of loga-
rithm tables) occurs when this information is not enough to
decide correct rounding. For instance, if [y(1−ε), y(1+ε)]
contains the middle of two consecutive floating-point num-
bers, it is impossible to decide which of these two numbers
is the correctly rounded to the nearest of ŷ. In such cases,
current libms return one of the two surrounding numbers.
From a numerical point of view, both are almost equally
good – or equally bad – approximations to ŷ, since ŷ is very
close to their middle. However it means that for such ar-
guments, the results returned by two different libms may
differ by one ulp.

A technique for computing the correctly rounded value,
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published by Ziv [24] and implemented in the pioneering
IBM Accurate Portable Mathlib [17] (or libultim), is to
improve the precision ε of the approximation until the cor-
rectly rounded value can be decided. Given a function f
and an argument x, a first, quick approximation y1 to the
value of f(x) is evaluated, with accuracy ε1. Knowing ε1,
it is possible to decide if it is possible to round y1 correctly,
or if more precision is required, in which case the computa-
tion is restarted using a slower approximation of precision
ε2 better than ε1, and so on. This approach leads to good
average performance, as the slower steps are rarely taken.

1.3 Improving on Ziv’s approach

However there was until recently no practical bound on
the termination time of Ziv’s iteration. It may be proven to
terminate for most transcendental functions, but the actual
maximal precision required in the worst case is unknown.
According to a statistical arguments by Gal [11, 22], and
assuming the implementation can be proven correct (which
is a huge problem in itself), the libultim approach pro-
vides correct rounding with probability higher than 1 −
2−500, which we call astronomical confidence in the fol-
lowing. Note however that there was no attempt to prove
the correct rounding property for this implementation.

The need for arbitrary multiple precision has also a cost
in terms of performance: In libultim, the measured
worst-case execution time is indeed three orders of mag-
nitude higher than that of accurate-faithful libms. This
might prevent using this method in critical application. A
related problem is memory requirement, which is, for the
same reason, unbounded in theory, and much higher than
usual libms in practice.

Finally, this library still lacks the directed rounding
modes, which might be the most useful. Indeed, cor-
rect rounding provides a precision improvement over an
accurate-faithfullibm of only a fraction of an ulp in round-
to-nearest mode. This may be felt of little practical signifi-
cance. However, the three other rounding modes are needed
to guarantee intervals in interval arithmetic. Without correct
rounding in these directed rounding modes, interval arith-
metic may loose up to one ulp of precision.

The goal of the crlibm project (at http://
lipforge.ens-lyon.fr/projects/crlibm/) is
therefore to design a mathematical library which is

• portable to any system implementing the ISO-C99 and
IEEE-754 standards,

• correctly rounded in the four rounding modes,

• proven, both theoretically and in the implementation,

• and reasonably efficient in terms of performance (both
average and worst-case) and resource usage.

The longer-term goal of this research is to enable the
standardisation of correct rounding1 for elementary func-
tions [8].

1.4 Contributions of this article

This article presents recent advances towards this goal,
supported by experimental results.

Section 2 recalls a range of techniques used for cor-
rectly rounding an elementary function in the portable
crlibm library. Section 3 then relaxes the condition
of portability to study the impact of specific processor
features such as double-extended precision and hardware
fused multiply-and-add. This raises practical questions,
which Section 4 tries to answer by implementing two func-
tions (arctan and exp) on two processor families which
support double-extended precision (Pentium and Itanium).
These implementations have worst-case execution times
respectively less than 3× and 8× the time of the best
available accurate-faithful implementation (an improve-
ment over libultim’s 1000×), all other things (average
time, code size and memory consumption) being similar
or improved. This has an important impact on the design
cost of writing a proven, correctly rounded implementation,
which is discussed in Section 5 along with other implemen-
tation considerations.

