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This paper presents methods based on the formalism of affine recurrence equations for the synthesis of bit-level
regular architectures from word-level (integer or real) algorithms. Because of bit-level dependency analysis, the
arrays have optimal efficiency. We present two possible design flows leading to architectures based either on
bit-parallel or bit-serial operators. The first one is fully automated.

1. INTRODUCTION

The formalism of Systems of Affine Recurrence
Equations (SAREs) [5] is widely used for the de-
sign of regular parallel hardware for real-time
signal-processing applications. It allows the step-
wise refinement of an algorithm, from a very high
level functional specification, down to a range
of implementation-level descriptions suitable for
simulation, compilation to sequential or parallel
code, or hardware synthesis [10]. Alpha [8] is a
strongly typed functional language based on the
SARE formalism. The MmAlpha environment
provides a set of automatic and semi-automatic
tools to manipulate Alpha programs. These
tools are formally proven to preserve the seman-
tics of the specification.

One strong point of Alpha is the possibility of
organizing SAREs into hierarchical modules [2].
So far these modules have been used at the top
of the design flow (for the structured specifica-
tion and analysis of algorithms), and at the bot-
tom (to express hierarchical hardware designs).
This paper shows how structuring may also be
exploited in the synthesis design flow, for the au-
tomatic refinement of word-level algorithms into
their bit-level equivalent.

An high-level algorithm is usually defined to
operate on words of data which have abstract
data-types, such as integer or real. The synthesis
of such an algorithm, using the Alpha environ-
ment, gives an abstract systolic array also oper-
ating on words. At the implementation level, we
have to convert these words to bit array repre-
sentations, and replace operators on words, like
+ or ×, with hardware components processing
such bit arrays. So far, we had to use library

(e.g. data-path) operators, which has the draw-
back of ignoring the possible bit-level parallelism.
Our motivation was to change and improve this
situation. For this purpose we present a new pro-
gram transformation, to perform this bit-level re-
finement within the Alpha environment. Thus a
word-level algorithmic description may undergo a
bit-level dependency analysis and synthesis.

Depending on the step of the design-flow at
which this bit-level refinement is made, a range
of architectures may be obtained with various
space/time complexity tradeoffs, using either bit-
parallel or bit-serial operators [3]. In addition,
this technique also keeps the design parameter-
ized to a very late stage, another advantage on
the library component approach. We demon-
strate our ideas on the simple example of a real
matrix-vector product in fixed point arithmetic,
for which we give two possible architectures.

The organization of the paper is the following.
In the next section, we present the Alpha lan-
guage and environment. The third section details
the synthesis leading to a bit-parallel design. The
fourth section focuses on arrays using bit-serial
operators synthesized in section 2.

2. THE ALPHA ENVIRONMENT

2.1. The Language

We introduce here the main features of the lan-
guage with the help of Prog.1, a simple Alpha

program which describes a classical binary adder.
The interested reader is referred to [14, 2] for an
extensive description of the language in its cur-
rent version.

Alpha variables (here A, B, S, X, C) denote
data arrays defined over a domain which is a con-



Program 1 Binary addition in Alpha

1 system Plus: {W| W>1}

2 (A,B: {b| 0<=b<W} of boolean)

3 returns (S: {b| 0<=b<=W} of boolean);

4 var

5 X: {b| 0<=b<W} of boolean;

6 C: {b| 0<=b<=W} of boolean;

7 let

8 X[b] = A[b] xor B[b] xor Cin[b];

9 C[b] =

10 case

11 {| b=0} : 0[];

12 {| 1<=b} : A[b-1] and B[b-1]

13 or A[b-1] and C[b-1]

14 or B-1[b-1] and C[b-1];

15 esac;

16 S[b] =

17 case

18 {| b<W} : X[b];

19 {| b=W} : C[W];

20 esac;

21 tel;

vex polyhedron of some integer vector space ZZ
n.

