
Multipartite Tables in JBits
for the Evaluation of Functions on FPGAs

Jéŕemie Detrey, Florent de Dinechin
École Normale Suṕerieure de Lyon - CNRS - INRIA

46 alĺee d’Italie, 69364 Lyon, France
{Jeremie.Detrey , Florent.de.Dinechin }@ens-lyon.fr

Abstract

This paper presents the implementation, on Virtex
FPGAs, of a core generator for arbitrary numeric func-
tions in fixed-point format. The cores use the state-of-the-
art multipartite table method, which allows input and out-
put precisions in the range of 8 to 24 bits on current Virtex
chips. The implementation uses the JBits API to embed
elaborate optimisation techniques in the description of the
hardware.

1 Introduction

Many FPGA applications require the evaluation of some
unary functions such as trigonometric (sine/cosine, tan-
gent...), algebraic (square or square root, cube or cubic root,
...) or transcendental (exponential or logarithm). The sim-
plest implementation consists in tabulating all the values,
which is impractical for precisions higher than a few bits,
because the size of the table is exponential in the input size.
There exist compact – but slow – implementations for some
functions, such as CORDIC-like algorithms for trigono-
metric and exponential/logarithm. More general methods
for function evaluation, based on polynomial approxima-
tion, rely on multipliers and are therefore less suited for
implementation on multiplierless FPGAs (the study on re-
cent FPGAs with hard multipliers, like the Virtex II series,
is still to be done).

1.1 Table-based methods

Pioneered by Das Sarma and Matula [1], these meth-
ods reduce the size of a straightforward table implemen-
tation by exploiting the property of continuity of the func-
tion. The latest developments in this area is the multipartite
method by Dinechin and Tisserand [2], for precisions of 8
to 24 bits. For precisions higher than 24 bits, Piñeiroet al

recently demonstrated a method based on a second degree
polynomial approximation using a dedicated squarer unit
and a multiplier, which is more area-efficient and probably
faster than the multipartite method [6].

This paper therefore focuses on the FPGA implemen-
tation of the multipartite method, for arbitrary functions,
and for precisions of 8 to 24 bits. Our first contribution
is to show that this method is well suited to FPGAs of the
Xilinx family: In these circuits, the tables can be built ef-
ficiently out of the FPGA LUTs, and the built-in fast carry
logic optimises the additions.

The second contribution of this paper is the use of the
JBits framework [12] for implementing function evaluation
cores on FPGAs.

1.2 JBits

JBits is an Application Programming Interface (API) de-
veloped by Xilinx for programming FPGAs of the 4000 and
Virtex series. It comes as a set of Java classes. One of its
main strong points is to allow a detailed, structural descrip-
tion of a circuit down to the CLB level. Its main drawback
is that it imposes this structural description, even requiring
the user to specify all the placement. However, the mod-
ern object-oriented features of Java, and the availability of
a router [3] lighten the task to a very acceptable level.

Another strong point of the JBits framework is a tight
and natural integration in the same language of the hard-
ware and software parts of an application. Originally, this
integration is mainly aimed at run-time reconfigurability: it
allows to embed hardware objects in a software which re-
configures the hardware on the fly [7, 5, 8]. We did exploit
this for testing our cores. However we also exploited it the
opposite way, to embed elaborate optimisation techniques
in the code for our hardware. We are thus able to produce
cores where both the abstract architecture, and its FPGA
implementation are optimised for the required function and
precision.

To our knowledge, the function generator that we have
developed is the most complex core ever developed in
JBits, along with the DES implementation presented by
Patterson [5]. We hope that our experience may be of ben-
efit for prospective users of this technology.

In addition, this work involved developing JBits classes
for the optimisation of arbitrary boolean functions, exploit-
ing specifically the Virtex architecture. This paper de-
scribes the algorithms used in some detail, because these
classes alone are probably of interest to the JBits commu-
nity.

The work described in this paper is available
for download under the GNU Public Licence at
www.ens-lyon.fr/LIP/Arenaire/News/JBits/ .

1.3 Outline of the paper

Section 2 describes the multipartite method used to gen-
erate architectures for arbitrary numeric functions. Section
3 discusses the JBits implementation details, focusing on
the opportunities and constraints of this framework. Sec-
tion 4 describes and comments the results of this method-
ology. Section 5 draws conclusions and suggests future
works.

2 Multipartite function evaluation

2.1 The bipartite method

First presented by Das Sarma and Matula [1] in the spe-
cific case of the reciprocal function, this method consists
in approximating the function by affine segments, as illus-
trated on Figure 1.

