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Abstract This paper presents a survey of techniques
to implement multiplications by constants on FPGAs.
It shows in particular that a simple and well-known
technique, canonical signed recoding, can help design
smaller constant multiplier cores than those present in
current libraries. An implementation of this idea in Xil-
inx JBits is detailed and discussed. The use of the lat-
est algorithms for discovering optimal chain of adders,
subtractors and shifters for a given constant multipli-
cation is also discussed. Exploring such solutions is
made possible by the new FPGA programming frame-
works based on generic programming languages, such
as JBits, which allow an arbitrary amount of irreqular-
ity to be implemented even within an arithmetic core.
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1 Introduction

Multiplication by a constant value is very use-
ful in computational cores such as filters and
FFTs. From a hardware point of view, it is al-
most always a waste of space and time to use
a generic multiplier to implement a constant
multiplier. This is all the more true on recon-
figurable systems, where constants may eas-
ily, well, be changed. The coefficients of a fi-
nite impulse response (FIR) filter, for example,
may be adjusted during the life of this filter.
However, as soon as the lifetime of a coeffi-
cient significantly exceeds the reconfiguration
time, it makes sense to consider it a constant
and to optimize the FPGA configuration - here
the multipliers which input this constant — ac-
cordingly. In this work the word “constant”
will thus denote a value that is constant be-
tween two reconfigurations.

The purpose of this article is to explore the

design tradeoffs offered by current FPGAs for
constant multiplication. There are two novel
aspects to consider. First, the size of recent
FPGAs makes it possible to compute on large
numbers, up to 32 bit wide and more. This
invites us to explore new techniques for the
optimization of constant multipliers. Second,
new FPGA design tools (such as PamDC [5],
Xilinx JavaBits [6] or others [4]) embed a uni-
versal and powerful programming language
in the hardware description language. In our
case, this will allow a fair amount of constant-
dependent optimization to be embedded in
the program of a hardware constant multiplier
core .

Section 2 provides a survey of the general
problem of constant multiplication, with a fo-
cus on FPGA implementations. Our imple-
mentation of a variable size constant multi-
plier with constant-dependent routing is then
detailed in section 3. The last section describes
the roadmap of the work that this study sug-
gests.

2 Constant multiplication:
A survey

Most algorithms are just briefly introduced: a
more detailed description will be found in the
references given.

2.1 Multiple constant multiplications

The literature pays much attention to the case
of multiple constant multipliers appearing in fil-
ters like FIR, FFTs, or other vector-product



based filters for image or signal processing.
Techniques such as Multiple Constant Multi-
plications [12], Distributed arithmetics [12, 10,
11] and Multiple Constant Multiplier Trees [1]
(among other) have been developed to opti-
mize the shift-and-add subexpressions glob-
ally between the multipliers. There is proba-
bly still a lot of interesting results to come in
this field.

In the following of this paper, we will con-
centrate on the simpler case of a single, iso-
lated constant multiplication. The main rea-
son for that is one of simplicity. Nevertheless,
considering on one side the difficulty of global
optimization processes when the problem is
large, and on the other side the need for lo-
cality and regularity in the routing for perfor-
mance reasons, this work might also be useful
in the context of multiple constant multipliers.

Notations We will denote k the constant,
written on n bits, and z the variable to be mul-
tiplied, written on m bits.

2.2 Shift-and-add algorithms
for single constant multiplication

In this section we consider various existing
algorithms without regard to a hardware or
FPGA implementation: the cost unit will be
an addition or a subtraction.

2.2.1 Straightforward algorithm

The classical binary decomposition of the con-
stant k£ gives us the most straightforward algo-
rithm : if we write

n—1
k= 2k
=0
with k; € {0,1} , then we have
n—1 )
kx = Z 2'xk;
=0

The product 2'z is computed simply by shift-
ing the binary decomposition of x to the left,

and the number of actual additions in the pre-
vious sum is the number of 1s in the decom-
position of k. Thus this methods generates be-
tween 0 and n additions, with an average of
n/2.

2.2.2 Canonical signed recoding

A first variant of this algorithm (the origin of
which is unclear acording to Hwang [7]) is to
use some form of recoding of the bits of the
constant.. The idea is to express the constant
in a redundant digit system, typically {1, 0, 1}
where 1 has the value -1. A number like 0111
(=1+2+4) may then be recoded as 1001 (=8-1).
In the multiplication, a digit 1 is translated
into a subtraction (which usually has the same
cost as an addition). For any k there exists
a canonical representation where at least one
digit out of two is a zero, which means that
at most n/2 additions are needed for the con-
stant multiplication. It can also be shown that
such recoding generates an average of n/3 ad-
ditions.