2 The crlibm approach

Ziv’s Ultimate Mathematical Library is entirely based on
IEEE-754-compliant double-precision FP arithmetic: The
first few steps compute an approximation to the function as
a the sum of two double-precision number (referred to as
a double-double in the following). Subsequent, more accu-
rate steps use a FP-based multiple-precision package which
may provide up to 800 bits of precision, hence the astro-
nomical confidence.

2.1 Tight worst cases for correct rounding

A first practical improvement over Ziv’s approach de-
rives from the availability of tight bounds on the worst-case
accuracy required to compute many elementary functions,
computed by Lefèvre and Muller [15] using ad-hoc algo-
rithms. Some functions are completely covered (most no-
tably exponential and logarithm in radix e, 2 and 10, the hy-
perbolic sine and cosine, and their inverses), some are still

1Note that IBM is no longer supporting the libultim project, but
Sun Microsystems has recently released its own correctly-rounded library,
called libmcr, which also addresses the main weaknesses of libultim
but is currently much slower. Therefore there is in 2005 a choice of three
correctly rounded libraries for double-precision, plus the correctly-rounded
multiple-precision package MPFR [21]

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05) 

1063-6889/05 $20.00 © 2005 IEEE 



being processed and should be covered within a few years.
However, some functions (most notably the trigonometric
functions and some special functions) are out of reach of
current methods, although the domain for which current al-
gorithms work is the most practically useful. For instance,
the near-term goal for the trigonometric functions is to com-
pute their worst cases for a few 2π periods around zero.

Knowing the worst case required accuracy for a function,
it is possible to tailor Ziv’s approach to match it: crlibm
implements only two steps of Ziv’s algorithm, the second
one being accurate enough to cover the worst case required
accuracy. This is not only more efficient, it also makes it
much easier to prove that an implementation actually re-
turns the correctly rounded result. The crlibm distribu-
tion includes a detailed description of each implementation,
including an attempt at such a proof. This proof mostly con-
sists in computing a tight error bound on the overall error of
the first step, as explained below.

2.2 Portability

The mainstream crlibm implementation intends to be
portable to most systems, assuming only C99 compliance
and the availability of IEEE-754-compliant format and op-
erations. Therefore its first step computes a result as a dou-
ble double-precision number yh + yl. Its second step uses
an ad-hoc, integer-based multiple-precision library called
scslib [7].

2.3 Rounding tests and precision/performance
tradeoffs

The approximation yh + yl computed in the first step is
used to decide if the second step needs to be launched. For
rounding to the nearest, the following test (also present in
libultim) is used:
if(yh == (yh + (yl*e)) ) return yh;
else /* launch accurate phase */

Here we use the C syntax (== is the equality comparison
operator), and e is a double-precision number computed out
of the overall relative error ε of the first step as e ≈ 1+254ε.
The exact value of e, the validity conditions of this test, and
the proof that it ensures correct rounding, are detailed in
the documentation of crlibm [1]. Similar tests are also
given for directed rounding modes, they are conceptually
simpler, therefore we concentrate in the sequel on round to
the nearest.

The rounding test here depends on a constant e which
is computed out of the overall relative error bound. This
gives an hint at the performance tradeoff one has to manage
when designing a correctly-rounded function: The average
evaluation time will be

Tavg = T1 + p2T2 (1)

where T1 and T2 are the execution time of the first and sec-
ond phase respectively (with T2 ≈ 100T1 in crlibm), and
p2 is the probability of launching the second phase (typi-
cally we aim at p2 ≈ 1/1000 so that the average cost of the
second step is less than 1/10.

The value of e in the test implies that p2 is almost pro-
portional to ε. Therefore, to minimise the average time, we
have to

• balance T1 and p2: This is a performance/precision
tradeoff (the faster the first step, the less accurate)

• and compute a tight bound on the overall error ε.