Figure 1. An example of bipartite approximation
for 6-bit input: wI = 6, α = 4, γ = 2, β = 2.

The2α segments are indexed by theα most significant
bits of the input word. To compute the2wI values of the
function (wherewI is the width of the input word), it is

T1 2T

b bb b b b1 2 3 54 6

Figure 2. The corresponding architecture.

possible, for each segment, to tabulate one initial value,
and to construct the other values of the segment by adding
an offset, computed by a linear approximation using the
β = wI − α least significant bits of the input word. The
idea behind the bipartite method is to group the segments
into 2γ (with γ < α) larger intervals (4 on Figure 1) such
that the slope of the segments is considered constant on
each larger interval. Thus there are only2γ tables of off-
sets, each containing2β offsets. Altogether, one needs to
store2α + 2γ+β values, instead of2α+β for a plain table,
at the cost of an addition. The corresponding architecture
is depicted on Figure 2.

2.2 The multipartite method

It is possible to exploit the bipartite idea more than one
time, splitting the input word into more subwords, and re-
placing the tables with even smaller ones. Schulte and
Stine [11] and Muller [4] independently found two differ-
ent ways to do it, and Dinechin and Tisserand [2] unified
both approaches in an algorithm that explores the whole
implementation space, leading to minimal table sizes. The
typical multipartite architecture is presented on Figure 3.
The algorithm presented in [2] (too complex to be detailed
here) ensures that the cumulated approximation and round-
ing errors sum up to less than one LSB.

Precision 8 bits 12 bits 16 bits 20 bits

Total table size 224 1,552 8,960 50,176

Adders 2 3 3 3

Plain table size 2,048 49,152 1,048,576 20,971,520

Table 1. Hardware cost of the multipartite imple-
mentation of the sine function on [0, π/4], versus
plain table size (sizes in bits).

Table 1 presents some table reductions achieved by this
algorithm. To measure the significance of this method, one
should note that the sine cores offered by Xilinx, which use

�� ��

�� �� �	
� �
��

�� ��

���� �� �� �� �� !

XORs

XORs

Table

Rounding

B2 1B 0BA

p +g1

p

p +g
2

p +g
0p+g

Input word

Figure 3. A multipartite architecture. The output of the tables are summed by a multi-operand adder. The XORs
are a trick due to Schulte and Stine [11] that allows to halve the size of each table: Exploiting the symmetry of
each segment to the function (see Figure 1), one of the input bit can be considered as a sign bit.

a plain table approach, have therefore a precision limit of
10 bits due to their size. In comparison, Figure 9 shows
that a 16 bit sine core using our method occupies a small
fraction of a Virtex 1000.

2.3 Multipartite tables and FPGAs

The initial implementation of the multipartite method
was able to output VHDL which was then synthesised with
Leonardo. Among the interesting results, it was remarked
that:

• Architectures like that shown on Figure 3 lend itself to
efficient implementation on Virtex devices, thanks to
their LUT-based structure and the availability of fast
adder circuitry;

• The size compression is so drastic that usually, it also
entails a speed improvement over the plain table im-
plementation, in spite of the adders;

• The VHDL synthetiser was able to compress the ta-
bles even further using logic optimisation techniques.
This was measured as abits per LUTfactor [2] which
could be as high as 18 (a LUT holds 16 bits, and some
of them are used as multiplexers or adders).

These observations suggested that a specific core imple-
mentation should be developed to improve on these results.
The JBits framework was chosen for this purpose. This is
the subject of the rest of this paper.

3 JBits implementation

This section presents our JBits implementation of the
previous multipartite method, first describing the general

structure of the core, then focusing on a table compression
heuristic and concluding with floorplanning considerations.

3.1 Overview of the architecture

Looking back at Figure 3 and Table 1, it can be seen
that most area of the core will be dedicated to lookup ta-
bles, with the multi-operand adder and the rows of XORs
occupying little area.

In the multipartite method, we need to add two to five
values. In Virtex devices, the best option for a multi-
operand adder of this kind is also the simplest: A row of
simple adders using the built-infast carry logic. This way
the multi-operand adder is a convenient rectangular area.
The XORs are also naturally built as columns of LUTs1.

The rest of this section focuses on implementing a look-
up table. Two JBits classes have been written for this pur-
pose. The first one , described in Section 3.2, implements
uncompressed, and therefore regularly placed and theoret-
ically faster [10] tables. The second one, described in Sec-
tion 3.3, compresses the table using Virtex-specific binary
optimisation techniques. Its placement is no longer regular,
which turns out to be a drawback in terms of JBits imple-
mentation : We had to write an ad-hoc placer, described in
Section 3.4.

