
The Price of Routing in FPGAs

Florent de Dinechin
Projet Arénaire, LIP-CNRS-INRIA,

École Normale Supérieure de Lyon, France
Florent.de.Dinechin@ens-lyon.fr

Abstract: Studying the architectural evolution of mainstream field programmable
gate arrays (FPGAs) leads to the following remark: in these circuits, the proportion
of silicon devoted to reconfigurable routing is increasing, reducing the proportion of
silicon available for computation resources. A quantitative analysis shows that this
trend, if pursued, will lead to a widening gap between FPGA performance and VLSI
performance. Some prospective solutions to this problem are discussed.

Key Words: FPGA, reconfigurable computing, routing resources, hardware complex-
ity

Category: B.7

1 Introduction

1.1 The FPGA success story

Any hardware data-processing application requires some kind of dedicated logic
circuitry. As a minimum, when using only “off-the-shelf” components, the de-
signer needs some amount of “glue logic” to interface these components together,
and to interface them with the rest of the world (be it a computer backplane).
But dedicated hardware may also be needed for the bulk of the data processing
itself, when no off-the shelf component is available or when their performance is
inadequate.
Until recently, to implement such dedicated logic, the designer had to choose

among the following options:

– using discrete components, which takes up a lot of physical space and is very
inefficient, and is therefore only suited for very small amounts of glue logic,

– using some off-the-shelf processor or micro-controller, which is very flexible
due to programmability, but slow and poor in inputs/outputs,

– designing an application-specific integrated circuit (ASIC), which guarantees
the best results, but needs several months and is expensive unless in the
context of high-volume production.

Field programmable gate arrays (FPGAs) were therefore designed as off-
the-shelf VLSI circuits able to emulate arbitrary logic, with performances close
to those of an ASIC, but with the flexibility of software. Typically, a designer
evaluates the requirements of his dedicated circuitry (number of gates, number
of inputs and outputs, speed), buys an FPGA matching these requirements, and
programs it to get an ASIC replacement. The tools used to program FPGAs are
very similar to those used to design ASICs (for example they input standard
hardware description languages such as VHDL or Verilog), but the designer may



test his circuit instantly, instead of having to go through the lengthly and costly
ASIC foundry process. Besides, some FPGAs are reconfigurable, which allows for
hardware debugging and upgrading. Being an off-the-shelf component produced
in high volume, the cost of an FPGA in development time is a fraction of the
cost of an ASIC.
FPGAs have therefore been among the fastest growing sectors of the silicon

industry in the last years. They are mostly used as glorified glue logic, replacing
ASICs where time to market is critical, or where a small production volume
wouldn’t justify the cost of an ASIC. Moreover, they have also spawned new
applications and research interests, from rapid prototyping of VLSI [SKC+95] to
general-purpose hardware acceleration for numerical applications [Vui94, DeH94,
Bre98].

1.2 FPGA architectures

The FPGA architecture that allows to achieve these goals typically consists of a
large number of configurable logic blocs embedded in a network of configurable
interconnections [RM98]. We are not concerned here by the exact nature of the
logic blocs (which also contain some memory elements), neither will we discuss
the topology of the network, although these two questions have been and still
are the subject of abundant research and discussion. We will not escape such
discussion later in section 4, but until then an abstracted view of typical FPGA
architectures, such as depicted on Fig. 1, will suffice.

Figure 1: A typical FPGA architecture. Grey boxes are functional units, and lines are
wires. To ensure that the interconnect network is programmable, there must be some
sort of programmable switch (not shown) wherever two lines cross.

