Libraries of Schedule-Free Operators in Alpha

Florent de Dinechin
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
fdupont@irisa.fr

Abstract

This paper presents a method, based on the formalism of affine recurrence equations,
for the synthesis of digital circuits exploiting parallelism at the bit-level. In the initial
specification of a numerical algorithm, the arithmetic operators are replaced with their yet
unscheduled (schedule-free) binary implementation as recurrence equations. This allows a
bit-level dependency analysis yielding a bit-parallel array. The method is demonstrated on
the example of the matriz-vector product, and discuted.

1: Introduction

Consumer market applications tend to require more and more processing power, a typical
example of this trend being the need for real-time data compression or decompression in
applications like mobile phones or high-definition television. These computational needs
may only be matched by application-specific integrated systems, which have to be designed
and tested in a very short time because of economic pressure. To achieve the design of these
systems at a sensible cost, formal methodologies are needed to ensure that an architecture
matches its specification. In this paper we consider such a methodology, based on the
formalism of recurrence equations.

Affine recurrence equations (AREs) allow, on the one side, to express an algorithm at
a very high level of abstraction which doesn’t restrict its potential parallelism, and on the
other side to express implementations of this algorithm as any combination of regular soft-
ware (loop nests) and regular parallel hardware (processor arrays). Besides, there exists
a set of formal techniques allowing one to transform the specification into an implemen-
tation in an automatic or semi-automatic manner, while ensuring that the functionality is
preserved.

In this paper we address the synthesis, using ARE-based formalisms, of digital circuits,
that is circuits computing numerical values. Usual design flows for digital circuits yield par-
allel architectures whose granularity is that of a numerical value. However, these numbers
are implemented as fields of bits (words), and there is often some potential parallelism at
the granularity of the bit which remains unexploited. Exploiting this bit-level parallelism
may lead to architectures with bit-level pipelines, which may be either more efficient for a
given silicon cost (bit-parallel architectures), or of much lower silicon cost with roughly the
same computational power (bit-serial architectures).

There are technological reasons which make such architectures difficult to synthesize,
such as in some cases a higher clock frequency for the same computing power. We will
address these questions in the course of this paper. We believe, however, that the main
obstacle to bit-parallel architecture synthesis is simply the added degree of complexity of

managing this parallelism: one has to rely on libraries of arithmetic operators to lower
development time (e.g. datapath libraries), and these libraries impose a word granularity.

Therefore, we introduce the concept of schedule-free operator libraries: a schedule-free
operator is simply a system of affine recurrence equations (SARE) describing an arithmetic
operation at the most abstract level. For example a schedule-free multiplier may describe
a multiplication as performed “by hand” (see Fig.1), but without imposing an order on the
various bit-level computation involved.

The design process we propose is the following: a specification is written, simulated
and validated at the word level, i.e. using abstract datatypes (real or integer). Then an
automatic program transformation refines it into a functionally equivalent bit-level SARE,
using a library of schedule-free arithmetic operators. This bit-level SARE then undergoes
the classical synthesis process known as dependency projection, yielding a regular array of
bit-level processors.

When this design process is successful, it has several strong points.

e From an abstract specification on abstract datatypes, it leads to an efficient bit-level
design in an almost automatic manner.

e The word width is still a parameter at this stage, which allows one to simulate the
design for several values of this word width very easily, until it matches the precision
requirements of the specification.

e The design is highly portable, as it only consists of logical gates and flip-flops.

Unfortunately, this methodology does not always work: dependencies between or within
schedule-free operators may prevent the existence of an affine schedule for the whole appli-
cation. A solution, using non-standard representations of the numbers, is exposed.

This paper is organized as follows: in the first section, we introduce schedule-free opera-
tors by giving the recurrence equations for the addition and multiplication of real numbers
expressed in the usual fixed point binary representation. We also introduce the synthesis
methodology using AREs thanks to these examples, leading to bit-serial operators. In the
second section we detail the program transformation which turns a specification into its
bit-level version. We demonstrate the methodology on the simple algorithm of the matrix-
vector product, and discuss some issues raised by our approach.