2.2.3 Bernstein algorithm

The previous method, however, does not nec-
essarily produce the shortest shift-and-add
chain for a given constant multiplication (the
problem is believed to be NP-complete). For
example, if & = 657, one may check that
kx = (8x + x) + 8(8x + x) + 64(8x + x), which
means that the product may be computed by
only three additions and three shifts (re-using
the value 8z + z).

A well-known algorithm is due to Bernstein
[2]. It is a branch-and-bound method testing
recursively if k£ has numbers of the form 2¢ — 1
or 2 + 1 among its divisors. However the ex-
ponential complexity of this algorithm makes
it impractical even for 32-bits constants.

2.2.4 Lefevre algorithm

Lefevre has therefore recently proposed a
polynomial algorithm which is based on the



discovery of patterns in the binary represen-
tation of k [8]. This algorithm gives better
results than Bernstein’s even for small con-
stants, and allows constant multipliers up to
several thousands of bits to be generated. So
far it has only been implemented on micro-
processors to produce efficient constant multi-
plications by very large numbers for a specific
problem (the exhaustive worst-case search for
the correct rounding of floating-point func-
tion [9]). One of the purposes of our study is
to evaluate its suitability for an FPGA imple-
mentation, which could be useful for example
in cryptography applications.

2.3 Some FPGA implementations

This section explores in more details the con-
stant multiplier design space, in the case when
the area cost unit is one 4-input look-up table
(LUT), the elementary building block of FP-
GAs of the Xilinx 4000 and Virtex families.

2.3.1 The naive shift-and-add algorithm

There is a very straightforward implementa-
tion of this algorithm as an FPGA arithmetic
core which leads to a very regular structure.
The core consists of n stages. Each stage shifts
the result of the previous stage by one bit, and
either adds z to it or not, depending on the
value of the corresponding bit in the binary
code of k.

Although the final product will be coded on
m + n bits, it is easy to see that each adder
needs only be of size m: as x (shifted) is added
to the current partial sum, only the corre-
sponding bits of this sum participate in the ad-
dition. Therefore the size of this core is m x n.

Such a core is given in the current dis-
tribution of JBits as an example of run-time
parametrizable (RTP) core [6]. Due to its sim-
plicity and regularity, it is very fast to gener-
ate, although very wasteful in space.

2.3.2 The KCM algorithm

This algorithm, due to Chapman [3], is specif-
ically adapted to LUT-based FPGAs. It is
also the basis for Distributed Arithmetics ap-
proaches cited in 2.1. The idea is to break
down the binary decomposition of = into 4-bit
chunks (or, to express x in base 16):

[Tl ‘
T = x;.16"
i=0

=3

Now the product becomes

[
kx = kx;.16"
i=0

I3

and we have a sum of products kz;, each of
which can be computed by a 16 x n + 4 bits
look-up table, z; being the address. Here the
summation can take the form of an adder tree.
The area cost is [} ] x (n + 4) LUTs for the ta-
bles, plus the adder tree of depth log, [ 7| (the
adders being of growing size). In the best case,
when m is a power of two (at least 8), the LUT
cost of the adder tree is (% —1n+ % logy %,
counting one full-adder cell per LUT.
The total LUT cost of the KCM is thus
m m m
(3 —1)n+m+ Elog2 R
These formulas do exactly match the Xilinx
KCM core generator for Virtex [13]. Such a
core is also present in the current JBits distri-

bution, but only for 8 x 8 bit multiplier. Its size
is 8 x 6 LUTs.

3 A variable size constant multi-
plier using canonical recoding

Recent FPGA development tools such as Xil-
inx JBits allow us to relax two constraints
which oriented the design of the previous
cores:

e routing may be arbitrarily irregular even
within an arithmetic core, and

e the size of a core need not be known be-
fore compile time.



This section details and discuss the im-
plementation in JBits of a new core genera-
tor for constant multiplication which exploits
this new freedom. It is a rather straightfor-
ward implementation of the canonical recod-
ing idea. The size of the generated cores is at
most n x m/2 LUTs, and in average n x m/3
LUTs. These cores always have the form of a
rectangle of n LUTs height, so they can still be
integrated in datapaths.