Computing this tight bound is the most time-consuming
part in the design of a correctly-rounded elementary func-
tion. The proof of the correct rounding property only needs
a proven bound, but a loose bound will mean a larger p2

than strictly required, which directly impacts average per-
formance. Compare Tavg with p2 = 1/1000 or p2 = 1/500
for T2 = 100T1, for instance. As a consequence, when
there are multiple computation paths in the algorithm, it
makes sense to have a different rounding constant e on these
different paths [6].

3 Beyond crlibm

3.1 Modern Floating-Point Units

Most recent processors offer specific hardware features
which cannot yet be used in a portable way. For our pur-
pose, the most significant of these features are:

• Double-extended precision with 64 bits of mantissa
instead of 53 in double-precision, as specified in the
IA-32 and IA-64 instruction sets (implemented by the
Pentium-compatible and Itanium processors respec-
tively). Note that the IEEE-754 standard gives a more
general definition of double-extended precision, but it
has not yet been translated as a usable, standard combi-
nation of processor/compiler/system. Therefore, in the
sequel, the meaning of the phrase “double extended”
will be that of the IA-32 specification (which is also
included in the IA-64 specification).

• Fused floating-point multiply-and-add operators
(FMA), as available in the Power/PowerPC and
Itanium architectures. These operators improve
performance (as they combine two operations in one
instruction) but also accuracy, as only one rounding
is performed. Most significant to us is that an FMA
reduces the cost of Dekker algorithm (which computes
the exact product of two FP numbers as the sum of
two FP numbers [9, 14]) from 17 operations down to
only 2, with a corresponding reduction of the cost of
the double-double multiplication.
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• A low overhead of changing the rounding mode or
working precision, thanks to the availability of several
floating-point status registers (FPSR) selected on an in-
struction basis. This is a feature of the Itanium proces-
sor family. Comparatively, other processors have only
one FPSR, and changing it (e.g. to change the working
precision) typically requires flushing the FP pipelines.

These features are being used for the standard evaluation
of elementary functions [16], and some were actually de-
signed for this purpose [19]. We now discuss their impact
on the evaluation of a double-precision correctly rounded
elementary function.

3.2 Correct rounding using double-extended
arithmetic

This section summarises a recent study of the impact of
using double-extended arithmetic for computing functions
correctly rounded to double-precision [4].

3.2.1 First step using double-extended

A first obvious idea is to compute the first step in double-
extended precision, which removes the need for double-
double arithmetic in this step. This yields some perfor-
mance improvement, typically up to 50%.

However, on architectures implementing the IA-32 in-
struction set, this approach requires changing the rounding
mode of the processor, at least when entering the function
(to convert the input x to a double-extended) and when leav-
ing it (to return a double). This takes more than 20 cycles on
the Pentium-4 processor in our experiments, and takes back
a lot of the interest of using double-extended precision. On
the Itanium processors, however, there is no such penalty.

3.2.2 Second step in double-double-extended

The performance that double-extended precision can bring
to the second step is more dramatic. This format provides
64 bits of mantissa, so that the sum of two double-extended
numbers (a double-double-extended) will hold 128 bits of
precision. Unfortunately, Muller and Lefèvre found that for
many functions (including exp, cos and tan), correct round-
ing sometimes required an intermediate accuracy higher
than 2−130 (up to 2−157 for the exponential): It is there-
fore not possible to compute an intermediate result to such
relative accuracy as the sum of two double-extended num-
bers. As this concerns relatively few values, the solution
previously considered was to tabulate these values and the
expected output. A more careful study, however, shows that
it will not be necessary.

The central remark in [4] is that such bad cases always
happen for very small values of the input number x. In

such cases, a Taylor approximation provides a straightfor-
ward method for approximating the function as the sum of
three double-extended numbers2: More specifically, an ap-
proximation of the function f as 1+p(x) or x+p(x), where
p(x) is computed as a double-double-extended ph +pl, will
hold the required relative accuracy [4]. Table 1 illustrates
this situation for the two functions studied in this paper.

