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Abstract

This paper introduces new tools for the exper-
imental study of the evolution of living systems.
It borrows the main ideas developed by T. Ray in
his evolution simulator Tierra, but addresses the
main weakness of this system, the linear topol-
ogy of its memory which is induced by addressing
by template. We define an execution model in a
two dimensional (2D) memory, in which sequen-
tial programs are stored on “threads” in the mem-
ory plane, and jump instruction are replaced with
physical thread connection. We present an im-
plementation of this 2D execution model and give
examples of programs, including a self-replicating
one. Then the use of this model for simulating
evolution is discussed.

1 Introduction

In trying to define a science of life which is more uni-
versal than what we may observe on Earth, fundamental
biologists rely more and more on abstract models and
computer simulations. Such models, often termed artifi-
cial life [4], may address several research fields. The first
is the study of the fundamental laws of metabolism, i.e.
the energetic aspects of living systems [5]. The second
one is to study the emergence of macroscopic behaviors
from the interaction of microscopic entities [10]. A third
aim of artificial life, which motivates this paper, is a bet-
ter understanding of the evolution process: its purpose
is to provide an artificial framework allowing us to carry
out experiments about evolution, instead of the mere o0b-
servation of our own terrestrial evolution process. Such
experiments are needed to abstract the universal laws of
evolution from the casual contingencies of the history of
the earth.

The first steps in this direction were the cellular au-
tomata (CA) of von Neumann [14], who only studied
self-replication. Among other, Langton [3] and Sipper
[11] also addressed the question of evolution. Meanwhile
Rasmussen et al. [7, 6] showed that a completely different
model, inspired from computer architecture, could also
be used in this domain. These ideas inspired T. Ray’s
Tierra simulator [8] providing the most spectacular sim-
ulations of evolution to date. In this model, the world

is a computer memory, and the living beings are self-
replicating computer programs, subject to mutation and
death mechanisms inspired from biological life. Exper-
iments using this system sometimes lead to the effec-
tive evolution of initial self-replicating programs towards
more and more efficient and more and more complex
ones. This simulator was also used and extended to study
adaptation and learning in such “living” systems [1].

However we see weaknesses in Tierra as a tool for the
study of artificial life. The first is the poor topology of
the substrate — a linear memory — which prevents the ap-
parition of complex interactions between more than two
neighboring creatures. This topology is a consequence
of one of the key features of the Tierra virtual com-
puter, the fact that memory locations are addressed by
their content (by template) instead of their address like
in conventional computers. As a consequence, a central-
ized operating system is needed for memory allocation,
to overcome this poor topology. Although it obviously
doesn’t prevent evolution from occurring, it is very dif-
ferent from what we know of Earth life, where all the
interactions are local in a three dimensional space. As
this question of locality is crucial in the study of self-
organizing behavior, we fear that Tierra may be unable
to simulate one of the major events in terrestrial evolu-
tion, the apparition of multicellularity.

A richer topology allowing one to truly exploit local-
ity is thus needed. Two dimensional CA are much older
than Tierra itself, however they are badly suited to the
study of evolution: they are too brittle, which means that
a small change in a “living” (able to self-replicate) orga-
nization has a very low probability of preserving this abil-
ity. The purpose of this paper is therefore to provide a
bridge between cellular automata and the Tierra model,
inheriting the topology of the first and the resistance to
mutation of the latter.

This question has already been addressed, e.g. in the
Computer Zoo [12] and Avida [2] systems. Both, how-
ever, separate a 1D space where the instructions are
stored (& la von Neumann) and execute themselves, and
a 2D “physical” space. Our system is both simpler and
closer to the real world, as there is only one space where
the programs both run and interact. This space is a
memory shared by all the programs, as in Tierra, but
this memory has a 2D topology. The von Neumann ex-



ecution model in 2D memory which we introduce is of
little practical use in computer science, but we feel it
addresses a need in the field of artificial life.

The remainder of this paper is organized as follows:
the following section discusses the topology of memory
accesses in conventional computers and in the Tierra vir-
tual computer, then introduces the notion of 2D memory.
Section 3 describes a virtual processor designed on top of
this notion, with some example programs. Then section
4 discusses the use of this virtual processor to study the
evolution of programs “living” in this 2D memory. Fi-
nally we draw conclusions from these initial experiments.