What Fig. 1 doesn’t show is that the programmability of the FPGAs has
a significant hardware cost: there must be switches on the wires to make the



interconnect network configurable, and there must be some kind of memory
holding this configuration along with the configuration of the logic blocks. Finally
there must be some dedicated logic and routing to allow for the loading of this
configuration.
All this consumes a significant proportion of the silicon of a chip, with im-

plications on both capacity and speed of the FPGA. Thus, at a given time, an
FPGA built using a state-of-the-art VLSI process cannot hold the biggest full-
custom circuits which can be fabricated in the same process. Moreover, for those
circuits which are small enough to fit in the FPGA, this FPGA implementation
is slower than its full-custom counterpart.
This cost may be expressed as a time lag between FPGA and full-custom. For

example, in 1999, one may observe that top-of-the-range FPGAs from various
vendors claim to contain the equivalent of one to two million programmable
gates, with system-level operating frequencies above 100MHz. These numbers
are comparable with the transistor count (3.1 million, meaning roughly 1 million
gates) and the operating frequency (60 to 120 MHz) of Pentium processors built
in 1993-1994 : here we have a time lag of five or six years.
One may think that this time lag is constant, which would mean that we only

need to wait for another five years to get the current full-custom performance
out of an FPGA. The purpose of this paper is to question this assumption: we
will show that the current trend in FPGA technology, if pursued, will entail an
increase in this time lag. The reason for it is that an ever increasing proportion
of FPGA silicon is devoted to the routing architecture, and therefore wasted for
computing itself. Therefore the curve of FPGA performance doesn’t follow the
curve of VLSI integration.

1.3 Rent’s rule and FPGAs

Table 1 gives a summary of the evolution of routing resources per look-up table
(or LUT, the computing unit) in the three most recent FPGA families from
Xilinx [Xil97, Xil98]. Figure 2 shows a logical view of an actual recent FPGA,
the Xilinx Virtex [Xil98].
This table shows that the amount of routing resources per LUT increases

almost proportionally to the number of LUTs per line or column. This general
trend [TMM+98] may be explained by the FPGA version of Rent’s experimental
law [SKC+95, Ull84] which states that, as a logic circuit is partitioned, the
number of signals crossing the boundary of the partition is proportional to the
number of gates on each side, raised to a power r which ranges from 0.5 to 0.8,
depending on the class of application.
Let us transpose this rule to our FPGA (an extensive review on this kind of

problems in the context of FPGAs may be found in section 7.6 of DeHon’s thesis
[DeH96]). Let us consider a vertical line splitting an FPGA in two halves. If N
is the number of LUTs in a row/column, then there are O(N 2) gates on each
side of the partition. Rent’s rule tells that the FPGA needs O(N 2r) wires across
the vertical line. This line crosses N channels, so we need O(N 2r−1) wires per
channel. For r between 0.5 and 0.8, the exponent 2r− 1 ranges from 0 (constant
channel width) to 0.6.
However, the value of 2r − 1 extracted from Table 1 seems to be quite close



Series LUT matrix1 Routing wires per LUT
min max (horiz.+vert.)

4000E 10× 10× 2
= 200 ≈ 142

32× 32× 2
= 2048 ≈ 452 21

4000X 14× 14× 2
= 392 ≈ 202

56× 56× 2
= 6272 ≈ 792 38.5

Virtex 16× 24× 4
= 1536 ≈ 392

64× 96× 4
= 24576 ≈ 1572 67.5

Table 1: Xilinx FPGAs

to 1. This can be explained in several ways:

– FPGAs are still in their infancy, and extrapolating asymptotic laws from
Table 1 is obviously hazardous.

– An FPGA has to accomodate any application, and thus implements a very
conservative, worst case Rent’s exponent.

– In the FPGA market, the speed of the design cycle is an increasingly impor-
tant selling point. The longest step of this design cycle is the (NP-complete)
place-and-route phase, and with current methodologies and heuristics, this
step greatly benefits from an excess in routing resources. The lost silicon
area is then more than compensated by the improvement in FPGA design
time [RH97].