Exploiting the fact that the most significant term of this
sum (1 or x) is representable as a double-precision number,
it is then possible to recover the correct rounding of 1+ph+
pl (or x + ph + pl) to double precision, using a sequence of
5 double-extended additions [4].

Function Interval of x WCA on f WCA on p

ex [2−54, 2−44] 2−158 2−115

[2−44, 2−30] 2−138 2−109

|x| ≥ 2−30 2−113

arctan(x) [2−25, 2−18] 2−126 2−109

[2−18, 2] 2−113

Table 1. Worst-case accuracy (WCA) required
for double-precision correct rounding of ex-
ponential and arctangent.

3.2.3 Practical questions

This work left open a few practical questions relative to the
implementation of a correctly rounded functions [4].

1. What is the relative performance of the second step and
the first step? What is the cost of the rounding test?

2. What implication does this have on the precision/per-
formance tradeoff ?

3. Can we reuse intermediate results from the first step
in the second one? Can we design algorithms sharing
tables and intermediate values, which are efficient both
for the first step and the second step ?

The experiments described in the next section were car-
ried out to study these questions. The last section will draw
more conclusions.

2This is not a coincidence: These worst cases are indeed highly improb-
able according to Gal’s statistical argument [11, 22]. This argument pre-
dicts that the worst case accuracy for a double-precision correctly rounded
function is expected at 2−53−64 = 2−117, and that a worst case ac-
curacy of 2−157 has probability 2−40 of happening. The fact that such
worse-than-expected cases indeed happen is a direct consequence of the
availability of a Taylor approximation of the function, which breaks the
assumptions of randomness in Gal’s reasoning.
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4 Experiments and results

For these experiments, we chose the exponential func-
tion because it is the easiest to implement, and the most
often cited in the literature about elementary function im-
plementation. Conversely, we chose the arctangent as be-
ing comparably expensive to implement: It is approximated
by polynomials of comparatively larger degree, and its ar-
gument reduction requires either very large tables, or a di-
vision. Some other functions (trigonometric and special)
present specific difficulties but they are left out of this study
because their worst-case required accuracy is unknown so
far.

In all the tests, input random numbers were chosen in
a range which avoids the (less meaningful) special cases.
We compare our results to vendor libms which are highly
optimised and accurate-faithful.

4.1 Rounding test

The rounding test presented in 2.3 assumes double-
precision arithmetic: It has to be adapted if the first step
now returns a double-extended number yde. The straight-
forward idea is to build yh = RoundToDouble(yde) and
yl = yde − yh (which will be an exact operation), then use
the test of 2.3 on yh and yl

3

However, on both architectures, a test using only in-
teger arithmetic turns out to be more efficient (about 15
cycles faster on Pentium architectures, and 3 on the Ita-
nium 2). This test first casts the mantissa of yde to
a 64-bit integer, then considers the bits after the 53rd:
A yde difficult to round to the nearest is of the form:

m bits
︷ ︸︸ ︷

1.xxx...xx
︸ ︷︷ ︸

53 bits

011...11xxx... or:

m bits
︷ ︸︸ ︷

1.xxx...xx
︸ ︷︷ ︸

53 bits

100...00xxx...,

where m is deduced from the bound ε on the overall rel-
ative error. Therefore the test resumes to integer masks,
shifts and logical operations testing these two cases. The
same holds for directed rounding modes.

4.2 Arctangent on the Pentium processor

Here we chose an algorithm which allows both steps to
share special case handling, range reduction, and some in-
termediate computations. This algorithm is described in [5].

3When targeting the Itanium processors, the cost is altogether 4 opera-
tions and about 16 cycles, thanks to the fact that the precision and rounding
mode are controlled on an operation basis, with no overhead. When tar-
geting IA-32 processors, this option could involve several costly changes
of the precision (to double to compute yh, then back to double-extended
to compute yl, then back to double to compute the test, then possibly back
to double-extended for the second step). Fortunately the first conversion of
yde to the nearest double may be performed by the memory unit, without
changing the precision of the FPU.

