
A Regular VLSI Array

for an Irregular Algorithm

Florent de Dinechin1, Doran K. Wilde2, Sanjay Rajopadhye1,
Rumen Andonov3

1 IRISA, Campus de Beaulieu, 35042 Rennes France
2 Brigham Young University, Provo Utah

3 ISTV, University of Valenciennes, France

Abstract. We present an application specific, asynchronous VLSI pro-
cessor array for the dynamic programming algorithm for the 0/1 knap-
sack problem. The array is derived systematically, using correctness-
preserving transformations, in two steps: the standard (dense) algorithm
is first transformed into an irregular (sparse) functional program which
has better efficiency. This program is then implemented as a modular
VLSI architecture with nearest neighbor connections. Proving bounds
on buffer sizes yields a linear array of identical asynchronous processors,
each with simple computational logic and a pair of fixed size FIFOs. A
modular solution can be obtained by additional load-time control, en-
abling the processors to pool their buffers.

1 Introduction

The 0/1 knapsack problem is a classic, NP-complete, combinatorial optimization
problem with many applications [7, 12]. In this paper we concentrate on the dy-
namic programming approach to this problem [4, 7], since it has more regularity
than the dual branch-and-bound. It is well known that naive dynamic program-
ming performs a lot of redundant computation, which can be avoided by using
a sparse representation of the data, yielding a significant improvement in the
average case performance [6]. Many authors have investigated parallel solutions
in the dense or sparse case. Software parallel implementations of the dense ap-
proach may be found in [11]. Lee et al. implement the sparse algorithm on a
hypercube using a divide and conquer strategy [10], which takes O(mc/q + c2)
time on q processors, and uses O(mc) storage in the worst case4. Chen et al.
present a pipelined linear array which uses Θ(mc) storage, Θ(c) on each of m
processors [5]. These authors, however, all assume that the target is a general
purpose multiprocessor, in particular, each processor has unbounded memory.

In this paper, we present a dedicated VLSI array architecture for the forward
phase of the sparse algorithm. This architecture is a wavefront array processor

4 Lee, Shragowitz and Sahni point out that this could be worse than the sequential
algorithm [10]. The average behavior, however, is expected to be better because of
sparsity.

(WAP) which is similar to a systolic array, except that the processors are asyn-
chronous, and communicate through FIFO queues [9].
Our contributions are twofold. First, we systematically derive the sparse algo-

rithm from the (dense) recurrence of the dynamic programming algorithm. Our
derivation is similar to that used in [3] for the unbounded knapsack problem.
Second, our implementation on dedicated VLSI is fully modular with respect to
problem parameters. For this purpose we first show that buffer sizes are bounded
by the maximum object weight. This is itself a problem parameter, but we then
show how an appropriate number of PE’s, each with the same amount of mem-
ory, may be configured so that they “pool” this memory (a similar idea was
previously used for the dense algorithm [2]). Thus it is possible to solve a larger
problem instance by simply adding more PEs to the array, without having to
redesign the PE itself. Furthermore, we also discuss the problem of choosing the
buffer sizes optimally.
The paper is organized as follows. In Sect.2 we introduce the problem and the

sparse representation. In Sect.3 we present the transformation of the recurrence
equation of the dense algorithm into a stream functional program. Sect.4 deals
with the implementation of this program as a WAP, and the choice of the buffer
sizes. Finally, we present our conclusions. Because of space constraints we give
neither proofs nor implementation details, which may be found in [1].

2 Problem Definition

The forward phase of the dynamic programming algorithm for the 0/1 knapsack
problem is defined by the profit function given by the recurrence equation below:

fk(j) = max
(

fk−1(j), pk + fk−1(j − wk)
)

∀(k, j) ∈ {1 . . .m} × {1 . . . c}
f0(j) = fk(0) = 0
fk(j) = −∞ ∀j < 0

(1)
Table 1 shows an example of the fk(j), calculated as per (1). The entry at

j = 10 and k = 4 indicates that the maximum profit acheivable for this problem
is 19. The backtracking phase (which we do not consider in this paper) would
indicate that the maximum profit is achieved by placing objects 1, 2 and 4 in
the knapsack.

Table 1. Values of fk(j) for m = 4; c = 10; wi = 5, 4, 6, 1; pi = 7, 8, 9, 4.

j

k

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 7 7 7 7 7 7

2 0 0 0 8 8 8 8 8 15 15

3 0 0 0 8 8 9 9 9 15 17

4 4 4 4 8 12 12 13 13 15 19

There is considerable redundency in this table. It is easy to prove [1] that
each fk (each row) is a monotonically increasing function, which can be efficiently
represented as a set of critical points [j, fk(j)] (the boxed values in Table 1). This
sparse representation of fk is also illustrated by Fig.1.a.
The sparse algorithm [13] uses (1) to build this sparse representation itera-

tively: given the set (or sequence) Sk−1 of critical points representing fk−1, first
compute an auxillary set S′k−1 by adding [wk, fk] to each element of Sk−1. Then
take the union of Sk−1 and S′k−1, which contains all the critical points of fk,
plus some that are dominated (not critical): a point [j1, f1] dominates another
point [j2, f2] iff j1 ≤ j2 and f1 ≥ f2, (i.e., if it has less weight and more profit).