2: Arithmetic operators as affine recurrence equations

This section introduces the basic concepts of the SARE formalism in the ALPHA lan-
guage. The algorithms taken as examples are the binary addition and multiplication, as
the corresponding SAREs will be the simplest of our schedule-free operators. The design
methodology is then introduced by synthesizing a bit-serial multiplier from these SAREs.
The interested reader is referred to [9, 15, 4] for a more extensive presentation of ALPHA.

2.1: SAREs in Alpha

Program 1 is a simple ALPHA program which describes a classical binary addition. AL-
PHA variables (here A, B, 8, X, C) denote data arrays defined over a domain which is a convex
polyhedron of some integer vector space Z". Here the domain of Cis {b| 0<=b<=W}, where
W is a size parameter defined in the header of the system: {W| W>1}. The values of a vari-
able are defined on each point of this domain through recurrence equations involving the

Program 1 Binary addition in ALPHA

1 system Plus: {W| W>1}

2 (A,B: {b|] 0<=b<W} of boolean)
3 returns (S: {b| 0<=b<=W} of boolean);

4 var

5 X: {b| 0<=b<W} of boolean;

6 C: {b| 0<=b<=W} of boolean;

7 let

8 X[b] = A[b] xor B[b] xor C[bl;

9 C[b] = case

10 {l =0} : 0[1;

11 {l b>0} : A[b-1] and B[b-1]

12 or A[b-1] and C[b-1]
13 or B[b-1] and C[b-1];
14 esac;

15 S[b] = case

16 {I b<w} : X[bl;

17 {1 b=Ww} : C[W];

18 esac;

19 tel;

other variables, arithmetic or logical operators, and affine dependencies allowing to access
the value of a variable at a different point (e.g. C[b] is defined as a function of A[b-1],
B[b-1] and C[b-1]). The case operator allows us to have several different expressions
defining the values of a variable over distinct sub-domains (see the equation defining C,
lines 9-14).

Program 2 describes the multiplication of two binary-coded fixed-point reals. A real
number z € [0...1[is coded as a bit string by _; ...b1by such that x = Zzo_lbi.T*W. The
product is performed as by hand (Fig.1), and only the W most significant bits are kept
(which means that the result is rounded). Each line of this figure is the product (logical and)
of one bit of the second operand by all the bits of the first one. These lines are accumulated
thanks to “calls” to the system Plus of Prog.1. Note that the local variables (defined by
the var keyword) are two-dimensional: the multiplication involves a two-dimensional array
of computations (see Fig.1).

This example introduces the use statement [4], which instantiates a regular collection of
subsystems. Line 9 should be read as follows:

“use a collection of instances of the system Plus, indexed by {m| 0<=m<W}, the value of
the size parameter being W for each instance. The inputs to the m-th instance are the m-th
lines of arrays Si and P (that is, Si[.,m] and P[.,m]), and the output goes to the m-th

1100 A =0.75
x 1010 B =0.625
b 0000
m; + 1100 p
+ 0000
+ 1100
0111/1000 X =0.46875

Figure 1. Product of two binary-coded fixed-point reals

Program 2 Binary multiplication in ALPHA

1 system Times: {W|W>1}

2 (A,B: {b|] 0<=b<W} of boolean)
3 returns (X : {b| 0<=b<W} of boolean);
4 var

5 P, Si: {b,m| 0<=b,m<W} of boolean;

6 So: {b,m| 0<=b<=W; 0<=m<W} of boolean;
7 let

8 P[b,m] = A[b] and B[m];

9 use {m| 0<=m<W} Plus[W] (Si,P) returns (So);
11 Si[b,m] = case

13 {l m=0} : O[1;

14 {l m>0} : So[b+1,m-1];

15 esac;

16 X[b] = So[b+1,Ww-1];

17 tel;

line of array So”. The use statement will be crucial to the new program transformation
introduced in this paper.

This description is very high-level, in the sense that it doesn’t contain any information
about the order of execution of the instructions (see equation defining P), and even less
architectural information. An architecture will be a refinement of this specification, as
described below.

2.2: Synthesis methodology using SAREs

We may now give a sketch of the synthesis flow using SAREs [9], as implemented in the
Mathematica-based program transformation environment MMALPHA.

