
Table-based polynomials
for fast hardware function evaluation

Jérémie Detrey, Florent de Dinechin
LIP, École Normale Supérieure de Lyon

46 allée d’Italie
69364 Lyon cedex 07, France

E-mail: {Jeremie.Detrey, Florent.de.Dinechin}@ens-lyon.fr

Abstract

Many general table-based methods for the evaluation in
hardware of elementary functions have been published. The
bipartite and multipartite methods implement a first-order
approximation of the function using only table lookups
and additions. Recently, a single-multiplier second-order
method of similar inspiration has also been published. This
paper extends such methods to approximations of arbi-
trary order, using adders, small multipliers, and very small
ad-hoc powering units. We obtain implementations that
are both smaller and faster than previously published ap-
proaches.

This paper also deals with the FPGA implementation
of such methods. Previous work have consistently shown
that increasing the approximation degree lead to not only
smaller but also faster designs, as the reduction of the table
size meant a reduction of its lookup time, which compen-
sated for the addition and multiplication time. The experi-
ments in this paper suggest that this still holds when going
from order 2 to order 3, but no longer when using higher-
order approximations, where a tradeoff appears.

1. Introduction

Many applications require the evaluation in hardware of
a numerical function: Trigonometric functions for DSP al-
gorithms, reciprocal and inverse square root for providing
seed values to the Newton-Raphson or Goldschmidt algo-
rithms for division and square root [10, 3, 2, 12], exponen-
tial and logarithm for some scientific computing applica-
tions or for the logarithm number system (LNS) [5], etc.
When a compound function (such as log2(1 + 2x) for in-
stance) is needed, it is often more efficient to implement it
as one operator instead of a combination of successive op-
erators for each function (here an exponential, an addition
and a logarithm).

Specific methods exist for implementing most of the ele-
mentary functions. For example, the CORDIC algorithm
and its derivatives implement trigonometric and exp/log

functions. With some work, this is probably also true of
most useful compound function (see for example the litera-
ture about LNS arithmetic for methods dedicated to evaluat-
ing log2(1 + 2x)). However these specific methods usually
have their constraints. For instance, the CORDIC derivative
leads to small but slow operators. Besides they may require
a lot of non-reusable work to get a functional implementa-
tion.

An alternative is to use a general implementation method
which may be tailored easily to any function. The simplest
of these methods is, of course, to tabulate all the values that
the function takes in the needed discrete range. The draw-
back is then the hardware cost, as the size of the table in-
creases exponentially with the size (in bits) of its input ar-
gument.

One may reduce this cost by using polynomial or piece-
wise polynomial approximations of the function, at the ex-
pense of one or more multipliers which increase the latency.
See for example [3, 15, 9] for first-order (linear) approxi-
mations, [7, 13, 1] for order 2, and [8] for order 3, among
others. The present paper may be considered as an improve-
ment on these previous approaches: It generalizes them and
minimizes the negative impact of the multipliers by a very
careful examination of the architectural tradeoffs with re-
spect to size, latency and precision.

This paper may also be considered as an extension of
previous work on table-and-addition methods [2, 14, 11, 4]
which use a first-order Taylor approximation of the func-
tion. In these methods, the product terms are themselves
tabulated, leading to an architecture composed of table
lookups and additions, and therefore very fast. Recently, we
proposed a method allowing a second order approximation
using only one small multiplier [6]. Here “small” means
that its input and output sizes are much smaller than the
input and output precision of the function to be evaluated.
Both methods can be applied to any function, elementary or
compound, that fulfills basic continuity requirements. This
means that they lend themselves to the implementation of
automatic operator generators: We have programs that take
an arbitrary function with an input and output precision, and
compute the optimal implementation of this function as a

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

hardware operator, according to some predefined optimal-
ity criterion. The size and speed of the operator depends
on the input and output precision, but also on the function.
These generators output circuit descriptions in the VHDL
language, suitable for synthesis.