3.2 Uncompressed tables

To build a table addressed bywI bits, we first consider
independently each output bit, and fill the leaves of a mul-
tiplexer tree with the values of the bit according to the ad-
dress. The multiplexer tree is a simple binary tree, each

1The reader will have noticed that we already can’t avoid mentionning
placement issues.

of its nodes being a multiplexer controlled by a bit of the
address, and its leaves being LUTs used as small 4-bit ad-
dressed memories. The Virtex architecture provides mul-
tiplexers (called F5 and F6) specifically designed for ar-
ranging 2 or 4 LUTs in a CLB as a bigger look-up table
with 5 or 6 input bits. Thus the level of the tree closest to
the leaves uses F5 multiplexers, and the next level uses F6
multiplexers. Subsequent levels use LUTs as multiplexers,
as shown on Figure 4.

5x

0x
1x
2x
3x
4x

5x

0x
1x
2x
3x
4x

5x

0x
1x
2x
3x
4x

5x

0x
1x
2x
3x
4x

6x 7x

7x 6x 5x 4x 3x 2x 1x 0x(f)
F5 F5

F5 F5

F5

F5 F5

F5 F5

LUT

LUT

LUT

LUTLUT

LUT

LUT

LUT
LUTLUT

F6

F6F6

F6

LUT LUT

LUT

LUTLUT

LUT

LUT LUT

Figure 4. A Virtex multiplexer tree.

The placement of the CLB tree is then performed re-
cursively, by placing each CLB between its sons (see Fig-
ure 5). This way, routing is simple and tables assemble in
big rectangles.

Figure 5. Placement of the multiplexer tree. This
row corresponds to one output bit.

The tables built by this method are convenient to place
and route. However Dinechin and Tisserand have shown
that a VHDL synthesiser is able to compress them sig-
nificantly [2]. The next step was therefore to study table
compression. We developed a heuristic, described below,
that gives excellent results with all kinds of tables. This
heuristic is actually based on a more general heuristic for
the optimization of binary functions, which uses classical
techniques adapted to CLB trees in the Virtex architecture.

3.3 Table compression heuristic

Classically, each output bit of a table can be expressed
as a boolean function ofwI variables. Well-known poly-
nomial reduction algorithms may thus be applied to this
function. The problem is well known to be NP-hard.

3.3.1 From tables to polynomials

The first step is to get a polynomial of the function from the
(truth) table, and then, thanks to Karnaugh maps, a min-
imized expression of it: we build the boolean hypercube,
then label each vertex by the value of the function at this
point, and look for the biggest sub-hypercubes whose all
vertices are labelled by 1. See Figure 6 for an example.
This is obviously an exponential algorithm, but given the
small size of the tables, this complexity is not noticeable.
For 20-bit tables, it only lasts a couple of minutes.

3.3.2 From polynomials to multiplexer trees

Classical reduction techniques consist in trying to minimise
the number of monomials in the polynomial. To target the
particular architecture of our FPGAs, we will adapt these
known algorithms so that they produce multiplexer trees
with 4-input LUTs at the leaves, as used previously.

x1

x0

x2

x1x0 x2
. .

x1x0 x2
. .

x1x0 x2
. .

x1x0 x2
. .

x1x0 x2
. .

x0 x2
.

x1

+
+
+
+

= +

Figure 6. Polynomial reduction example.

To this effect we will focus on splitting a polynomial by
a given variablexK , which we call akey variable. Splitting
can be achieved by Shannon’s theorem:

p(x0, .., xK , .., xwI−1) =
xK · p1(x0, .., xK−1, xK+1, .., xwI−1)

+ xK · p0(x0, .., xK−1, xK+1, .., xwI−1)

The architectural interpretation of this equation is a mul-
tiplexer, controlled byxK , with two sub-trees implement-
ing the polynomialsp0 andp1.

After splitting the polynomial, we simplify the resulting
p0 andp1 using the Quine-McCluskey algorithm [9], and
split them using another key variable.

Eventually this algorithm produces functions of 4 vari-
ables which are leaves of the multiplexer tree, and will be
mapped to LUTs in the FPGA.

The important part of the heuristic is now to choose the
key variables and their order in order to get as small as
possible a multiplexer tree.

3.3.3 Key variable selection

At each step, our heuristic is to choose the key variable that
ensures the largest amount of simplification in the Quine-
McCluskey simplification ofp0 andp1. To achieve that we
want to choose the key variable which plays a part in the
largest number of smallest monomials.