Note that the libultim implementation uses a table of
about 40KB to perform an argument reduction without divi-
sion. Our versions, in contrast, use less than 4KB of tables,
at the expense of a division.

Table 2 show some absolute timings, in cycles. All these
timings were measured under Linux, using the gcc-3.3 com-
piler4. They include the cost of a function call, which is
about 25 cycles. In other words, to get the time actually
spent computing the function, one should subtract 25 to
these numbers. It should also be noted that the cost of
changing the floating-point status register twice is about 40
cycles.

arctan Xeon avg time max time

GNU MPFR 438742 3955724

IBM’s libultim 343 228904

crlibm (portable) 662 29076

crlibm (using DE) 350 1680

crlibm (DE, first step alone) 306 564

default libm 339 388

Table 2. Arctangent timings in cycles on a
Pentium Xeon. The implementations in italic
are not correctly rounded.

The worst case time here is less than 6 times the aver-
age time of the best current accurate-faithful. By returning
a value before the rounding test, we can measure the incom-
pressible time cost of correct rounding – see line “crlibm
(DE, first step alone)”. Here it is 350-306=44 cycles, or,
between 10 and 20% of the best current accurate-faithful
implementation.

The main conclusion of this experiment is that sharing
tables and values between the first and second step doesn’t
incur a major performance penalty.

4.3 Arctangent on the Itanium

This first Itanium experiment uses the same algorithm
as previously (and exactly the same 4KB tables), but tries
to perform additional optimisations by using FMAs wher-
ever possible, especially to speed up double-double arith-
metic (In the first step, we also replaced the library double-
extended division with a less accurate one to save a few
cycles, and used a Estrin parallel implementation of the
polynomial recurrence [22]). Such low-level optimisations

4The source code for these experiments (and more) is avail-
able in the crlibm CVS repository from http://lipforge.
ens-lyon.fr/projects/crlibm/, files arctan-pentium.c,
arctan-itanium.c and exp-itanium.c.
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cannot be done efficiently using current gcc (3.3), because
inserting assembly instructions in C code leads to poor
scheduling. Therefore we used the Intel icc8.1 compiler
for Linux to compile the arctangent. This compiler sup-
ports a range of intrinsics giving a high-level access to most
assembly-language instructions, including FMAs. Table 3
shows some absolute timings, in cycles. These numbers in-
clude the cost of a function call, which is about 20 cycles.

arctan Itanium-2 avg time max time

GNU MPFR 243,460 1,999,472

IBM’s libultim 195 139,091

crlibm (portable) 441 44700

crlibm (using DE) 103 537

crlibm (DE, first step alone) 94 130

default libm 83 85

Table 3. Arctangent timings in cycles on an
Itanium-2 processor. The implementations in
italic are not correctly rounded.

The improvement over crlibm-portable is more dramatic
than for the Pentium, because of the FMA, and because us-
ing double-extended doesn’t incur the cost of flushing the
pipeline on the Itanium as already explained.

Here we measured that the incompressible cost of the
correct rounding test is about 9 cycles. It is therefore the
main contribution to the average overhead of correct round-
ing. Again it is about 15% of the best current accurate-
faithful implementation.

The worst case time here is again 6 times the average
time of the best current accurate-faithful. This is some-
how disappointing, because the FMA, speeding up double-
double multiplication by a factor 8, should bring a propor-
tionally larger improvement to the second step than to the
first step. We believe there is room for improvement here.
Note for instance that Hewlett Packard’s Markstein [19] de-
scribed a quad-precision arctangent in HP-UX accurate to
0.5001 ulp (which should be enough to derive a second step)
within 321 cycles [19]. It uses a sequence of only 5 FMAs
for computing one double-double Horner steps, where our
code needs 15 FMAs.