A program like that of Prog.2 is first uniformized [12, 16] to remove the data broadcasts
and non-local communications. It is then scheduled, i.e. each computation of the program
is assigned an affine time function consistent with the data dependencies [3]. Finally an
affine change of basis is performed on the index space of each variable, so that one of the
indices represents the time at which this variable is computed, and the other indices specify
the processor on which the computation is performed, in some processor array whose shape
is given by the resulting domains of the variables.

When this process is carried on Prog.2, we get an abstract description of the architecture
described in Fig.2, whose core is partially given as Prog.3 (due to lack of space, some lines
are deleted).

In this program, the data arrays are still two-dimensional as in Prog.2, but now the
index t represents the time and the index m is the processor index in the linear array of
Fig.2. The declaration domains of the variables show that there are W processors (indexed
by m such that 0<=m<W), and that the m-th processor computes for 2m<=t<2m+W. Line 7
shows how A[t] is input at time t on the first processor (m=0), and line 8 shows how it is
then propagated from processor m-1 to processor m through two registers (implied by the
t-2 dependency). The computation equations of lines 11-14 are interpreted as hardware
operators, whereas the data translation equations are interpreted as registers. Finally the
last equation shows that the b-th bit of the result is output by the last (W-1-th) processor
at time b+2W-1. The complete program thus describes a virtual linear array (Fig.2a).

This design is still very abstract. Additional lower-level program transformations are
needed to turn control information present in the domains into systolic control variables [13].
In our example we get a bit-serial multiplier similar to Lyon’s [10]. The resulting ALPHA
program may then be translated [8] into structural VHDL for synthesis by commercial
VLSI CAD tools like Compass or Synopsys. We will come back to these transformations
in section 3.4.

Program 3 Fixed-point bit-serial multiplier

1 system times ...
2 var
3 AA,BB,So,A_FA,B_FA,in_FA,S_FA,Cout_FA:
4 {t,m| 0<=m<W; 2m<=t<2m+W} of boolean;
5 let
6 AA[t,m] = case
7 {| m=0} : A[t];
8 {| m>0}: AA[t-2,m-1];
9 esac;
10 BB[t,m] = ... ;
11 A_FA[t,m] = ... ;
12 B_FA[t,m] = AA[t,m] and BB[t,m];
13 S_FA[t,m] = A_FA[t,m] xor B_FA[t,m] xor Cin_FA[t,m];
14 Cout_FA[t,m] = ... ;
15 So[t,m] = case
16 {] t<2m+W} : S_FA[t,m];
17 {|l t=2m+W} : Cout_FA[t-1,m];
18 esac;
19 X[b] = So[b+2W-1,W-1];
20 tel
Alt]_, L L L
B[t] > — — —
T]]] ™ x[t-2W]
a: Interpretation of Prog.3 b: One cell of the final design

Figure 2. Fixed-point bit-serial multiplier

3: Using schedule-free operator libraries

The ALPHA language also allows the user to express data arrays with integer or real
abstract datatypes. For example the classical matrix-vector product is defined by the usual
recurrence equation below:

N
Vie{l...N} R;=)_ M;V;
j=1

This equation is implemented straightforwardly as the ALPHA SARE of Prog.4 where
we have serialized the summation by accumulating the partial results in C. The rest of this
paper discusses the bit-level synthesis of such a word-level specification.

Program 4 Matrix-vector product on abstract real data

1 system matvect:{N | 1<=N}

2 (M: {i,jl| 1<=1i,j<=N} of real;
3 V: {jl| 1<=j<=N} of real)

4 returns (R: {i| 1<=i<=N} of real);

5 var

6 C: {i,j| 1<=i<=N; 0<=j<=N} of real;

7 let

8 C[i,j] = case

9 {1 j=0} : o[d;

10 {1 >0} : C[i,j-11 + M[i,jI1*V[j];
11 esac;

12 R[i] = C[i,N];

13 tel;

3.1: Separate synthesis of the word-level array and of the operators

The first idea is to synthesize a word-level array for the matrix-vector product (we get
the very classical systolic array depicted by Fig.3a), to synthesize bit-serial operators as we
did in the previous section (a bit-serial adder consists of one full adder and two flip-flops),
then combine them to get a bit-level circuit as shown by Fig.3b.

a: The word-level array b: Its bit-serial cell

Figure 3. Bit-serial systolic array for the matrix-vector product

We won’t elaborate on this approach: it needs multidimensional scheduling techniques
[6] which haven’t been implemented in ALPHA yet. Note that it boils down to defining
libraries of bit-serial, that is scheduled, operators. The interested reader will find in [7] a
survey of the parameters to take into account in this case.