Here the domain of C is {b| 0<=b<W}, where W

is a size parameter defined in the header of the
system: {W| W>1}. The values of a variable are
defined on each point of this domain through re-
currence equations involving the other variables,
arithmetic or logical operators, and affine depen-
dencies allowing to access the value of a variable
at a different point (e.g. C[b] is defined as a
function of A[b-1], B[b-1] and C[b-1]). The
case operator allows us to have several different
expressions defining the values of a variable over
distinct sub-domains (see the equation defining C,
lines 9-15).

Program 2 describes the product of two binary-
coded fixed-point reals. A real number x ∈
[0 . . . 1] is coded as a bit string bW−1 . . . b1b0 such
that x = ΣW−1

i=0
bi.2

i−W . The product is per-
formed as by hand (Fig.1), and only the most
significant bits are kept. Each line of this fig-
ure is the product (logical and) of one bit of
the second operand by all the bits of the first
one, and these lines are accumulated thanks to

Program 2 Binary multiplication in Alpha

1 system Times: {W|W>1}

2 (A,B: {b| 0<=b<W} of boolean)

3 returns (X : {b| 0<=b<W} of boolean);

4 var

5 P, Si: {b,m| 0<=b,m<W} of boolean;

6 So: {b,m| 0<=b<=W; 0<=m<W} of boolean;

7 let

8 P[b,m] = A[b] and B[m];

9 use {m| 0<=m<W} Plus[W] (Si,P)

10 returns (So);

11 Si[b,m] =

12 case

13 {| m=0} : 0[];

14 {| m>0} : So[b+1,m-1];

15 esac;

16 X[b] = So[b+1,W-1];

17 tel;

“calls” to the system Plus of Prog.1. Note that
the local variables (defined by the var keyword)
are two-dimensional: the product involves a two-
dimensional array of computations (see Fig.1).

This example introduces the use statement,
which instantiates a regular collection of subsys-
tems. Lines 9-10 should be read as follows:
Use a collection of instances of the system Plus,
indexed by {m| 0<=m<W}, the value of the size pa-
rameter being W for each instance. The inputs to
the m-th instance are the m-th lines of arrays Si

and P, and the output goes to the m-th column of
array So.

This description is an high-level SARE, in the
sense that it doesn’t contain any information
about the order of execution of the instructions
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Figure 1. Product of two binary-coded fixed-
point reals



(see equation defining P), and even less architec-
tural information.

2.2. The tools

We now present MmAlpha, a Mathemati-
ca-based program transformation environment
which allows us to derive implementation-level
descriptions from high-level Alpha programs.
We focus here on hardware synthesis, although
imperative code [12] and data-parallel programs
[11] may also be generated.

The reader is referred to [8] for a detailed de-
scription of the synthesis flow. A program like
that of Prog.2 is first analyzed (type-checked) to
ensure the consistency of the domains and expres-
sions. Then it is uniformized [13, 15] to remove
the data broadcasts and non-local communica-
tions. It is then scheduled, i.e. each computation
of the program is assigned an affine time function
consistent with the data dependencies [1]. Finally
an affine change of basis is performed on the in-
dex space of each variable, so that one of the in-
dices represents the time at which this variable is
computed, and the other indices specify the pro-
cessor on which the computation is performed, in
some processor array whose shape is given by the
resulting domains of the variables.

When this process is carried on Prog.2, we get
an abstract description of the architecture de-
scribed in Fig.2, whose core is partially given
as Prog.3 (due to lack of space, some lines are
deleted).

In this program, the data arrays are two-
dimensional as in Fig.2, the index t represents
the time and the index m is the processor index
in the linear array of Fig.2. The declaration do-
mains of the variables show that there are W pro-
cessors, and that the m-th processor computes for
2m<=t<2m+W. Line 8 shows how A[t] is input at
time t on the first processor (m=0), and line 9
shows how it is then propagated from processor
m-1 to processor m through two registers (implied
by the t-2 dependency). The computation equa-
tions of lines 13-15 are interpreted as hardware
operators, whereas the data translation equations
are interpreted as registers. Finally the last equa-
tion shows that the b-th bit of the result is out-
put by the last (W-1-th) processor at time b+2W-1.