These methods may target Application-Specific Inte-
grated Circuits (ASICs) or Field-Programmable Gate Ar-
rays (FPGAs). The metrics of ASICs and FPGAs are very
different: Tables may be implemented in various ways in
both worlds, the same holds for arithmetic operators, and
the relative size and speed of arithmetic and tables are dif-
ferent. For practical reasons we mostly studied FPGA im-
plementation. In both cases, an operator generator will try
and synthesize a few candidates to optimality before giving
a definitive result.

With the FPGA metrics, an interesting result of previous
work on table-based methods was that a multipartite imple-
mentation was a win-win situation compared to a simple
table: Although the former has one table lookup and sev-
eral additions on the critical path, it is faster than the latter
which has only a table lookup. The reason is simply that the
tables are so much reduced in the multipartite implementa-
tion that the lookups are much faster, which compensates
the addition time. More surprising was the fact that going to
second-order approximation and to architectures with mul-
tipliers on the critical path was again a win-win move [6].
This is a motivation to study higher-order methods in this
paper. The other motivation is, of course, to obtain better
implementations of hardware function evaluators.

This paper first presents in Section 2 a general frame-
work for the hardware implementation of arbitrary polyno-
mials. Methods using the Horner evaluation scheme have
been studied, but their iterative nature leads to implementa-
tions with long latency. The approach studied here is to use
a developed form of the polynomial, where each monomial
is evaluated in parallel. Each monomial may then be imple-
mented by multipliers and powering units, or table-based
methods, or a combination of both. The philosophy is here
to carry out a careful error computation, not only to guaran-
tee faithful correct rounding of the result, but also to build
blocks which are never more accurate than strictly needed,
as exposed in Section 3. The architectures obtained are de-
picted in Section 4. A detailed error analysis is presented
in Section 5. It gives explicit formulae for the various er-
ror terms, which can be used to implement rapid design ex-
ploration heuristics.Last, speed and area estimations of the
operators are studied in Section 6 and compared to results
obtained using other methods.

2. Presentation of the method
2.1. Function evaluation

The problem of hardware function evaluation can be ex-
pressed as follows: Given a function f defined on a finite

input interval I ⊂ R, and two positive integers wI and
wO which specify the length in bits of the input and out-
put words respectively, build a hardware circuit which will
compute an approximation f̃ of the function f on the inter-
val I. Without loss of generality, we can take I = [0; 1)
and scale f such as f(I) = [0; 1). Therefore, we will write
the input word X as X = .x1x2 . . . xwI , and similarly the
output word Y = f̃(X) = .y1y2 . . . ywO . We also want
our evaluation operator to guarantee the accuracy of the re-
sult. As rounding to nearest is impractical because of the
table-maker’s dilemma [10], we choose to ensure faithful
rounding: ε = maxX∈I |f(X) − f̃(X)| < 2−wO .

2.2. Piecewise polynomial approximation

The method we present here is based on a piecewise
polynomial approximation: The input interval I = [0; 1) is
regularly split in several sub-intervals Ii = [i ·2−α; (i+1) ·
2−α). These sub-intervals are addressed by the α most sig-
nificant bits of X , and we approximate f on each of them by
a degree n polynomial Pi. Each polynomial Pi is computed
using a minimax scheme [10], and therefore minimizes the
maximum error entailed by this approximation.

We partition the input interval into sub-intervals of the
same size. In [9] Lee et al. have developed a method for
hierarchical segmentation of the input interval which im-
proves the quality of the operators for some functions. Our
work could easily be adapted to such a partition.

As the sub-intervals are addressed by α bits from X , we
can split the input word in two sub-words A = .a1a2 . . . aα

and B = .b1b2 . . . bβ of length α and β = wI − α respec-
tively. This gives: X = A + B · 2−α.

Thus, to compute f̃(X), we need to evaluate the polyno-
mial PA(B · 2−α), which we will write P (A, B · 2−α) to
simplify the notations. We expand the polynomial to obtain:

P (A, B · 2−α) = Kn(A) · Bn · 2−nα + . . .
+K1(A) · B · 2−α + K0(A). (1)

The method presented in this article evaluates separately
each term (or monomial) Tk(A, B) = Kk(A)·Bk ·2−kα for
k ranging from 0 to n. A final summation of all the terms
then effectively computes the approximated function f̃(X).