Whatever the exact growth of routing resources, one obvious consequence is
that the proportion of silicon devoted to routing increases with integration. This
means in turn that routing has an increasing impact on FPGA performances.
This is all the more true as wires, in FPGA, also carry logic: a signal from
one gate to another one has to run through the various switches which ensure
the programmability of the routing network. This is one major difference when
comparing FPGA and full-custom solutions.
The purpose of this paper is to study the long-term implications of this

evolution. Section 2 will attempt to build a very rough but realistic model of
the trend in FPGA technology demonstrated by Table 1. Section 3 then shows
that this trend would lead to an increasing performance gap between FPGA
and full-custom VLSI. The third section concludes by questioning the model,
considering several possible evolutions of FPGA technology which would address
the problems exposed here.

1 The 4000 series contains 2 LUTs per configurable logic bloc (CLB). The Virtex
series contains 4 LUTs per CLB. The LUT matrix is therefore given as (CLBs per
line)×(CLBs per column)×(LUT per CLB).



Figure 2: A close-up on Xilinx Virtex chip routing resources in the EPIC tool. The
black boxes are computing units, the rest is wiring. Here again, routing switches are
not shown, but the white boxes around the computing units are their input/output
crossbars.

2 Definitions and hypotheses

2.1 Very large scale integration

The object of our study will be the evolution of FPGA computing power with
respect to VLSI integration. To quantify this integration, we will use a universal
measure, the typical length λ of a given VLSI process. Currently between 0.5µm
and 0.1µm, this length is related to the size of the smallest possible transistor.
We shall express the various quantities we study as a function of λ.
As we study integration, we will consider circuits of fixed size, say square

circuits of unit size2.
As λ measures the size of a transistor, the number of transistors on this unit

size chip grows as O(λ−2). Besides, integration increases the frequency of the
chip. As a very rough estimate we may assume that the switching time of a
transistor is proportional to its width, thus to λ. Therefore the typical frequency

2 It should be noted that the typical commercial size of a VLSI chip has been almost
stable over the decade, at a few square centimeters. For example, the die size of the
Intel Pentium II is roughly that of the 80286, even though intermediate processors
of the same company have been bigger. In any case, the growth of die size doesn’t
compare to the growth of 1/λ.



will grow as O(λ−1), and the maximum raw power of the unit size chip grows
as O(λ−3).
This is only an upper bound on computing power: it assumes that all the

silicon is used for transistors, whereas in any circuit, you have of course to
dedicate some silicon to wires as well.
These hypotheses are linked to Noyce’s thesis (as cited by Vuillemin [Vui94])

according to which λ is reduced by a constant factor α ≈ 1.25 every year.
This integration leads to an increase of theoretical computing power of α3

≈ 2
every year. Vuillemin concludes from this that the peak FPGA performance also
doubles every year, which we question in the following.

2.2 Field-programmable gate arrays

Let us now observe a family of theoretical FPGAs which closely follows VLSI
integration: we will note FPGA(λ) the FPGA built in process λ. More precisely,
FPGA(λ) has the following characteristics.

– We will assume that the architecture of the computing unit doesn’t depend
on integration. This is a very strong assumption, to be discussed later in
section 4. We motivate it by the following observation: the base block of this
computing unit, a 4-input look-up table, is the main common characteristic
of the mainstream FPGA architectures from the two major FPGA vendors,
Xilinx and Altera, and has been for almost a decade now.

– Let us assume this computing unit is a square of size Xlλ.
– Wires also have a width which, expressed in λ, is a constant, say Xwλ. In
other terms you can have Xw/Xl wires in the width of a logic bloc, and this
value doesn’t depend on λ.

The last assumption may be discussed, considering that technology allows for
more and more metal layers to put wires in (current FPGAs use 5 metal layers
[Xil98]). The point is, however, that any FPGA wire must have some logic on it:
in FPGAs, wires begin and end with switches which ensure the programmability
of the routing, and these switches are built out of transistors, and thus consume
transistor space.
We now need to quantify the number of wires we have in FPGA(λ).