We therefore count the occurences of each variable in
the smallest monomials of the polynomial, and choose one
of the most used ones. An example of this heuristic is given
in Figure 7.

x6

x2

x0

x3 x4 x5x1
.. .

x0 x3 x4 x5x1
.. .. x4 x5x3

. .

x0 x3 x4 x5x1

x2 x4 x5x3

+.. ..

. . .

x6

x0 x3 x4 x5x1

x2 x4 x5x3

+.. ..

. . . +

0

0 1

1

0 1

0

1

Figure 7. Reduction example.

3.4 Floorplanning

As far as a JBits implementation is concerned, the main
drawback of the previous optimisation is that it produces
a unbalanced tree of CLBs, which we cannot organise as
regularly as previously. In VHDL we would simply leave
the placement of this tree to the back-end tools. In JBits,
however, we had to write an ad-hoc placer.

Our solution was to write aCLB provider class that
works with a bitmap of the FPGA’s area and centralises
CLB allocation requests. It tries to avoid any empty space,
by allocating the first free suitable space for a given order.

At the moment, the order established between the CLBs
is simply a left-to-right, top-to-bottom linear order. Fig-
ure 8 is an example of thisCLB providerplacing a CLB
tree.

F5

F6

5x

1x
3x
4x

4x
3x

5x

3x1x 4x 5x. . .

3x 4x 5x. .

2x

0x

6x

LUT

LUT

LUT

LUT

0

1 Multiplexer

F5

F6

F5

5x

1x
3x
4x

4x3x 5x1x . ..

4x
5x

3x

0x

6x

4x3x 5x. .
2x

LUT

0

LUT

LUT

LUT

1 Multiplexer

Figure 8. Placement example.

This algorithm does not even try to group CLBs from
the same tree. In spite of this lack of regularity, however,
the JBits router is always able to obtain a good, congestion
free, routing. For this reason we did not try to improve on
this rough placement. According to a study by Singh [10],
however, more careful placement could lead to an increase
in performance by up to 30%, and this will be the subject
of further investigation.

3.4.1 Graphical interface

In order to synthesise rectangular cores, we have jointly
developped a graphical interface to allow the user to specify
the dimensions of the bounding rectangle, as it can be seen
in the screenshot Figure 9.

This interface actually comes on top of a previous inter-
face to the multipartite method. It initially shows

• the adders, which will impose the minimal height of
the core so that the fast carry logic can be used, and

• the required number of CLBs computed by the previ-
ous optimization.

The user then has the freedom of shaping the core rectangle
to match its needs with respect to these constraints.

3.4.2 Class hierarchy

To sum up this section, Figure 10 describes the class hier-
archy of our core generator. The classes have been written
in such a way to allow easy reutilisation. Altogether, this
represents 3 month of work for a postgraduate student.

Figure 9. Interface example: a 16-bit sine operator
on a Virtex XCV1000.

Mux Tree

CLB Provider
293 lines

Core

Table

GUI

Adder, XOR

Polynomial

Multipartite

2,215 lines

609 lines

402 lines

261 lines

330 lines

548 lines

1,488 lines

Figure 10. The class hierarchy, with code sizes.

4 Results

Some results of our multipartite core generator are given
by Table 2. Synthesis was performed on a Pentium 400
with 512 MB of memory. For technical reasons, although
we were able to test our cores on a Celoxica RC1000 board,
we were unable to time them on this board so far. The
frequencies given in this table are therefore only approxi-
mations obtained using the Xilinx FPGA Timing Analyser
tool.

Three points need to be underlined:

• The optimisation algorithm provides an improvement
of at least 20% in area, which compares favourably to
the results obtained by Leonardo (optimising for area,
medium effort). One reason for that may be that we
performed binary optimisation with the target archi-
tecture in mind, instead of separating optimisation and
technology mapping.

• The total compilation time is still acceptable, although
slightly longer for optimized tables. Most of this time
is spent in routing using JRoute. Unoptimised tables
could be routed much faster by hand-writing the rout-
ing algorithm, but this would add a lot to the develop-
ment time. It is doubtful, however, that cores using the
multipartite method will qualify asrun-time reconfig-
urable coresfor precisions larger than 12 bits.

• The frequencies shows that the “smaller is faster” ef-
fect overcomes the negative effect of bad placement
for all cores except the largest ones. This is consistent
with Singh’s findings [10].

5 Conclusion and future work

There are three main conclusions to this work.

• Arbitrary numeric functions can be implemented ef-
ficiently in LUT-based FPGAs using the multipartite
method. The core generator we developed can build a
function evaluator for any function with up to 16 bits
precision in seconds, and the resulting core will need
only a fraction of the FPGA resources. This is in itself
a great improvement over currently available cores.