2.3. Computing the terms

There are several methods to evaluate a term Tk(A, B),
and we chose to implement two of them in our work, as
described in the following paragraphs.

2.3.1. Simple ROM

The first and the simplest method is to extensively com-
pute all the possible values for the term and tabulate these
values in a table addressed by A and B, or only by A for
T0(A, B) = K0(A).

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

2.3.2. Power-and-multiply

A second method consists in first computing Bk by using
a powering unit, and then multiplying the result by Kk(A).

Yet several implementation choices remain. The power-
ing unit can either be a simple table addressed by B where
all the possible values of Bk are stored, or a specialized ad-
hoc unit which first generates then adds all the partial prod-
ucts required to compute Bk (such as in [13] for k = 2).

Moreover, the product of Bk by Kk(A) can be spread
on several multipliers by splitting the word Bk =
.p1p2 . . . pkβ , which is of length kβ, in mk sub-words Sk,j ,
as in the multipartite method [4]. Spreading the product will
allow us to optimize separately each multiplier as detailed
in Section 3.2.

We get Bk = Sk,1 +Sk,2 ·2−ρk,2 + . . .+Sk,m ·2−ρk,mk ,
where Sk,j = .pρk,j+1pρk,j+2 . . . pρk,j+σk,j

, for j ranging
from 1 to mk, is the sub-word of Bk starting at bit ρk,j

and of length σk,j . As it is a partition, we also have the
natural conditions on the ρk,j’s and the σk,j ’s: ρk,1 = 0,
ρk,j+1 = ρk,j + σk,j for 1 ≤ j < mk, and

∑mk

j=1 σk,j =
ρk,mk

+ σk,mk
= kβ.

We can therefore rewrite the k-th term as :

Tk(A, B) =




mk∑
j=1

Kk(A) · Sk,j · 2−ρk,j


 · 2−kα. (2)

Finally, another choice raised by this method is, for each
product Qk,j(A, Sk,j) = Kk(A) · Sk,j , whether to use a
table addressed by A and a multiplier, or a single but larger
table addressed by A and Sj . Here the mk:M first products
will be implemented with multipliers, whereas the mk:T =
mk − mk:M last ones will have their values tabulated. This
is motivated by the error analysis below.

2.4. Exploiting symmetry

A change of variable in Eq. 1 gives a new expression for
the polynomial approximation P (A, B · 2−α), such that all
the terms are symmetric with respect to the middle of the
sub-interval I(A): P (A, B · 2−α) = K ′

n(A) · (B − ∆)n ·
2−nα + . . . + K ′

1(A) · (B − ∆) · 2−α + K ′
0(A), where

∆ = 1
2 (1 − 2−β). This transformation allows us to use a

trick from Schulte and Stine [14] to compute the terms only
on one half of the sub-interval and deduce the values for the
other half by symmetry at the expense of a few XOR gates.

Remark : To avoid overloading too much the notations,
we will continue to write the terms Tk(A, B) = Kk(A) ·
Bk · 2−kα, even when symmetry is implied.

3. Decreasing accuracy

In this method so far, the only error is entailed by the
initial polynomial approximation of the function. However,

we can see from Eq. 1 that, because of the different power-
of-two factors, the terms do not have the same weight in the
final addition and thus some of them are computed with too
much accuracy when compared to others.

In order to simplify the tables, and consequently gain in
area and latency for our operator, we can therefore decrease
the accuracy of those terms that are relatively too accurate.

3.1. Terms as simple ROMs
When considering a term Tk(A, B) implemented as a ta-

ble addressed by A and B, the idea is to decrease the size of
the address word. Decreasing the size of A by using only its
αk most significant bits to address the table means that we
will use a same value of the coefficient Kk for 2α−αk con-
secutive intervals. Decreasing the size of B by using only
its βk most significant bits to address the table means that
less values will be computed for each interval.