2.3 A simple model of routing

It is impossible to give a model of all existing and possible routing architectures,
therefore we will restrict the study to quantitative aspects.
Let N(λ) be the number of LUTs per row or column of FPGA(λ). In [Vui94],

Vuillemin neglects the space used by routing resources, and therefore assumes
that N(λ) grows as O(λ−1). This assumption has been proven wrong (see table
1): the number of wires per LUT tends to increase with N(λ). As a consequence,
N(λ) is no longer proportional to λ−1.
Now we have to quantify this increase of routing. Table 1 shows that routing

per channel grows almost linearly with N . We will therefore consider a number
of wires per LUT (in other words a number of wires per routing channel) which
is proportional to N(λ) (let k be the proportionality factor). This corresponds to



a Rent’s exponent of 1. However the same results hold for values of the exponent
between 0.5 and 1, as the interested reader may find in appendix. We choose
here to keep the model simple.

3 The price of programmability

3.1 Spatial cost

Let us first estimate N(λ). The width of an FPGA tile is now (Xl+k.N(λ).Xw)λ.
As N(λ) increases we soon have Xl ¿ k.N(λ).Xw. Note that this is already the
case in current FPGAs as shown by Fig. 2. In this figure, the two black boxes are
two four-input lookup tables each, and the rest consists of routing and routing
switches. Beware that this picture is a logical view from the Epic tool, and not
an actual photograph of the layout: as such it might not perfectly reflect the
scale of the various components, however it makes the point.
We now have an idea of the evolution of N(λ) with respect to λ:

N(λ) ≈
1

k.N(λ).Xw.λ
,

hence

N(λ) ≈

√

1

k.Xw.λ
.

Lemma 1. The number N(λ) of LUTs in a row of FPGA grows as O(λ−1/2).

In other words, in order to double the number of LUTs on a row, we have
to wait until λ has been divided by 4. Or: an FPGA will have twice the number
of LUTs per surface unit only when the technology allows four times as many
transistors.

3.2 Time cost

The previous analysis also has implications on the maximal operating frequency
of FPGA(λ). Its inverse, the period, is the sum of two terms:

– The switching time for a logic bloc, which in our approximation is propor-
tional to λ.

– The time to go through routing, which in turn is the sum of two terms:

• A term which is at least proportional to the distance between the LUTs
connected. This value is difficult to estimate, as it depends widely on the
application. However this term is victim of the evolution of the distance
between two LUTs, which is 1/N(λ), and as such evolves at best as λ1/2;

• A term which measures the time needed to go through routing switches.
This term is the traversal time for one switch (proportional to λ, still in
the same approximation), multiplied by the the number of switches on a
wire. Note that these switches don’t actually switch, except at configura-
tion time, so their contribution is not dependent on the switching time of
a transistor. However, transistors have a higher resistance than the wires
between them, and we may consider that their traversal time evolves as



λ. The number of switches on a net, assuming a sensible routing algo-
rithm, is at least log2N(λ), in which case the corresponding term in the
period is λ. log2N(λ) and can be neglected, and at most N(λ), in which
case this term evolves as λ.λ−1/2 = λ1/2 just like the previous one.

Finally, as λ decreases, the most significant term evolves in λ1/2:

Lemma 2. The frequency F (λ) of FPGA(λ) grows as O(λ−1/2).

3.3 Peak computing power

And finally the peak computing power grows as N(λ)2 × F (λ), that is to say as
O(λ−3/2).
If for example λ is divided by 1.25 every year (following Noyce’s thesis), the

theoretical computing power of our family of FPGAs will double every other
year, whereas that of pure VLSI will double every year. This means that the
performance lag between FPGA and VLSI will increase (doubling every other
year).
A sensible objection to our study is that we don’t compare like for like, as

we compare an FPGA with routing to VLSI without routing. This is certainly
true: we are comparing peak, or theoretical, computing power. The point is that
there exist very efficient architectures with limited or localized routing which,
implemented in FPGA, will not benefit from this economy in routing when
compared to a VLSI implementation.
Consider for example a microprocessor, and suppose that the critical com-