The complete program describes a virtual linear
array (Fig.2) composed of elementary cells similar
to the first W − 1 cells of Lyon’s multiplier [9].

Additional program transformations will lead
to a program which may be interpreted as low-
level hardware, expressed in a subset of Alpha

called AlpHard[7] which has the following char-
acteristics:

• hierarchical structuring (because design
process is itself hierarchical);

• genericity (to allow for reuse of compo-
nents);

• regularity.

AlpHard is organized in three levels: the low-
est one is composed of two types of purely tem-
poral systems, one describing elementary proces-
sors, and the second one expressing the initial-
ization of the circuit’s control signals. The next
level specifies the spatial combination of compo-
nents: for instance, the instantiation of a linear
array of identical processors and the description
of internal and external connections of the net-
work. The highest level describes the interface
– which is not always pure hardware – between
the circuit and its environment. The transforma-
tion of an array expressed in Alpha into an Al-

pHard description involves several steps (control
synthesis, space-time decomposition of the equa-
tions, hierarchical organization) which we won’t
present here due to lack of space.

X[t-2W]

A[t]
B[t]

Figure 2. Bit-serial systolic array for the fixed-
point multiplication

2.3. A matrix-vector product

The Alpha language also allows the user to ex-
press data arrays with integer or real abstract



Program 3 Fixed-point multiplier in Alpha

1 system times ...

2 var

3 AA,BB,So,A_FA,B_FA,in_FA,S_FA,Cout_FA:

4 {t,m| 0<=m<W; 2m<=t<2m+W} of boolean;

5 let

6 AA[t,m] =

7 case

8 {| m=0} : A[t];

9 {| m>=1}: AA[t-2,m-1];

10 esac;

11 BB[t,m] = ... ;

12 A_FA[t,m] = ... ;

13 B_FA[t,m] = AA[t,m] and BB[t,m];

14 S_FA[t,m] = A_FA[t,m] xor B_FA[t,m]

15 xor Cin_FA[t,m];

16 Cout_FA[t,m] = ... ;

17 So[t,m] =

18 case

19 {| t<=2m+W-1} : S_FA[t,m];

20 {| t=2m+W} : Cout_FA[t-1,m];

21 esac;

22 X[b] = So[b+2W-1,W-1];

23 tel

datatypes. The classical matrix-vector product is
defined by the usual recurrence equation below:

∀i ∈ {1 . . . N} ci =

N∑

j=1

aijbj

This equation is implemented straightfor-
wardly as the Alpha SARE of Prog.4 where we
have serialized the summation by accumulating
the partial results in C.

The rest of this paper discusses the bit-level
synthesis of such word-level specifications. The
main point is to replace the abstract datatypes
(real in our example) with their bit representa-
tion in order to synthesize real VLSI arrays. The
simplest way to do this is to use library compo-
nents (e.g. datapath operators). This method
has several advantages (the simplicity of using of-
the-shelf component, the availability of the latest
VLSI technology) and one main drawback: we
leave the SARE world, thus discarding the possi-
ble advantages of a bit-level dependency analysis.

Program 4 Matrix-vector product on abstract
real data

1 system matvect :{N | 1<=N}

2 (M: {i,j| 1<=i,j<=N} of real;

3 V: {j| 1<=j<=N} of real)

4 returns (R: {i| 1<=i<=N} of real);

5 var

6 C : {i,j| 1<=i<=N; 0<=j<=N} of real;

7 let

8 C[i,j] =

9 case

10 {| j=0} : 0[];

11 {| j>0} : C[i,j-1] + M[i,j]*V[j];

12 esac;

13 R[i] = C[i,N];

14 tel;

We present two possible design flows: the first
(sect.3) called the bit-parallel approach replaces,
within the specification of the algorithm, the
word-level operators with specifications of their
bit-level implementation. For example the opera-
tor × is replaced in Prog.4 with the specification
of the multiplier of Prog.2. This gives a specifica-
tion which may then be scheduled and space/time
transformed.

The second approach (sect.4) first indepen-
dently schedules the specifications of the algo-
rithm and the specification of the bit-level op-
erators. This leads to a word-level array for the
algorithm, and bit-level arrays for the operators.
Then both are combined.