We can therefore refine the splitting of the input word
and use only Ak = .a1a2 . . . aαk

and Bk = .b1b2 . . . bβk
to

address the table of term Tk(Ak, Bk).

3.2. Terms as power-and-multiply units
In this case, the first idea is also to decrease the size of

A and B. But here, as the product is spread over mk multi-
plications, we have mk:M tables addressed by A, and mk:T

tables addressed by A and Sk,j (with the notations of 2.3.2).
Once again, according to Eq. 2, those tables have different
relative accuracies due to the 2−ρk,j factors. We can there-
fore address them with sub-words of A of different sizes:
The table used by Qk,j(A, Sk,j) = Kk(A) · Sk,j will be
addressed with only the αk,j most significant bits of A.

Yet, from Eq. 2 we can see that the relative weight of
Qk,j decreases as j increases. This gives the following con-
straint on the αk,j ’s: ∀j, j′ ∈ [1; m], if j < j′ then αk,j ≥
αk,j′ . Moreover, we can also use Bk = .b1b2 . . . bβk

instead
of B.Thus, the length of Bk

k will be only kβk, which also
implies smaller Sk,j ’s. In fact, we can be even more gen-
eral and suppose that the powering unit will generate only
the λk most significant bits of Bk

k (with λk ≤ kβk).
This way, the Sk,j’s are much smaller, and consequently

so are the product (both multiplier-based and table-based)
units.

3.3. A few words about the ad-hoc powering units
If generating only λk bits of Bk

k is not a problem for
the table-based powering units, the ad-hoc powering units,
on the other hand, will entail a larger error if only the par-
tial products of weight greater than λk are computed then
added. To solve this problem without having the unit to
compute all the kβk bits of Bk

k , we introduce another pa-
rameter µk which specifies the minimal weight of the par-
tial products considered internally by the operator, before
truncating the result to λk bits.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

4. Architecture

The overall architecture of the operators designed by the
proposed method is quite simple, as it is directly derived
from Eq. 1: All the terms Tk are computed in parallel and
then added.

Still, a few points have to be detailed. First, it is ob-
vious that the order 0 term T0 does not depend on B, and
therefore will be implemented as a simple ROM. Concern-
ing the term Tn of degree n, one can notice that the ac-
curacy required for this term is very low, due to the 2−nα

factor. We can then decrease αn and βn to only a few bits,
and therefore implement also this term with a simple ROM.
The same argument sometimes holds for lower order terms
such as Tn−1. On the other hand, the other terms need to be
computed with a larger accuracy, and will usually be imple-
mented with slower but smaller power-and-multiply units.

4.1. Term as a simple ROM

The architecture for evaluating a term Tk using a simple
ROM is also quite straightforward. The most significant
bit b1 of the input word Bk selects if Bk is in the first or
the second half of the sub-interval I(A). A row of XOR
gates is used to compute the symmetric of Bk. The table
lookup is addressed by the αk bits of Ak, and the βk−1 bits
B′

k = b′2b
′
3 . . . b′βk

from the XOR gates. If k is odd, a last
row of XOR gates controlled by b1 computes if necessary
the opposite of the value given by the ROM. If k is even, we
do not need these XOR gates.

4.2. Term as a power-and-multiply unit

The architecture of a power-and-multiply unit is given in
Fig. 1. As for table-based terms, the most significant bit b1

of Bk controls a row of XOR gates used to take the symmet-
ric value of Bk. The resulting βk −1 bits B′

k = b′2b
′
3 . . . b′βk

are then given to the powering unit, which outputs the λk

most significant bits of B′k
k . This word is split in mk sub-

words. Each of these words Sk,j is then multiplied by
Kk(Ak,j), either using a normal multiplier or a lookup ta-
ble. In both cases, we again exploit the symmetry of the
product, and use some rows of XOR gates. Note that the
last row of XORs is controlled by both bi and pρk,j

when k
is odd.

4.3. Table-based powering unit

A table-based powering unit is simply a lookup table,
addressed by the βk − 1 bits of B′

k, which contains the λk

most significant bits of B′k
k .