3.2: Bit-level refinement transformation

We introduce here an automatic program transformation that replaces, in a word-level
specification like Prog.4, the operators + and * with instances of the corresponding ALPHA

SAREs. The real variables are replaced with boolean ones, with one more dimension
holding the bit representation.

For simplicity we present only the fixed-point representation of the reals, but this work
may be straightforwardly adapted to integers. We haven’t considered floating point rep-
resentations yet: floating-point computations are based on fixed-point ones, but dynamic
(i.e. data-dependent) shifting is usually needed for the normalization of the representation.
This makes this kind of computations much less regular than fixed-point ones.

Our bit-level refinement transformation is performed in three steps.

First step: the operators are isolated by adding extra auxilliary variables, until they
only appear in equations containing one and only one operator, without any dependency
nor case statement. In our example the equation defining C, lines 8-11 of Prog.4, becomes:

aux1[i,j] = V[jl;

aux2[i,j] = M[i,j] * aux1[i,j]; -- operator *
aux3[i,j] = C[i,j-1];
aux4[i,j] = aux3[i,j] + aux2[i,jl; -- operator +
C[i,j] = case
{I j=0} : 0f[1;
{1 >0} : aux4l[i,jl;
esac;

The program transformations involved are not as trivial as it may seem, as we need to
define the domain of the extra variables. In our example this is rather straightforward:
the domain of each of the auxilliary variables has to be that of M. In the general case, the
domain of the extra variable depends on the arguments of the operation, but also on the
context of this operation. Consider the following equation:

C[i,j] = case

{l i=j} : M[i,j] + C[i,3] ;
esac;
In this case the domain of the extra variable aux[i,j] = M[i,j] + C[i,j]; would not be
the domain of M (a full matrix) but only its diagonal defined as {i,j| 1<=i,j<=N; i=j}.
The purpose of this first step is therefore to compute the domain of the operators: in the
last example the + describes a linear collection of additions placed on the diagonal of a
square matrix, and the domain of aux must be defined as this domain.

The rules allowing us to compute the domains of the extra variables are deduced from
the denotational semantics of ALPHA, and computed thanks to operation on polyhedra [14]
which are well known and already widely used in the MMALPHA environment [5].

Second step: a parameter, W, is added to the system, representing the word size, and all
the domains of the variables are augmented by one dimension (indexed by {b| 0<=b<W})
denoting the bit representation. Then all the expressions of the program are modified to
take into account the extra dimension: a recursive search over the expression trees extends
the dimensions of the case domains and affine dependencies.

Third step: an operator equation generated in the first step is replaced with a use
statements describing the same collection of operations, using subsystems from a schedule-
free operator library.

In our example, the variable aux4, extended at the second step:

aux4[i,j,b] = aux3[i,j,b] + aux2[i,j,b]; -- operator +

is replaced with:

use {i,jl| 1<=1i,j<=N} Plus[W] (aux3, aux2) returns (aux4);

In this use line, there is a domain which describes the shape of the collection of instances
of the system Plus. This domain is taken as the domain of aux4 defined in the first step:
remember that this domain exactly described the shape of the collection of additions to be
performed. Thus this use line describes the same collection of additions as in the initial
program, only at the bit level, and thus the functionality of the program is preserved.

3.3: Synthesis of the bit-level architecture

Now we have automatically derived a SARE specification of the bit-level array, which
may undergo the synthesis process. For this the operator subsystems (Plus and Times in
our example) need to be inlined [4] (currently the MMALPHA tools don’t allow the schedul-
ing and space/time projection of structured SAREs). Uniformization of the dependencies
may be performed before or after inlining. Finally the resulting system is scheduled and
space/time transformed, yielding a systolic array. This scheduling takes into account the
dependencies at the bit level, therefore the operators are pipelined at the bit level. Besides,
we still have at this point a parameterized design where we may vary the bit size and the
parameters of the problem (here W and N).