3. BIT-PARALLEL APPROACH

3.1. Simple Bit Extension

We introduce an automatic program transfor-
mation that replaces + and × with instances of
the corresponding Alpha SAREs. For this pur-
pose, one dimension is added to all the arrays of
the real program, holding the bit array represen-
tation of each real. The bit size is parameterized.

For simplicity we present only the fixed-point
bit representation of the reals. This work, how-
ever, may be straightforwardly adapted to inte-
gers (using unsigned, two’s complement or Avize-



nis’ redundant binary signed representation). We
haven’t considered floating point representations
yet, but there is no theoretical obstacle apart
from slightly reduced regularity.

This transformation is performed in four steps.

• First the operators are isolated by adding
extra auxilliary variables, until they only
appear in equations containing one and only
one operator, without any dependency nor
case statement, like the following:
A[i,j] = B[i,j]+C[i,j];

The transformations involved (e.g. to com-
pute the domain of the extra variables) are
well known and already used in the MmAl-

pha environment.

• Then a parameter, W, is added to the sys-
tem, representing the word size, and all the
variable declarations are augmented by one
dimension (indexed by {b| 0<=b<W}) de-
noting the bit representation.

• Then all the expressions of the program
are modified to take into account the ex-
tra dimension: a recursive search over the
expression trees extends the dimensions of
the case domains and affine dependen-
cies. This again involves well-known SARE
transformations.

• Finally, operator equations generated in the
first step:
A[b,i,j] = B[b,i,j]+C[b,i,j]

are replaced with use statements like the
following:
use DA Plus[W] (B,C) returns (A);

where DA is the declaration domain of A

before the bit extension. This use line de-
scribes a collection of instances of system
Plus corresponding to the collection of in-
stances of additions expressed by the equa-
tion.

3.2. Bit-parallel Design Flow

Now we have automatically derived a spec-
ification of the bit-level array, which may un-
dergo the synthesis process. All the systems
(matvect, Plus and Times in our example) may

be uniformized. Then the subsystems are in-
lined [2] and the resulting system is scheduled and
space/time transformed, yielding a systolic array.
The important point is that the scheduling takes
into account the dependencies at the bit level.
Thus the operators are pipelined maximally. Be-
sides, we still have at this point a parameterized
design where we may vary the bit size and the
parameters of the problem (here W and N).

k

i

m

0<=k<N
0<=m<W
0<=i<W

Figure 3. Three-dimensional virtual array for the
fixed point matrix-vector product

In the case of the matrix-vector product, we get
a 3-dimensional array (three processor indices,
one time index) represented in Fig.3 (we do not
give the Alpha code due to lack of space). For
synthesis, the three processor indices need pro-
jecting on a 2-dimensional space (the chip) as
represented in Fig.4 and Fig.5. In these figures
the arrows on the wires represent delays (regis-
ters). Note that some local data transfers in the
3-dimensional array lead to long (but still regular)
wires in the actual circuit. The thick grey lines
describe the bit arrays for each matrix or vector
element, input and output in a parallel skewed
manner. As previously, we read from the Alpha

program that, if the first bit of the matrix is input
at time 0, the b-th bit of output vector element
Ri is output from the X output of the last line of
full adders at time:

TR(b, i) = b + i + N + 2W + o(1)
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Figure 4. Bit-parallel systolic array
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Figure 5. One cell of the bit-parallel array

One may check that, with only a little more
control, this circuit may be used to perform sev-
eral matrix-vector product in a pipelined manner.

The completion of the chain of transformations
down to an AlpHard program is still under de-
velopment.

4. BIT-SERIAL APPROACH

4.1. The Abstract Array

Serializing and scheduling the real matrix-
vector product yields a SARE whose core is given
as Prog.5, which represents a classic systolic ar-
ray (Fig.6) similar to Kung and Leisersons’ [6] but
with unidirectional data-flow. In this figure, the

registers are drawn as boxes. Program 5 shows
that the output Ri is output from processor i− 1
at time TR(i) = i + N − 2. Note the time index
t and the processor index p.