4.4. Ad-hoc powering unit

The architecture of an ad-hoc powering unit is straight-
forward. The first part of the operator generates all the par-

xorxor

xor xor

xor

power

xor

xor

α β

Bk

b1

k

Ak,1

B′k
k

λk

Sk,1 Sk,2 . . .
p1

Sk,mk

Ak,2

pρk,2+1

Ak,1

Ak,mk

pρk,mk
+1

Kk(Ak,1) Kk(Ak,mk
)

·Sk,mk

(Ak,2)

Kk

Figure 1. Architecture of the term Tk imple-
mented as a power-and-multiply unit.

tial products that are required to compute the µk most sig-
nificant bits of B′k

k . Then, these partial products are added,
and finally the result is truncated to λk bits.

5. Error analysis
In this section we briefly describe how to keep track of all

the errors entailed by the presented method, and therefore
how to guarantee faithful rounding for the final result.

This method can be adapted to any error bound
εmax > 2−wO−1, but in this paper we only con-
sider the case of εmax = 2−wO . For readability
we do not detail all the equations involved in this er-
ror analysis. The interested reader will find all the
details in the reference implementation available from
http://www.ens-lyon.fr/LIP/Arenaire/.

5.1. Polynomial approximation: εpoly

The polynomial approximation of the function on each
sub-interval yields an error bounded by εpoly. The Remez
algorithm [10] that we use to compute the minimax polyno-
mials gives us the value of εpoly for each sub-interval I(A).

5.2. Decreasing accuracy: εmethod = εtab + εpow

5.2.1. Reducing table input size (εtab)

Reducing the number of bits used to address a table
means in fact using a constant value for several entries of
the table.

For instance, considering a term Tk(A, B) = Kk(A) ·
Bk · 2−kα implemented as a ROM, decreasing the word

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

length of A to αk bits means that the same value of the coef-
ficient Kk will be used for 2α−αk consecutive sub-intervals.
To minimize the error, we can use for this value Kk(Ak)
the average of the extremal values of Kk(A) for the sub-
intervals. The maximum error is thus half the distance be-
tween those extremal values. Similarly, reducing B to βk

bits means that a constant value of Bk will be used for
2β−βk successive values of B. Taking the average of the
extremal values of Bk also yields the minimum error.

Applying this technique to all the tables of the architec-
ture, it is possible to compute exactly the sum of these ap-
proximation errors, which we note εtab. Note that these are
errors of the ideal real values that the tables should hold,
before rounding which is considered below.

Remark: Although the symmetry trick allows us to use
only βk − 1 bits of B to address the table, it entails abso-
lutely no additional error.

5.2.2. Ad-hoc powering units (εpow)

Using only the βk most significant bits of B when com-
puting Bk produces a quantifiable error, as Bk = B −
.bβk+1bβk+2 . . . bβ · 2−βk and 0 ≤ .bβk+1bβk+2 . . . bβ < 1.
To center this error around 0, we add an implicit half-ulp
(unit in the last place) to Bk before computing Bk

k .
Moreover, the error made when reducing the number of

partial products taken into account in the computation of
Bk

k can also be bounded in advance, as we already know
the number and the weight of the partial products that are
ignored. We can then compute the sum s of those par-
tial products, as the error will be in the interval [0; s].
Adding s/2 to the sum of the partial products computed
by the unit will center the error around 0 as much as pos-
sible. We note εpow,k this error for each ad-hoc power-
ing unit in the design. The errors yielded by each ad-hoc
powering unit are then suitably multiplied by the corre-
sponding Kk coefficient, and added to obtain the error term
εpow =

∑n
k=2 εpow,k · maxA Kk(A).

5.3. Rounding considerations: εrt, εrf

The tables cannot be filled with results rounded to the tar-
get precision wO: Each table would entail a maximum error
of 2−wO−1, exceeding the total error budget εmax = 2−wO .
This argument also applies to multipliers, whose result can-
not be rounded to the target precision. We therefore need to
extend the internal precision of our operator by g guard bits.
The values stored in the tables will then be rounded to the
precision wO + g, thus yielding a maximum rounding error
of 2−wO−g−1. Similarly, the result of the multipliers will
be rounded to wO + g bits, by truncating and adding a half-
ulp, to ensure here also a maximum error of 2−wO−g−1.
The sum of all these errors is noted εrt.