4.4 Exponential on the Itanium

In this experiment, a second step was first derived from
an Intel quad-precision routine, and then a first step was de-
rived from the second step, using the same range reduction.
An overview of the algorithm used is given in [5]. Note
that the Intel oroginal code uses optimised double-double-

extended FMAs similar to those mentionned in the previous
paragraph. Also note that this is a relatively table-hungry al-
gorithm (8KB), whereas the standard libm uses less than
1KB.

We timed the first step alone (to check it matches the
performance of the standard libm), the second step alone
(since it makes a self-sufficient correctly-rounded exp), and
the two-step algorithm. We also timed the Linux standard
libm (derived from Intel open-source optimised libm),
and the portable version in crlibm. Table 4 shows these
timings.

exp Itanium-2 avg time max time

IBM’s libultim 136 1,520,277

GNU MPFR 17,603 43,352

crlibm (portable) 298 4,601

crlibm (using DE, two steps) 67 114

crlibm (DE, second step alone) 92 92

crlibm (DE, first step alone) 61 70

default libm 63 63

Table 4. Exp timings in cycles on an Itanium-2
processor. The implementations in italic are
not correctly rounded.

Here the cost of the function call is about one third the
cost of evaluating the function itself. This raises a new ques-
tion: Will a two-step correctly rounded function be inlined
as efficiently as a (more straightline) accurate-faithful func-
tion? However studying this question is out of the scope of
this paper.

Adding the first step to the code of the second step meant
adding 13 lines only, since we reuse the special cases han-
dling and the range reduction. These 13 lines take 114-92 =
22 cycles for a polynomial evaluation, a reconstruction, and
the rounding test which is statically predicted not to go for
the second step (and does in this case).

The question raised here is wether it is worth having a
two-step algorithm. From another point of view, it might
be more useful to write a two-step algorithm which has a
slower second step and uses a smaller table (a 4KB exp
could be written with a less-than-10x worst case).

5 Designing the post-ultimate libm

The immediate conclusion of the previous section is that
using double-extended arithmetic, it is possible to design
a double-precision correctly-rounded function whose worst
case is within 10x of the best accurate-faithful, and whose
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average performance is only degraded by the incompress-
ible cost of the rounding test.

We now discuss the effort involved in designing such a
function.

5.1 Reuse and share

The first idea is to reuse existing, well optimised algo-
rithms. This is obvious for the first step, which can be
derived from a standard libm implementation as soon as
this implementation is faithful. Recent vendor libraries now
return the correct result for more than 95% of the inputs
[12, 16]. Deriving a first step from such a function involves

• adding a rounding test, which is easy, and

• proving a tight bound on the overall error, which may
be difficult (of course, the more clever and sophisti-
cated the algorithm, the more difficult the proof).

Recently, Andrey Naraikin and Alexey Ershov (from In-
tel Nizhniy Novgorod Lab) suggested that the second step
could be similarly derived from a quad-precision imple-
mentation (this led to the Itanium exponential experiment
above). Here, quad-precision means a 128-bit format with
112 bits of mantissa. This mantissa size wouldn’t be enough
to hold the precision required for correct rounding (usu-
ally more than 117 bits), however the functions are actually
computed with a higher relative accuracy (typically using
double-double-extended arithmetic) to keep the error very
close to an half-ulp [19]. If this intermediate accuracy is
higher than the worst-case required accuracy, such a quad
accurate-faithful implementation can be easily retargeted
as a correctly-rounded double implementation by changing
only the last few operations.

As a conclusion, should a vendor commit itself to
correctly-rounded double-precision functions, a lot of the
work would be shared between double-precision and first
step (at least the handling of exceptional cases), and be-
tween quad-precision and second step. Again, the real de-
sign cost would be in proving error bounds systematically.