This is, area-wise, a definite improvement
over the naive method, and even over the
KCM. The catch is that such a core genera-
tor needs to perform some kind of constant-
dependent routing.

3.1 Overview

Our generator first computes the canonical re-
coding of the constant, and then instantiates
a variable number of stages computing either
an addition or a subtraction, depending on the
bits of the recoding. Each stage i consists of m
full adder cells, and adds the contribution of
the i-th non-zero bit (either x or —z) to the par-
tial sum shifted by the appropriate amount.
The least significant bits of this partial sum
may be output directly, as they don’t appear
in any subsequent operation. Figure 1 shows
for example a multiplier by 221.
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Figure 1: A 8 x 8-bit multiplier by 221, using
the recoding 100100101

output test register

input test register
x=17

Multiplier by 221
Note the first slice
computing -x

Figure 2: The state view of a test of the multi-
plier by 221 in Boardscope.

This core generator consists in less than
1000 lines of heavily commented Java. It is
available for download at
www.ens—1lyon.fr/ fdedinec/recherche/

3.2 Implementation details

We target Virtex chips, where the adders may
be very efficiently implemented using the
dedicated fast carry logic. On Fig. 1, each grey
block is a LUT configured as a full adder, and
on Fig. 2, each small square represents the out-
put of a LUT (the LUTs are grouped by CLBs).
In a column of CLBs it is thus possible to place
two fast adder slices.

To implement the subtractions, we cannot
straightforwardly use the classical two’s com-
plement notation a — b = a + b + 1, where
the +1 is implemented as a carry input to the
adder. The problem is that we want each stage
to be only of size m, i.e. to operate on the bits
of the partial sum between the current bit i
and i + m. A carry in on the ith stage should
however be input on bit 0 of the partial sum,
and would therefore potentially entail a carry
propagation along the lower bits.

A solution would be to sum up all these
carries in at compile time, and then start the
sum (of x’s and Z’s) with this initial value.
We didn’t find a clever way to do that with-
out adding a slice of LUTs to the core, so
we implemented another solution which has
the same cost and other advantages: a first



slice computes —z, and then all the slices are
adders. Care must be taken however, when
we know that the current partial sum is nega-
tive, to perform a sign extension of this partial
sum, i.e. feed the free inputs with ones instead
of zeroes (see Fig. 1). One advantage of this
solution is that it makes the handling of two’s
complement signed numbers easy: as we al-
ready manipulate internally  and —x, oper-
ating on signed input and signed constants is
only a matter of setting the sign extension bits
properly (although this is not implemented
yet).

The core generator only synthesizes this
first —x slice when needed, which lead to a
small modification of the classical canonical
recoding algorithm: it recodes 3 as 101, which
in our case is more expensive as 11. Our re-
coding avoids this case, sometimes saving a
slice.

Figure 3: The core view and state
view in Boardscope, for multipliers
by 58995 = 10010011010010011, and
57344 = (1001)2'3

To implement the routing of the shifts, we
first wrote a “stitcher” [6] core which was a
simplified router able of doing only arbitrary
shifts. Then Xilinx released a new version of
JBits including an interface to a generic router,
and we switched to this one. This allows a
cleaner and safer interface of our core to other
JBits object, ensuring that no routing resource
conflict will occur. It also greatly simplified
our code. The drawback is that, being more
general, the Xilinx router is slower.

3.3 Experimental results

We extensively tested this constant multiplier
core generator, currently only under simula-
tion with the Boardscope tool. Unfortunately
we have not yet been able to make any mea-
sure nor estimation of the speed of the result-
ing cores, as we don’t own a Virtex board, and
JBits doesn’t take timing into account yet.

3.3.1 Area

We performed an exhaustive synthesis of all
the possible multipliers by 16-bit constants.
According to previsions, the smallest multi-
pliers use up no CLB (a multiplication by 0 or
a power of 2 is just wiring), the largest multi-
plier used 4x8 CLBs (i.e. 8 adders), and the av-
erage CLB count was 24.2, i.e. a little bit more
than 16/3 adders of 16 bits, due to the fact that
we sometimes add a slice to compute —x, and
also to the wasted slice when the core uses an
odd number of slices (because JBits core size
is counted in CLBs of 4 LUTs, not in LUTSs).