The final summation is also performed on wO + g bits,
and is then truncated to the target precision wO . A trick by

Das Sarma and Matula [2] allows us to bound this rounding
error by εrf = 2−wO−1(1 − 2−g).

5.4. Putting it all together

Summing all the errors described previously, we have
the following constraint to ensure faithful rounding: ε =
εpoly + εmethod + εrt + εrf < εmax. Since we have explicit
formulae for all the error terms, we can then expand the val-
ues of εrt and εrf to obtain an inequation that we can solve
to find the smallest number of required guard bits g. In fact,
as we have added the maximum errors for each term, the
total error may be overestimated, and a smaller g could be
enough. We therefore apply a simple trial-and-error method
to find the smallest acceptable g.

6. Results

0
12 16 20 24 28 32
Input / output precision wI = wO (in bits)

500

1000

1500

2000

2500

3000 Operator area (in slices)

SMSO
order 2
order 3
order 4

50%

10%

30%

FPGA area ratio

0
12 16 20 24 28 32
Input / output precision wI = wO (in bits)

500

1000

1500

2000

2500

3000 Operator area (in slices)

SMSO
order 2
order 3
order 4

50%

10%

30%

FPGA area ratio

12 16 20 24 28 32
Input / output precision wI = wO (in bits)

SMSO
order 2
order 3
order 4

50

20

45

40

35

30

25

Operator delay (in ns)

12 16 20 24 28 32
Input / output precision wI = wO (in bits)

SMSO
order 2
order 3
order 4

50

20

45

40

35

30

25

Operator delay (in ns)

Figure 2. Operator area (top) and delay (bot-
tom) for the sin x (left) and log2(1 + x) (right)
functions.

This section presents synthesis results obtained for the
presented method. We have successfully implemented or-
der 2, 3 and 4 approximations of the functions sin x (on the
interval [0; π/4)) and log2(1 + x) (on [0; 1)), and we com-
pare them for various precisions with the SMSO (single-
multiplier second-order) method from [6] in terms of es-
timated area and delay of the operators in Fig. 2. SMSO
has already been proven to be always better than the best
available multipartite methods [6] and than the order 2
method from [13]. Those estimations were obtained using
the Xilinx design suite ISE 5.2 along with the Xilinx synthe-
sizer XST, for a Virtex-II XC2V-1000-4 FPGA. However,
we chose not to implement multipliers using the Virtex-II
18 × 18 multipliers, to allow a more accurate comparison
with other works.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

7. Conclusion and future work

This article presents a general method, implemented in
a functional tool, to build fast (combinatorial) implementa-
tions of arbitrary functions. The method leads to faster and
smaller implementations than those previously published.
As a rule of thumb, a second order approximation is op-
timal for precisions up to 16 bits and leads to operators
which consume only a few percent of even the smallest FP-
GAs. For 24-bit precision, an order 3 approximation is op-
timal (order 4 is not smaller, but slower). For 32 bits, a
precision out of reach of previous table-based methods, we
have a tradeoff between order 3 and order 4, one being 30%
smaller, the other being faster. Besides, all these architec-
tures are very regular and easy to pipeline.

Future work

We now have to study the application of this method to
ASIC synthesis, where the metrics are very different. Since
the architectures involve the sum of many terms, the in-
termediate results should probably be expressed in carry-
save notation, with only one fast adder in the architecture.
Therefore, there is some work to do on the VHDL back-
end. We also should study the metrics (the relative cost of
implementing a table as ROM or logic, the relative cost of a
squarer unit, etc), and probably placement considerations.