2 Memory topology

2.1 The von Neumann model

In computer science, the fact that the memory is monodi-
mensional, i.e. that its address space is linear, has been
a constant since the the very beginning: the Turing ma-
chine, an abstract model used to study the very founda-
tions of computing, is based on a linear ribbon on which
the data are written. The other example is the architec-
tural model on which most general-purpose computers
have been based, which is also due to von Neumann [13].
It consists basically of a processor communicating with
a memory. A memory location is accessed by its address
which is an integer. There are two operations possible
on this memory: store a data at a given address, or read
the data at a given address. We say that the memory
is monodimensional because its address space (the set of
the integers) is a monodimensional Euclidean space.

The processor contains a register usually called pro-
gram counter or PC, and indefinitely executes the same
cycle: read the program instruction stored at the ad-
dress held by PC, decode it, execute it, add 1 to PC,
and start again. The set of possible instructions may be
very simple or very complex, but it always contains some
instructions to read and write data at a given address in
memory.

Now to define a topology of the memory we have to
define a notion of distance between two memory loca-
tions. From a computational point of view, the relevant
distance is is not the distance between their addresses,
but rather the time it takes to access a memory loca-
tion from a read or write instruction stored in another
memory location. In the von Neumann model, this ac-
cess time to a data is independent from both memory
locations®. Therefore there is no need for more complex
address spaces: if the logical topology of the memory
is linear, the practical topology is such that each mem-
ory location is a direct neighbor to each other in terms of
access time. This is how the linear memory may be inter-

n current actual computers this is no longer true: there is a
hierarchy in the memory access times which exploits a notion of
locality. This doesn’t affect our argument.

preted for example as a two dimensional picture, without
any complexity overhead.

2.2 The Tierra virtual computer is not a von
Neumann computer

Ray himself made a similar analysis [9], but this anal-
ysis doesn’t hold for his own work: in the simplified
computer model used in the Tierra simulator, there is
no absolute address space. During memory operations
(and also jmp instructions) the memory location to ac-
cess isn’t defined by its address, but by its content (called
in this case a template). A local search must be per-
formed, from the PC location, to find this template.
Thus read/write/jump topology is actually 1D. Note
that, in compensation, the instruction mal allocating the
memory for a daughter program has no such restriction:
the daughter is allocated anywhere in the soup. Thus
mother/daughter topology is unrestricted, and therefore
inconsistent with the read/write/jump topology.

In the 2D systems designed so far (to our knowledge
Czoo [12] and Avida [2]) this inconsistency is even worse:
read /write/jump operations happen in some 1D program
space, while cell interactions happen partly in this pro-
gram space, partly in some 2D “physical” space which is
distinct from the previous. This works as far as evolution
is concerned, and actually it is somehow similar to the
1D DNA program in the 3D living cells of the biological
world. We intend, however, to simulate the most basic
level of “chemistry”: cells and cellularity may appear in
the run of the simulation but we don’t want to impose
them by an external controller.

Our motivation is therefore to reconcile the program
space and the physical space (as in cellular automata and
real world chemistry) and build a model in which reads,
writes, jumps, as well as daughter creation and other cell-
cell interaction, obey the same Euclidean 2D topology.
This unified space will be termed a 2D memory.

2.3 Two dimensional memory

The definition of a 2D memory is very straightforward:
the address of a memory location is a couple of integers
instead of a single integer. This couple may be viewed
as the coordinates of the location in a plane.

It is more difficult to define what a program is in such
2D memory: in the von Neumann model, a program is
a set of consecutive memory locations holding instruc-
tions. The order of execution of the instructions in time
reflects their order in the linear memory (only special
jump/goto/branch instructions break this order). The
execution of a program in 2D memory raises a new ques-
tion: which, of the 4 neighbors of an instruction, is the
instruction to be performed next? In other terms, how do
we map the (linear) time onto our bidimensional mem-
ory?