ponent of its arithmetic unit is, say, a multiplier. This component will therefore
be heavily optimized for performance. The designers of this multiplier won’t for
example allow any external routing channel through it: external routing will flow
around the multiplier (or above if there are metal layers available). Now imagine
the same processor, with the same multiplier, implemented in FPGA(λ): these
optimizations are no longer possible, because routing channels, most of which
are used by external routing, cut through the multiplier.
This is, once again, probably the main difference between FPGA and full-

custom VLSI: in full-custom one pays the performance cost of the routing one
gets, whereas in FPGA one pays the cost of all the potential routing even if it
isn’t being used.

4 Discussion

This study is not meant to be pessimistic: we trust FPGA vendors for contra-
dicting this dooming view in the forthcoming years. To do so, they just have to
contradict one of our hypotheses. Note that, as shown in appendix, taking into
consideration a Rent’s exponent smaller than 1 doesn’t change our conclusion
(as long as r > 0.5, which is a prerequisite for an FPGA).

4.1 Constant granularity

We have supposed that the size of the basic building block will remain constant,
while their number grows. However it is to be expected that the size of the



computing unit will grow as well, in order to keep a balance in the routing
resources. Note that it is the case in the evolution form the 4000 series to the
Virtex series, as the size of the configurable logic bloc has increased from 2 to 4
LUTs. Another example of this trend is Chess [MSK+99], a reconfigurable array
aimed at multimedia applications, where the unit of both computing and routing
resources is 4 bits. This architecture is closer in many respects to the MasPar
massively parallel computers [HPK95] than to mainstream FPGAs.
It is difficult here to resist comparison with the history of parallel computing:

the number of processors in parallel computers doesn’t grow anymore. Today’s
biggest parallel computer have no more than a few hundreds of processors, much
less than their predecessors of the previous decade (MasPar and TMC computers
had tens of thousands). The growth is now in the performance of each processor.
We should expect the same kind of evolution in the FPGA world.
Exploring this parallel further, let us notice that increasing emphasis, in the

parallel computing community, is set on architectural and system techniques
designed to hide both the complexity and inefficiency of the communications
(e.g. distributed shared memory and caches). Could this trend not filter down
to the FPGA world? This is obviously not only a question of architecture.

4.2 Regular architecture

We also expect more and more hierarchy in the FPGA structure [RH97]: near-
linear routing is probably not necessary at any scale.
Attempts to hierarchical architectures have already been made, for example

in the Teramac system [SKC+95], or in the Xilinx Series 6000 which had a
logarithmic routing architecture. The newest Actel FPGAs [KBK+99] claim to
be “semi-hierarchical”, with three levels of hierarchy, each level being the usual
mesh.
However the Xilinx 6000 series was a commercial failure. To say that it was

due to its hierarchical routing would be exaggerating: its main weakness, in our
sense, was in its vendor place-and-route tools. Altough they were very good at
allowing the designer to organize a hierarchy of subcircuits, they were very bad
at doing anything automatically.
What this example makes clear is that hierarchical routing architectures need

sounder bases on the software side to really succeed. This is only one aspect of
the evolutions in FPGA support software needed to address the problems shown
in this paper.

4.3 FPGA synthesis tools

Current FPGA synthesis tools discard the logical hierarchy of a circuit to perform
a global optimization of the place and route problem. In the VLSI world, this
approach has long been replaced with a more hierarchical one, where a big circuit
is decomposed in smaller functional blocks which are then optimized locally (or
found in libraries).
This doesn’t only ease the task of the designer, but also leads to efficient

architectures by breaking up global optimization problems into tractable, local
ones.



This point is obviously linked to the previous one: for the hierarchical ap-
proach to have the same performance benefits in FPGAs, there must be some
form of hardware hierarchy. This was the case in the Xilinx 6000 series.