Program 5 Core of the scheduled Matrix-Vector
Product

1 Vr[t,p] =

2 case

3 {| 0<=t<N; p=0}: V[t+1];

4 {| p<=t<p+N; 1<=p<N}: Vr[t-1,p-1];

5 esac;

6 Mr[t,p] = M[p+1,t-p+1];

7 C[t,p] =

8 case

9 {| t=p-1}: 0[];

10 {| p<=t}: C[t-1,p] + Mr[t,p]*Vr[t,p];

11 esac;

12 R[i] = C[i+N-2,i-1];
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M[2,1]
M[2,2]
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-

V
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1
]

V
[
2
]

V
[
3
]

R[1]
R[2]

R[3]

-
-

-
- -

p=1 p = N

Figure 6. Real-typed systolic array for the
matrix-vector product

4.2. Bit Extension in a Scheduled Design

The bit-extension can be done at this point or
at the end of the transformation to AlpHard of
the matrix-vector product. The idea is, as before,
to replace the operators + and × with their bit-
level counterpart. Basically, the bit extension is
similar: we add one dimension to denote the bit
arrays, indexed by a new index b. However, since



we now want to use the bit-serial operators ob-
tained by scheduling the specifications of the bit-
level operations, this new index has to be a time
index which will be distinct from the time index
t of the scheduled matvect. We will call t the
macroscopic time index, denoting the number be-
ing processed, and b the microscopic time, denot-
ing the bit index within one number. The actual
time of an instruction will be a linear combination
of b and the product W×t, and as such may not be
expressed directly in the affine polyhedral SARE
model (which only allows linear combinations of
parameter and indices). Thus the bit-serial in-
terpretation is inherently different from the usual
systolic interpretation of an Alpha program, for
it involves the interpretation of several indices as
a multidimensional time [4].

Therefore, the description of a bit-serial array
in Alpha is not trivial, and is not automated so
far. First of all, the operators synthesized pre-
viously described one computation. We need to
express that an operator will be reused for several
computations, i.e. several (macroscopic) times.
This is done with an use statement with a dimen-
sion extension on t, the macroscopic time. Then
the word-level operators are replaced within the
resulting SARE.

Figure 7 shows one cell of the bit-serial version
of Fig.6. The b-th bit of the i-th vector element
of the result is output from processor i at time:

T (b, i) = i + (N + 1)W + b + o(1)

The latency of this implementation is obviously
proportional to the product of the matrix size N

and the bit size W , and therefore this design is
linearly less efficient than the previous. Its silicon
cost, however, is linearly better, for it has only
two processor indices instead of three.

Remark that the figure shows that one of the
word-level register of Fig.6 is synthesized as a sin-
gle one-bit register, while the other is synthesized
as W one-bit registers: depending on the data-
dependencies of the program, we may interpret a
macroscopic register ((t->t-1)) as one or W mi-
croscopic registers. Note that in a data-path im-
plementation of the abstract matvect, the same
dependency would always be synthesized as W reg-
isters in parallel.

M
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Figure 7. One cell of the bit-serial systolic array
for the matrix-vector product

5. CONCLUSION & FUTURE WORK

We have introduced formal techniques allowing
to synthesize, from word-level specifications, reg-
ular architectures optimized at the bit level where
the word size is a generic parameter. Note that
both arrays for the bit-level matrix-vector prod-
uct have roughly the same space×time complex-
ity.

The results presented in the second and third
sections have been obtained in a fully automated
manner by our tools. There is a potential for –
at least partially– automating multidimensional
time synthesis (section 4), and it is the subject
of ongoing research. We are also investigating
multidimensional scheduling techniques [4]. In
addition to giving several space/time complex-
ity trade-offs for each design, this will allow us
to automatically synthesize SAREs for which our
current tools can’t find an affine schedule.

Other fields of application of similar techniques
include:

• decomposing a computation of high dimen-
sionality into any combination of sequential
loops and regular hardware ;

• formal techniques for partitioning ;

• modeling multi-scale signal processing with
SAREs.
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