Figure 1: A program thread in 2D memory

We have studied two possible approaches. The first is
to store, in each memory location and in addition to its
data, an arrow pointing to the “next” memory location,
which is one of its neighbours: up, right, down or left
for instance. A program is then a sequence of instruc-
tions according to this succession relationship: when one
looks at the memory, a program appears as a thread
in this memory (Fig.1). The interesting thing is that
the notion of loops, implemented in linear memory using
a sequence of instruction including a jump instruction,
actually appears as a loop in 2D. There is no need for
a jump instruction, the thread simply drives to itself.
Moreover, what programmers call “loop nests” actually
appears as nests (Fig.2). In this figure, the instructions
labelled F are fork instructions, which have two possible
successors depending on the state of a flag.
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Figure 2: A loop nest in 2D memory

What we implemented — and will present in the re-
mainder of this paper — is a slightly more complex model,
such that the programs are invariant by rotation. To
ensure this property, no absolute orientation is stored
in the memory. Instead, the PC (within the processor)
holds this absolute direction along with the address of
the location it points. The memory locations only hold
a relative change to this direction for the next instruc-
tion: keep the direction (F for “forward”), turn right (R),
or turn left (L). The behavior of the PC is thus similar
to the head of a Logo turtle, as shown by Fig 3.

To clarify things, here is the basic cycle corresponding
to the von Neumann cycle: read the instruction pointed
to by the PC, execute this instruction, move the PC to
the next instruction (which is given by the PC orienta-
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Figure 3: Execution of a 2D program

tion), rotate the PC according to the direction change
(which is contained in this instruction), and start again.
Figure 3 shows four of these basic cycles. The arrow is
the PC orientation, and the instructions are not given,
only their direction change. Notice that the head (the
PC) first moves, then (possibly) rotates.

It is obvious that this execution model has the same
expressive power as usual sequential computers: one may
easily translate a sequential program into our model, by
copying all the non-jump instructions on a thread and
implementing the jump instructions as parallel threads
of mo operation instructions. Our first example will il-
lustrate that.

We now present our implementation of this execution
model, in a simple virtual processor whith a very re-
stricted instruction set.

3 Ziemia

Our implementation is aimed at simulating evolution
more than performing general-purpose computations.
We assume that the reader is familiar with the Tierra
virtual computer [8], from which we tried to keep the
main features, in particular the small number of instruc-
tions. Another feature we borrowed from Tierra is the
name, as Ziemia means “earth” in Polish.

One important difference between Ziemia and Tierra
is that in our virtual computer, the only data manipu-
lated are instructions: the Tierra language allows numer-
ical computations, that is manipulating data (numbers)
which are not present in the soup by themselves. Our
model is closer to biology (if one admits that the only
data manipulated by the DNA is amino-acids), but our
main motivation was to keep the instruction set as small
as possible. Performing computations is of course still
possible, as our first example will show.

3.1 The Ziemia virtual processor

A virtual processor consists of three address registers
called P (the PC), X and Y (each holding an address
and a direction), two data register called A and B (each
holding an instruction and a direction change), and a flag



used with some conditional instructions. In addition, the
processor possesses two stacks, one for data and one for
addresses.

A memory location holds a byte, in which two bits
code the direction change, one bit is used for memory
management, and five code the instructions. There are
therefore at most 32 different instructions, out of which
6 are currently unused.

The following array briefly describes the current in-
struction set:

NpO | No Operation 0

Npl | No Operation 1

LdA | Load A: A — (P)

A=B | A—B

X=P | X« P

X=Y | X «<Y

SXY | Swap X and Y

SAB | Swap A and B

RdAA | Read A: A — (X); flag set if (X) was Frk
WrA | Write A: (X) « A

Flw X follows the arrow it points

PsX | Push X on address stack; if full, set flag
PsA | Push A on instr. stack; if full, set flag

PpX | Pop X from addr stack; if empty, set flag
PpA | Pop A from instr. stack; if empty, set flag
APp | Discard top of addr. stack; if empty, set flag

IPp Discard top of instr. stack; if empty, set flag

A?B | Set flag if A=B

X?7Y | Set flag if X=Y

Run | Creates a new process whose P «+— X

New | X = random addr. in the neighborhood of P

Frk Fork: if flag set, move as usual,
otherwise go forward

MvF | Move X forward
MvR | Move X right
MvB | Move X backward
MvL | Move X left

3.2 Implementation and example

We implemented a simulator for this virtual computer.
We also had to write a 2D program editor which is very
different from a text editor used to edit usual programs.
This editor integrates a step-by-step debugger, which we
used to write and test simple programs such as that of
Fig.4. This figure is a screen dump of this editor: at
each memory location it shows the instruction and the
direction change stored there.