In the case of the matrix-vector product, we get a 3-dimensional array (three processor
indices, one time index). We do not give the ALPHA SARE due to lack of space. For
synthesis, the three processor indices need projecting on a 2-dimensional space (the chip)
as represented in Fig.4. Note that some local data transfers in the 3-dimensional array lead
to long (but still regular) wires in the actual circuit. The figure shows the bit arrays for
each matrix or vector element, input and output in a parallel skewed manner (the isochrone
lines are also shown). As previously, we read from the ALPHA program that, if the first bit
of the matrix is input at time 0, the b-th bit of output vector element R; is output from
the X output of the last line of full adders at time Tg(b,i) = b+ i+ N +2W + o(1).

It is interesting to note that this array has a latency linearly better than that of the
bit-serial array, while its silicon cost is linearly worse. One may also check that, with only
a little more control, this circuit may be used to perform several matrix-vector products in
a pipelined manner.

] — — — r
!
1 7/
- 52 N e B R / T
ﬁi M12 M3, ‘ I !
M1 1
P (] (] (]
t=0 ,’ A B
e e D K N B B VA |]] |] ! o FAco——{ -
1 [~ X
N
TN - — — — AN 5
/\ /*\ i *] *
£8s gas==—= s RN - - /] ,
1 \ ,/
—— \ - — — ’
3\ L ’
e /
\
\
t=N+2W \4 H H H %
- - - -]
1 1 1 1

Figure 4. Bit-parallel systolic array for the matrix-vector product

3.4: Complexity and VLSI implementation issues

Let us try and compare the time and space cost of our approach with that of a more
standard (typically, datapath) synthesis. The area of a datapath multiply-and-add is always
roughly proportional to W2, just as in our circuit, but our circuit involves more registers
and more control (a register is about as big as a full adder). We will therefore need to
evaluate this area issue on an experimental basis.

Now let us discuss the clock frequency. Our bit-parallel circuit outputs one value each
clock cycle thanks to the bit-level pipeline, just like the datapath version. However, looking
at Fig.4, we see that the critical path of our circuit goes only through one and gate and
one full adder, whatever the word width. This is much shorter than the critical path of any
datapath multiply-and-add. Therefore we may hope to clock our circuit much higher than
its datapath equivalent, and almost independently from the word width.

The point is that we then have W times more clock nets in our design than in the
datapath version (in Fig.3a the clock net is only W x N big). The design of clock trees for
synchronous circuits is an ever-increasing part of the development cost, and our approach
obviously makes this task even more complex. Here again, a full experiment is needed.
Preleminary results, however, are very encouraging. Besides the regularity of the circuit
greatly simplifies the design of the clock tree. In particular, uniformizing the clock skews
will be made easy by the fact that all the cells are identical. Automatic tools for synthesising
regular clock trees are indeed possible, the main difficulty, for us, being that they don’t fit
well in the ARE framework (trees are not affine data structures expressible as polyedra).

3.5: Generality issues

Another important question is the range of algorithms which will have interesting bit-
parallel implementations thanks to schedule-free operators. Obviously we have to restrict
ourselves to algorithms whose word-level version has an affine schedule. Among these
algorithms, it is difficult to know in advance those which will benefit from a bit-level
approach: this requires a dependency analysis which is no simpler than that performed by
the ALPHA scheduler. Our experience shows that it works for most algorithms based on
sums of products (such as convolutions and basic matrix operations).

It is easier, however, to point out algorithms which surely won’t benefit from a bit-level
dependency analysis. To start with, the previous schedule-free addition operator involves a
carry propagation, which is a data dependency from the least significant digits to the most
significant ones. Division algorithms produce their results most significant digits first (see
the division “by hand”). This means that no efficient bit-pipelined architecture is possible
using both of these operators.

A well-known solution is the use of another representation of the numbers: hardware
implementations of the division operation, for example, usually rely on redundant digit
sets [1, 11] for this reason. We have implemented some operators in binary-signed (BS)
arithmetics [2]. In this case the addition may be performed in parallel (there is no carry
propagation), and therefore doesn’t constrain the schedule. It is also the case of the mul-
tiplication (although a schedule most significant bits first requires a diffusion, i.e. a one-
to-all communication). Similarly most basic operators may be scheduled most significant
bits first. We still have to evaluate the cost and efficiency of circuits designed using a BS
schedule-free library.