• The JBits API is a great tool for developing such
cores, because it allows one to integrate any kind of
optimisation within the hardware description of the
core. There is nothing in what we presented that
could not have been done using a combination of Java,
VHDL synthesiser, backend tools (for the placement),
and makefiles. However we feel that the JBits ap-
proach is much more elegant for this specific problem.

• We are very glad we did not have toroute the cores
ourselves, and we wish we did not have toplacethem
by ourselves. Manual placement is desirable to im-
prove performance, it is easy when the architecture is
regular, but it should be avoidable in the other cases.
We hope that the next generations of JBits will include
classes offering the functionality of ourCLB provider
class, improved with placement optimisation options.

Two natural directions of future work concern the aspect
of performance.

• The speed of the bigger cores can very probably ben-
efit from better placement.

• Pipelining should also be explored.

The JBits programs described above are avail-
able for download under the GNU Public Licence at
www.ens-lyon.fr/LIP/Arenaire/News/JBits/ .

function 12 bits sine 16 bits sine
uncompressed compresseduncompressed compressed

memory 1,552 bits 8,960 bits
size of tables 97 LUT 84 LUT 628 LUT 473 LUT

bits per LUT ratio 16.00 18.48 14.27 18.94
total size 160 LUT 147 LUT 710 LUT 555 LUT
frequency 52 MHz 39 MHz 36 MHz 35 MHz

reduction time — 1” — 15”
synthesis time 4” 4” 35” 20”

function 16 bits exp 20 bits sine
uncompressed compresseduncompressed compressed

memory 11,520 bits 50,176 bits
size of tables 810 LUT 643 LUT 3,573 LUT 2,546 LUT

bits per LUT ratio 14.22 17.91 14.04 19.70
total size 901 LUT 734 LUT 3,682 LUT 2,655 LUT
frequency 35 MHz 30 MHz 21 MHz 27 MHz

reduction time — 20” — 5’40”
synthesis time 40” 30” 9’ 4’

Table 2. Timings, area and synthesis time of multipartite cores.

Acknowledgements

This work was partially supported by an ACI Jeunes
Chercheurs of the French government, and Xilinx Univer-
sity Programme.

References

[1] D. Das Sarma and D. Matula. Faithful bipartite ROM re-
ciprocal tables. In S. Knowles and W. McAllister, editors,
12th IEEE Symposium on Computer Arithmetic, pages 17–
28, Bath, UK, 1995. IEEE Computer Society Press.

[2] F. de Dinechin and A. Tisserand. Some improvements on
multipartite table methods. In N. Burgess and L. Ciminiera,
editors, 15th IEEE Symposium on Computer Arithmetic,
pages 128–135, Vail, Colorado, June 2001. Also available
as LIP research report 2000-38.

[3] E. Keller. JRoute: A run-time routing API for FPGA hard-
ware. In7th Reconfigurable Architectures Workshop, Can-
cun, Mexico, May 200O. LNCS 1800.

[4] J.-M. Muller. A few results on table-based methods.Reli-
able Computing, 5(3):279–288, 1999.

[5] C. Patterson. High performance DES encryption in Vir-
tex(tm) FPGAs using JBits(tm). InIEEE Symposium on FP-
GAs for Custom Computing Machines, Napa Valley, USA,
2000.

[6] J. Pĩneiro, J. Bruguera, and J.-M. Muller. Faithful power-
ing computation using table look-up and a fused accumu-
lation tree. In N. Burgess and L. Ciminiera, editors,15th
IEEE Symposium on Computer Arithmetic, pages 40–47,
Vail, Colorado, June 2001.

[7] J. Scalera and M. Jones. A run-time reconfigurable plug-in
for the winamp MP3 player. InIEEE Symposium on FPGAs
for Custom Computing Machines, Napa Valley, USA, 2000.

[8] J. Scalera and M. Jones. Cores and anti-cores: Using JBits
as part of a mainstream design flow. In8th Reconfigurable
Architectures Workshop, San Francisco, USA, Apr. 2001.

[9] N. A. Sherwani. Algorithms for VLSI physical design au-
tomation. Kluwer Academic, 1993.

[10] S. Singh. Death of the RLOC? InIEEE Symposium on FP-
GAs for Custom Computing Machines, Napa Valley, USA,
2000.

[11] J. Stine and M. Schulte. The symmetric table addition
method for accurate function approximation.Journal of
VLSI Signal Processing, 21(2):167–177, 1999.

[12] Xilinx Corporation.The JBits 2.7 SDK for Virtex, 2001.