4.4 General purpose FPGAs, or not

Some classes of applications don’t need general purpose routing, and would be
contented with more scalable architectures. An example is that of datapath-
oriented FPGAs, as studied in the Garp project [HW97] among other. Chess
[MSK+99] is dedicated to multimedia processing, and this loss of generality
allows for a more efficient architecture in its application field.
An even more radical example is the class of systolic arrays, as obtained

using automatic parallelization techniques [Qui84, dD97]: these techniques yield
designs with only clock and local routing, which scale well. Could a FPGA family
with constant, local routing dedicated to systolic applications be designed ? This
class of applications, unfortunately, is probably too restricted to make a such a
systolic FPGA commercially viable.

5 Conclusion

The increase of road traffic in expanding cities is a fatality for complexity rea-
sons very similar to those presented here. Most big cities have tried to address
this traffic increase by widening the roads and increasing the number of lanes.
Since the eighties, however, this approach to city traffic is generally considered a
failure. One reason is specific to the city metaphor: city planners, unlike FPGA
designers, can’t move blocks further apart when they want more lanes between
them. But even if they could, they would face the citizens’ critics: the useful part
of the city is the blocks, that is where people live and interact. City-residents are
increasingly reluctant to sacrifice this living space to traffic lanes, all the more
as they are conscious of the short lifespan of any traffic improvement.
Similarly, this study showed that the current evolution of FPGAs gives an

increasing proportion of the silicon resources to routing, which is computation-
naly useless. It establishes that this trend, if pursued, would lead to an increase
of the performance gap between FPGA and full-custom VLSI. The hope is to
push long-term researchers to explore alternative possibilities.
For example, some cities manage their traffic increase quite well by promoting

public transportation (the metaphor of a bigger granularity), local shopping and
working (the metaphor for architectural solutions placing the emphasis on local
routing), and cycling.
Alas, as far as cycling is concerned, we couldn’t find an FPGA metaphor.

Acknowledgements

Special thanks should go to Wayne Luk, Nabeel Shirazi and the ALA team at
Imperial College, London, and to Dominique Lavenier of IRISA, Rennes, for
many interesting discussions and comments. This work was partly supported by
an INRIA post-doctoral fellowship at Imperial College, London, UK.



References

[Bre98] Gordon Brebner. Field-programmable logic: Catalyst for new computing
paradigms. In International Workshop on Field Programmable Logic and
Applications, Tallin, Estonia, September 1998.

[dD97] Florent de Dinechin. Libraries of schedule-free operators in Alpha. In
Application Specific Array Processors. IEEE Computer Society Press, July
1997.

[DeH94] Andre DeHon. DPGA-coupled microprocessors: Commodity ICs for the
early 21st century. In IEEE Workshop on FPGAs for Custom Computing
Machines, 1994.

[DeH96] Andre DeHon. Reconfigurable Architectures for General-Purpose Comput-
ing. PhD thesis, MIT, August 1996.

[HPK95] M. Hamdi, Y. Pan, and W. T. Kwong. Efficient image processing applica-
tions on the maspar massively parallel computers. International Journal of
High Speed Computing, 7(4):489–514, 1995.

[HW97] John R. Hauser and John Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 12–21, Napa Valley, CA, April 1997.

[KBK+99] S. Kaptanoglu, G. Bakker, A. Kundu, I. Corneillet, and B. Ting. A new
high density and very low cost reprogrammable FPGA architecture. In
FPGA’99, ACM/SIGDA International Symposium on FPGAs, pages 3–12,
Monterey, CA, February 1999.

[MSK+99] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A
reconfigurable arithmetic array for multimedia applications. In FPGA’99,
ACM/SIGDA International Symposium on FPGAs, pages 135–143, Mon-
terey, CA, February 1999.

[Qui84] P. Quinton. Automatic synthesis of systolic arrays from recurrent uniform
equations. In 11th Annual Int. Symp. Computer Arch., Ann Arbor, pages
208–214, June 1984.