4: Conclusions and future work

This paper is a contribution to the the field of computer-aided design of digital circuits,
extending a standard methodology based on systems of affine recurrence equations. We
provide an automatic tool for translating a high-level algorithmic specification, operating
on words (integers or reals), into an equivalent bit-level one. This tool replaces the word-
level operators of the initial specification with their bit-level counterpart, expressed as yet
unscheduled ALPHA SAREs. When synthesizing this bit-level specification, we get bit-level
designs which are more portable than datapath implementations, very efficient thanks to
bit-level dependency analysis, and fully parameterized.

Our current work on this topic is an evaluation of the quality of the circuits obtained
through these techniques. Preliminary results are very positive. Future works include, in the
short term, the completion of the synthesis flow down to silicon (that is, structural VHDL
plus placement directives), and also the extension of these techniques to more operators
and more number representations.

References

[1] A. Avizienis. Signed-digit number representations for fast parallel arithmetic. IRE Transactions on
Electronic Computers, 10:389—-400, 1961.

[2] Jean-Claude Bajard, Jean Duprat, Sylvanus Kla, and Jean-Michel Muller. Some operators for on-line
radix-2 computations. Journal of Parallel and Distributed Computing, 22(2):336-345, August 1994.

[3] A.Darte and Y. Robert. Constructive methods for scheduling uniform loop nests. IEEE Trans. Parallel
Distributed Systems, 5:814-822, 1994.

[4] Florent de Dinechin, Patrice Quinton, and Tanguy Risset. Structuration of the Alpha language. In
W.K Giloi, S. Jahnichen, and B.D. Shriver, editors, Massively Parallel Programming Models, pages
18-24. IEEE Computer Society Press, August 1995.

[5] Florent de Dinechin and Sophie Robert. Hierarchical static analysis of structured systems of affine
recurrence equations. In Application Specific Array Processors. IEEE Computer Society Press, August
1996.

[6] Paul Feautrier. Some efficient solutions to the affine scheduling problem, part II, multidimensional
time. Int. Journal of Parallel Programming, 21(6):389-420, December 1992.

[7] P. Frison, P. Gachet, and P. Quinton. Designing systolic arrays with DIASTOL. In S.Y. Kung, R.E.
Owen, and J.G. Nash, editors, VLSI Signal Processing II, pages 93—105. IEEE Press, November 1986.

[8] Patricia Le Moénner, Laurent Perraudeau, Sanjay Rajopadhye, Tanguy Risset, and Patrice Quin-
ton. Generating regular arithmetic circuits with AlpHard. In Massively Parallel Computing Systems
(MPCS’96), pages 429-436, May 1996.

[9] Hervé Le Verge, Christophe Mauras, and Patrice Quinton. The Alpha language and its use for the
design of systolic arrays. Journal of VLSI Signal Processing, 3:173-182, 1991.

[10] R. F. Lyon. Two’s complement pipeline multipliers. IEEE Trans. Comm., 24:418-425, April 1976.

[11] Stuart F. Oberman and Michael J. Flynn. An analysis of division algorithms and implementations.
Technical Report CSL-TR-95-675, Stanford University, July 1995.

[12] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthesizing systolic arrays from recur-
rence equations with linear dependencies. In Sixzth Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 488-503, New Delhi, India, Dec 1986. Springer Verlag, LNCS
No 241.

[13] Jiirgen Teich and Lothar Thiele. Control generation in the design of processor arrays. Journal of VLSI
Signal Processing, 3:77-92, 1991.

[14] D. Wilde. A library for doing polyhedral operations. Publication Interne 785, IRISA, Rennes, France,
December 1993. Also published as INRIA Research Report 2157.

[15] Doran K. Wilde. The Alpha language. Publication Interne 827, IRISA, Campus de Beaulieu, 35042
Rennes Cedex, France, January 1994.

[16] Yoav Yaacoby and Peter R. Cappello. Converting affine recurrence equations to quasi-uniform recur-
rence equations. In AWOC 1988: Third International Workshop on Parallel Computation and VLSI
Theory. Springer Verlag, June 1988. See also, UCSB Technical Report TRCS87-18, February 1988.