Moreover, even though we have considered error bounds
as constant on the interval I in section 5, the very same
scheme can be applied when considering the bounds on
εmethod as piecewise polynomials, as this gives a much finer
approximation of the method error bound. The idea here
is to gradually decrease the accuracy of the tables when
εmethod is small compared to its extremal values by using
a non-constant number of input bits to address the table.
This strategy will be interesting when synthesizing the ta-
bles as logic, as logic minimization will apply. We have
already implemented this error analysis but we do not take
advantage of it yet.

Another question which remains open is the interest of
the Horner evaluation method when targeting hardware. In
the literature concerning the precisions considered, we are
only aware of very naive approaches [3, 9]. To get a fair
comparison, the Horner approach should be studied with an
effort on the error analysis similar to that described in this
paper.

Acknowledgements

The authors would like to thank Arnaud Tisserand for
many interesting discussions on this topic, and also for ad-
ministrating the CAD tool server on which all the synthesis
presented in this paper were performed.

References
[1] J. Cao, B. Wei, and J. Cheng. High-performance architec-

tures for elementary function generation. In N. Burgess and
L. Ciminiera, editors, 15th IEEE Symposium on Computer
Arithmetic, Vail, Colorado, June 2001.

[2] D. Das Sarma and D. Matula. Faithful bipartite ROM re-
ciprocal tables. In S. Knowles and W. McAllister, editors,
12th IEEE Symposium on Computer Arithmetic, pages 17–
28, Bath, UK, 1995. IEEE Computer Society Press.

[3] D. Das Sarma and D. Matula. Faithful interpolation in recip-
rocal tables. In 13th IEEE Symposium on Computer Arith-
metic, pages 82–91, Asilomar, California, July 1997.

[4] F. de Dinechin and A. Tisserand. Some improvements on
multipartite table methods. In N. Burgess and L. Ciminiera,
editors, 15th IEEE Symposium on Computer Arithmetic,
pages 128–135, Vail, Colorado, June 2001. Updated version
of LIP research report 2000-38.

[5] J. Detrey and F. de Dinechin. A VHDL library of LNS oper-
ators. In 37th Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, USA, Oct. 2003.

[6] J. Detrey and F. de Dinechin. Second order function approx-
imation using a single multiplication on FPGAs. In 14th
Intl Conference on Field-Programmable Logic and Applica-
tions, pages 221–230, Antwerp, Belgium, Aug. 2004. LNCS
3203.

[7] P. M. Farmwald. High bandwidth evaluation of elementary
functions. In K. S. Trivedi and D. E. Atkins, editors, Pro-
ceedings of the 5th IEEE Symposium on Computer Arith-
metic. IEEE Computer Society Press, Los Alamitos, CA,
1981.

[8] V. Jain and L. Lin. High-speed double precision computa-
tion of nonlinear functions. In 12th IEEE Symposium on
Computer Arithmetic, pages 107–114, Bath, England, UK,
July 1995.

[9] D.-U. Lee, W. Luk, J. Villasenor, and P. Cheung. Hi-
erarchical segmentation schemes for function evaluation.
In IEEE Conference on Field-Programmable Technology,
Tokyo, Dec. 2003.

[10] J.-M. Muller. Elementary Functions, Algorithms and Imple-
mentation. Birkhauser, Boston, 1997.

[11] J.-M. Muller. A few results on table-based methods. Reli-
able Computing, 5(3):279–288, 1999.

[12] J. Piñeiro and J. Bruguera. High-speed double-precision
computation of reciprocal, division, square root, and in-
verse square root. IEEE Transactions on Computers,
51(12):1377–1388, Dec. 2002.

[13] J. A. Piñeiro, J. D. Bruguera, and J.-M. Muller. Faithful
powering computation using table look-up and a fused ac-
cumulation tree. In N. Burgess and L. Ciminiera, editors,
15th IEEE Symposium on Computer Arithmetic, pages 40–
47, Vail, Colorado, June 2001.

[14] J. Stine and M. Schulte. The symmetric table addition
method for accurate function approximation. Journal of
VLSI Signal Processing, 21(2):167–177, 1999.

[15] N. Takagi. Powering by a table look-up and a multiplication
with operand modification. IEEE Transactions on Comput-
ers, 47(11):1216–1222, Nov. 1998.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