The program of Fig.4 performs the sum of two integers.
It implements the usual binary addition, using the stack
to store the carry bit. The threads composing this pro-
gram are clearly visible. It is entered at the upmost LdA
instruction (surrounded by two upwards arrows). The
address register X must point to the least significant bit

NEO Ngl Ngl NFO 0110 (6)
NEO Ngl NEO Ngl

NFO NEI Ngo Ngl Ngl = 01011 (11)

+ 0101 (5)

yLdhy
Neo Initially carry = 0:
E push a Np0
PsA on the jtack
NEO MvB MvB MvR RdA Move X Load two bits (a b)
F F R L to next bit into A and B
NEO SAB Flw
R R
NpO NpO NpO Flw RdA
F R F FoL
NEO PsA A?B
L F Sum bit = old carry
NpO SAB Frk —a=h:
g B E new carry = a\_i<
NpO WrA PpA NpO a=b?
F F R OF
NEO LgA
NpO NpO
F F a+b=1
NEO SAB New carry
F =old carry:
NEO PEA pop it
> Sum bit = 1
Np0 Np0 WzA AzB new carry = 0
Npo Npl Fzk Isit0?
NpO LdA PsA NpO
F F R P
NFO P;A

Sum bit =0
new carry = 1

Figure 4: Binary addition in Ziemia

NEO NEO NFO W;A SéB

of one of the numbers (written in binary using Np0O and
Np1) as on the figure. The execution of this program
mimics the flow chart given in the same figure. The in-
terested reader should refer to Fig. 3 to step through the
program.

4 Simulating evolution with Ziemia?

We programmed a complete system in the philosophy of
the Tierra simulator: several processors share the mem-
ory and execute different programs. The operating sys-
tem shares the simulation time between the processors,
and maintains a count of the errors they make during
their execution. Using this data, it removes the less suc-
cessful processors from the simulation, leaving their code.
In addition, several types of mutations may be applied
to the system. We only implemented “cosmic ray” mu-
tations, that is low-frequency random bit-flipping in the



memory?.

4.1  Self-replication

We injected, in an initially blank memory, an ancestor
which is the self-replicating program given in Fig.5. It
consists of several threads (a thread starts with a Frk in-
struction), some of them form loops. The whole program
loops on itself, starting bottom left (the boxed X=P in-
struction) with a smaller loop which copies a thread from
the mother program (pointed to by register X) to the
daughter program (pointed to by register Y). Each time
this copy loop encounters a Frk instruction, it pushes
on the address stack the corresponding location so as to
come back to it later when it has finished copying the
current thread. In this program we chose to end each
thread with a Np1 instruction: the copy loop thus stops
when it encounters this instruction, and pops the next
thread to copy from the address stack. If this stack is
empty the copy is terminated, and a Run instruction is
performed on the daughter program, creating a new pro-
cessor for it.

In our experiments, a growing population of this ances-
tor program is easily observed, but to date no significant
evolution occurred. Depending on the scheme by which

2In Tierra experiments, other kinds of mutations (such as copy
flaws) change little to the global evolution. We assume for a start
the generality of this result.
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Figure 5: Self-replicating program

programs are killed when the memory is saturated, it
is possible to have a stable population of this program
which resists mutations up to a certain rate. However,
mutations do not seem to create new “living” programs:
we observe new program loops with a sometimes com-
plex behaviour (as the 2D memory is mapped on a com-
puter screen we observe the apparition of various new
repetitive patterns) but these mutants, being unable to
self-replicate, are eventually killed by the system. Some-
times they invade the memory and make life impossible
even for the ancestor, resulting in the extinction of the
simulation, a phenomenon already described by Ray.