[RH97] J. Rose and D. Hill. Architectural and physical design challenges for one-
million gate FPGAs and beyond. In FPGA’97, ACM International Sym-
posium on FPGAs, pages 129–132, Monterey, CA, February 1997.

[RM98] B. Radunovic and V. Milutinovic. A survey of reconfigurable computing
architectures. In International Workshop on Field Programmable Logic
and Applications, Tallin, Estonia, September 1998.

[SKC+95] G. Snider, P. Kuekes, W. B. Culbertson, R. J. Carter, A. S. Berger, and
R. Amerson. The Teramac configurable computer engine. In Field Pro-
grammable Logic and Applications, pages 44–53. LNCS 975, September
1995.

[TMM+98] A. Takahara, T. Miyazaki, T. Murooka, M. Katayama, K. Hayashi,
A. Tsutsui, T. Ichimori, and K. Fukami. More wires and fewer LUTs: a
design methodology for FPGAs. In FPGA’98, ACM/SIGDA International
Symposium on FPGAs, pages 12–19, Monterey, CA, February 1998.

[Ull84] Jeffrey D. Ullman. Computational Aspects of VLSI. Principles of Com-
puter Science. Computer Science Press, 1984.

[Vui94] Jean Vuillemin. On computing power. In Programming Languages and
System Architectures, LNCS 782, pages 69–86, Zürich, Switzerland, June
1994.

[Xil97] Xilinx Corporation. XC4000E and XC4000X Series Field Programmable
Gate Arrays, November 1997.

[Xil98] Xilinx Corporation. Virtex 2.5V Field Programmable Gate Arrays, October
1998.



A When Rent’s exponent is smaller than 1

This section follows the computation of section 3 in the case of a Rent’s exponent
between 0.5 (constant width channels) and 1.

A.1 Spatial cost

As exposed in the introduction, a Rent’s exponent r corresponds to a channel
width of 2r − 1. The width of an FPGA tile is thus Xl + k.N(λ)2r−1.Xw, and
we still have Xl ¿ k.N(λ).Xw, leading to

N(λ) ≈
1

k.N(λ)2r−1.Xw.λ
,

hence

N(λ) ≈ 2r

√

1

k.Xw.λ
.

Lemma 3. The number N(λ) of LUTs in a row of FPGA grows as O(λ−
1

2r ).

A.2 Time cost

The period is the sum of:

– The switching time for a logic bloc, proportional to λ.
– The time to go through routing, which in turn is the sum of two terms:

• A term expressing the time to go through the wires themselves (i.e. to
load the corresponding capacitor), at least proportional to the distance
between the connected LUTs; two LUTs are at least separated by one
routing channel, thus the minimal distance between two LUTs is 1/N(λ).

This term evolves therefore at best as λ
1

2r ;
• A term which measures the time needed to go through routing switches.
This term is the traversal time for one switch (proportional to λ), mul-
tiplied by the the number of switches on a wire. The number of switches
on a net, assuming a sensible routing algorithm, is at least log2N(λ),
in which case the corresponding term in the period is λ. log2N(λ) and
can be neglected, and at most N(λ), in which case this term evolves

as λ.λ−
1

2r = λ1− 1

2r . As 1/2 < r < 1, we have 0 < 1 − 1

2r < 1

2r . As λ

decreases, the most significant term in the period is λ1− 1

2r in this case.
However this term also assumes a very bad routing architecture, in which
the number of switches on a typical net is proportional to the size of the
chip. This is what you would get on an FPGA with only local routing,
for instance.

Let us be optimistic and assume that the routing is good enough for the
period to be limited by the second term in λ

1

2r . We get the following optimistic
asymptotic frequency:

Lemma 4. The frequency F (λ) grows as O(λ−
1

2r ).



A.3 Peak computing power

And finally the peak computing power grows as N(λ)2 × F (λ), that is to say as

O(λ−
3

2r ).
This result yields the same conclusions with respect to an increase of the

time lag between full-custom VLSI and FPGA peak computing power.