This is much better than the KCM. For ex-
ample, our 221 multiplier, which is the biggest
8-bit multiplier that our generator will synthe-
size, is one third smaller than the JBits equiv-
alent KCM (which in theory could be only 4
LUTs bigger, but is rounded up to the smallest
CLB bounding box).

3.3.2 Synthesis time

The time currently needed to synthesize a
constant multiplier core wouldn’t probably
qualify for a real-time reconfigurable core:
although the time to compute the canoni-
cal recoding of the constant £ is linear in n,
which means practically less than a milisec-
ond, computing the irregular routing takes
about 500ms per slice (strangely enough, it’s
almost independent on the size of the adders)
on a 400MHz Pentium, using Sun’s Java Run-
time Environment. This is to compare with
the 400 ms it takes to instantiate a full 8bit
KCM, whose implementation is more didac-
tical than optimized.



Note however that we weren’t using a just-
in-time compiler, so some improvement may
be expected there, depending on the evolution
of Java technology.

3.4 Discussion

This constant multiplier generator is mostly
intended to be a first demonstrator of the new
possibilities offered by tools such as JBits. We
should here briefly point several of its draw-
backs. A more detailed discussion, especially
of performance questions, can of course only
occur in the context of an actual use.

Currently, the least significant bits of the
result are not routed to a side of the core
(contrary to what Fig 1 could lead to be-
lieve). These outputs are JBits “ports”, acces-
sible to the router without necessarily having
to worry about their actual location. This is
a very convenient feature, but not necessarily
a desireable one from a performance point of
view.

More importantly, our cores will be difficult
to pipeline, both internally (due to the lack of
registers) and externally (due to the constant-
dependent timing). This is especially a prob-
lem as most filters involving constant multi-
plications may be heavily pipelined. It will be
interesting to see how irregular operators be-
have in such a context, but this study is defi-
nitely out of the scope of this paper.

4 Work in progress

4.1 Bernstein and Lefevre multipliers

We are currently investigating several other
techniques to minimize the number of addi-
tions. The question is, what size can we ex-
pect? It is easy to build a worst-case k (i.e.
the k£ which maximizes the number of adds
or LUTs) for most variants of Bernstein’s al-
gorithm, and this worst case is of the order
of n/2 additions. Lefévre algorithm is more
complex, and we haven’t built a generic worst
case. Exhaustive tests for n between 8 and 24
bits show that the algorithm never generates

more than 0.4n adders. This is however a mi-
nor improvement over the n /2 of canonical re-
coding, all the more as

o the size of the adders is no longer con-
stant, and it needs to be taken into ac-
count to evaluate the cost in LUTs of the
worst case, and

e the routing is here even more irregular
than in the canonical recoding case.

Experimental results [8] suggest that the
average number of additions produced by
Lefévre’s algorithm is O(n%®%), which is en-
couraging. For n = 32, the average number of
additions is 8, and for n = 64 it is 14.5. Here
again we still have to evaluate the CLB count,
since the size of the adders varies.

On the subject of routing, it is interesting
to note that Bernstein algorithm only gener-
ates additions and subtractions involving the
result of the previous stage and the initial z,
which is easier to route as the more general
shift-and-add chains of Lefévre’s algorithm.
However Bernstein is impractical for n greater
than 24, and we will concentrate on Lefévre’s
algorithm. For a small n, it is always possible
to put the two algorithms in competition and
to chose the best result for the core implemen-
tation.

Considering the previous study, our current
project is to

o adapt Lefevre algorithm to the limitations
of FPGAs, and evaluate the cost of its re-
sult more precisely (worst case and aver-
age, CLB count and not only add count),

e explore other algorithms (for example,
using double base number systems, or
compression algorithms a la Lempel-Ziv),

e implement the best algorithms in JBits,
o test the area and speed of these constant

multipliers in situation (in FIRs or FFTs
with real-world constants).



5 Conclusion

This paper is a survey of the constant multipli-
cation problem in the case of FPGAs. Its con-
tribution is to show that modern FPGA devel-
opment frameworks such as JBits, being based
on general-purpose programming languages,
allow designers to consider arithmetic cores
which are much more irregular than what was
previously possible. Arbitrarily complex opti-
mization can and must take place while pro-
gramming the “hardware” part of reconfig-
urable systems.

We have detailed the example of a constant
multiplier generator based on canonical re-
coding which, although conceptually simple,
is much better in terms of LUT usage than
the classical KCM approach. This example is
hopefully the first in a series of novel arith-
metic approaches for the configurable com-
puting era.
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