Very few experiments have been carried out yet, but
they have shown that our system is too brittle to support
an evolution process. The rest of this paper studies this
brittleness issue.

4.2 Addressing by template wversus physical
branching

A major difference between Tierra and Ziemia is the
absence of addressing by template, replaced, as we al-
ready showed, with physical branching (see Fig.4 and 5).
Addressing by template — a feature of Tierra borrowed
from biology — is actually the basis of the evolution in
the Tierra and Avida systems: the first significant muta-
tions leading to new self-replicating creatures are modifi-
cations of the templates. For example, parasites, whose
program don’t contain any copy loop, are obtained by
modifying the template structure of the Tierra ancestor
to spare this copy loop.

We believe that physical branching could play the
same role as addressing by template: in a memory sat-
urated with dead code, a wandering PC due to some
mutation has a high probability of encountering an “in-
teresting” program thread, just the same way as in Tierra
a mutated jmp instruction has a high probability of en-
countering the mutated template somewhere in the soup.
In a 2D topology, however, this probability is (very
roughly) squared, which increases brittleness. Besides,
the probability that this PC comes back to its initial
thread is very low, much lower than in the 1D case. This
is the main reason why a mutant doesn’t live.

We are considering various possible answers to this
problem. The idea is to tie somehow a wandering PC
to its initial program loop, for example by extending the
instruction set with a fork and push instruction to be
used in conjunction with a return instruction, in a way
similar to the sequential subroutine call of Tierra. An-
other possibility is to introduce copy flaw mutations that
preserve the threads.

4.3 Cellularity

The other fundamental difference between Ziemia and
Tierra is the existence, in Tierra, of a private memory



space for each program, a segment of memory which is
readable by all but on which only itself has the right
to write. This private space is compared, in the Tierra
metaphor, to the inside of a living cell protected by a
semi-permeable membrane.

The drawback of this private space option is to rely
on a centralized management system. Besides it is very
difficult, for topological reasons, to design an equivalent
in the 2D case. We therefore used a simpler scheme:
each memory location contains one bit telling whether it
is “alive” or “dead”. All the processes have the right to
write on “dead” locations, and none has the right to write
to “alive” locations. A memory location is set “alive”
each time it is accessed for reading or writing. The sys-
tem periodically and randomly sets blocks of memory
“dead”. Thus, as long as a process is running, its code
is kept “alive”. Once the process is removed, its code
remains flagged “alive” for a while, but is eventually set
“dead” by the system.

The strong point of this approach is that there is no
centralized cellularity: read/write access right is deter-
mined locally (another approach, more memory expen-
sive, is to store at each memory location an identity num-
ber of the only processor which has the right to write
there). To achieve our goals we will try and avoid a cen-
tralized cellularity mechanism, although we feel it is one
of the key features making evolution possible in Tierra.

5 Conclusions

The work presented in this paper has two clearly distinct
aspects. The first, concerning the domain of computer
science, is the definition of a sequential execution model
in bidimensional memory, validated by an implementa-
tion which allowed us to write several programs in this
model. This work is interesting in itself, mostly because
the absence of jump instruction makes structured pro-
gramming mandatory and spatially explicit (see the loop
nest and adder examples). This would be enough to try
and use it as a programming model for parallel process-
ing, but alas, to our knowledge, it is totally unrealistic
from a technological point of view.

The other aspect is more specifically the use of this
model to simulate evolution process in a world where,
like in the real one, the physical space and the functional
space are interdependent, and the interactions are local.
So far we were able to exhibit a self-replicating program
which is slightly more complicated than Tierra’s ances-
tor, but much simpler — and hopefully less brittle — than a
self-replicating 2D cellular automata. However evolvabil-
ity is unsuccessful so far: preserving a high-level property
such as self-replication is a known difficult problem. We
have identified weaknesses of our model and proposed
some solutions which remain to be explored. We are con-
fident in the model : the 2D topology in itself shouldn’t
be an obstacle to evolution, since biological life evolved

in a 3-D world, and Tierra in a 1-D one. Trying to solve
the current problems will help us learn more about the
underlying mechanisms and conditions of evolution.
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