5.2 Making proofs easy

Now we discuss the design cost of computing the error
bounds. For the second step, it makes sense to have a large
overkill of accuracy in the algorithm if it makes the proof
simpler (typically having a coarse estimate on each round-
ing error): The average performance impact will be neg-
ligible, and the worst-case impact remains acceptable. In
crlibm for instance, our ad-hoc multiple-precision library
is much too accurate (to 200 bits) because it gives much
freedom in designing the algorithms and proving them.
More specifically, it allows to concentrate on approxima-
tion errors, because coarse bounds on rounding errors will

suffice. This is still the case for a double-double-extended
second step: The actual worst cases accuracies required are
about 2−117, and rounding to double-double-extended en-
tails error smaller than 2−128. Even taking into account that
these rounding errors will accumulate, a coarse majoration
will be adequate.

Now for the first step, we have to minimise p2 and this
means computing a tight bound on the error. However, an
important consequence of the 10x factor and of a double-
extended first step is that we may now be much lazier in this
computation, and for the same reason. The second step will
now be within a factor 10 of the first step, so T2 < 10T1.
A coarse computation of the rounding errors in the double-
extended first step will typically sum up to a term smaller
than ε = 2−63, which would translate to p2 ≈ 1/1000.
The contribution of this lazy error bound to the average time
is therefore about T1/100, which is negligible. Therefore,
here also, we may concentrate on the approximation errors,
which are simpler to manage.

We therefore find out that the cost of implementing a cor-
rectly rounded function using double-extended arithmetic
is much reduced when compared to the cost in portable
crlibm, where we had to compute a tight error bound on
the first step (because being lazy had an impact on perfor-
mance), and write the second step using scslib and its
proof, sharing only little of this work with the first step.

As a final remark, it may even happen that a correctly
rounded implementation provides faster average perfor-
mance than an accurate-faithful implementation. The idea
here is to compensate the cost of the rounding test by a
faster first step, deliberately less accurate than the accurate-
faithful version, because misrounds will be caught up and
corrected by the second step anyway.

6 Conclusions

It is known since Ziv’s work that it is possible to write el-
ementary functions which are correctly rounded with astro-
nomical probability, with a very small average performance
overhead over the current best implementation.

This paper shows, with experimental support, that
double-extended arithmetic allows to write functions which
are proven correctly rounded to double precision, with a
worst case overhead of less than a factor ten, and with pre-
dictable and acceptable memory consumption. It also ex-
plains how to write such efficient correctly rounded func-
tions with little effort.

We believe that those overheads are comparable to those
imposed on the hardware by IEEE-754 compliance, and that
the benefits of correct rounding are worth this minor perfor-
mance loss, as it was for the four operations.

Our aim is now to see a gradual generalisation of
correctly-rounded functions in mainstream systems (cur-
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rently, only Linux incorporates a derivative of Ziv’s library,
and it is actually enabled only if double-precision is the de-
fault in the system [2]). For the functions for which the
worst-case accuracy required is known (most notably the
exp and log family), there is no longer any technical obsta-
cle preventing this generalisation. For other functions (most
notably the trigonometric functions), we will offer proven
correct rounding on a small interval only, and on the rest of
the function’s range, astronomical confidence only. Such a
multilevel approach may even be formalised as a standard
[8].

In addition to actually writing complete post-ultimate
libms, there are several research directions to explore.
First, the proof framework of crlibm needs to be im-
proved. Currently, a proof is a mixture of source code, La-
TeX and Maple which provides an extensive and open doc-
umentation of each function, but doesn’t necessarily inspire
confidence as a proof. Then, generic support for FMAs and
double-extended precision with compile-time macros could
also be added to crlibm. Here the difficulty is to man-
age the error computation in the combination of possible
cases. And for processors without double-extended sup-
port (and for computing double-extended correctly-rounded
functions), a combination of accurate tables [11] and a lim-
ited amount of triple-double computation should be ex-
plored.
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