6

-j

f4(j)

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

a

a

a

a

a

a

a

[1,4]

[4,8]

[5,12] [7,13]
[9,15]

[10,19] 6

-j

fk(j)

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

¶
¶7

[1,4]

.
.
.
.
.
.
.
..

..
.
.
.
.
..

.

.. . . .

.......................
..
..
..
..
..
..............

...................
..
..
..
..
........

. . . . f3

...... f ′

3 = f3 + [1, 4]

f4 = max(f3, f
′

3)

Fig.1.a Fig.1.b
The function f4 and its critical points ...built from the critical points of f3

The set Sk of the critical points of fk is obtained by removing all the domi-
nated points from the union set, as illustrated in Fig.1.b.

3 Derivation of the Stream Functional Program

We derive a stream functional program to implement the recurrence equation (1),
computing the stream (sequence) of critical points Sk from the stream Sk−1.
We use the following notations: braces { ... } are used to group sequences.

The operator ^ denotes the concatenation of an element to a sequence. Paren-
theses are used for function application and square brackets are used to form
tuples.
The initial function f0 = 0 can be trivially represented by the sequence

S0 = {[0, 0]}. Then the term pk + fk−1(j − wk) is represented by the sequence
S′k−1 obtained by adding the pair [wk, pk] to each pair element in [0, 0]ˆSk−1.
The resulting sequence is clipped so that no accumulated weight exceeds the
knapsack capacity c. This yields S ′k = AddTest([wk, pk], [0, 0]ˆSk−1, c), where
AddTest is defined as follows:

AddTest([w,p], {}, c) = {}

AddTest([w,p], [j,f]^S, c) = if j+w>c : {}

else : [j+w, f+p] ^ AddTest([w,p], S, c)

The max function used in (1) is implemented as a stream operator computing
the sparse sequence for the maximum of two functions given as sparse sequences.
This is done by a merge sort based on the j elements (the Merge function below),
followed by a removal of the pairs that are dominated by an earlier pair in the
sequence (the Filter function below).

Merge({}, S) = S

Merge(S, {}) = S

Merge([j1,f1] ^ S1 , [j2,f2] ^ S2) =

if j1 < j2 : [j1,f1] ^ Merge(S1 , [j2,f2] ^ S2)

else if j1 > j2 : [j2,f2] ^ Merge([j1,f1] ^ S1 , S2)

else if j1 = j2 : [j1, max(f1,f2)] ^ Merge(S1 , S2)

Filter({}, t) = {}

Filter([j,f]^S, t) = if f > t : [j,f] ^ Filter(S, f)

else : Filter(S ,t)

The following program then computes Sk from Sk−1:

S(0)={}

S(k) = Filter(Merge(S(k-1),

AddTest([wk,pk], [0,0]^S(k-1), c)),

0)

4 A WAP for the Sparse Algorithm

It is well known [8] that a stream functional program corresponds to a net-
work of processes communicating over asynchronous FIFO channels. Hence the
above program for calculating the recurrence (1) can be implemented on an asyn-
chronous array processor with m cells. The cell k receives the sequence Sk−1 and
computes the sequence Sk. The structure of such a cell is shown in Fig.2. The
FIFO buffer between two consecutive cells is optional: its purpose is to improve
the overall throughput, therefore its size depends on statistical considerations.
Simulations showed, however, that small internal buffers lead to near-optimal
efficiency: for random values of (wi, pi) in the range (10 · · · 100, 10 · · · 100) and
c = 3000, for instance, the optimal throughput was reached with only 10 regis-
ters.

-

-- -

-

-

´
´

Q
Q

-Input FIFOInput

Add Merge

Kill Output

Unit

(j2, f2)

(j1, f1)

(Wk, Pk)

Internal FIFO

Fig. 1. Basic Processor

The internal FIFO, on the other hand, may lead to problems: as the merge-
kill unit consumes [j1, f1] from the input FIFO, a copy must be saved in the
internal queue for later use in the second input of the merge-kill unit. If this
queue is too small, the circuit will fail due to FIFO overflow. The crucial fact
allowing a VLSI implementation using fixed size buffers is based on the fact that
the maximal size of the internal queue on any cell is wmax (see proof in [1]). As
this result still limits such a processor to operate on objects of weight smaller
than its internal FIFO size, we extend the design, by the means of a configuration
bit, to allow the FIFOs of consecutive processors to be connected to form one
single logical processor5. Thus the array is extensible with respect to wmax. It is
also extensible with respect to m by simply adding new processors to the array,
or by using multiple passes: it is easy to implement a LPGS partitioning scheme
for this WAP, with an external buffer (e.g. in a host) bounded by c, the knapsack
capacity. The choice of the size α of the internal FIFO then leads to a classical
trade-off: a large FIFO increases the average efficiency of the processors but also
their area, leading to fewer processors on a given silicon area. The optimal value
of α is very data-dependent and should thus be determined by an extensive
simulation using sample data. A worst-case analysis is also possible and leads
to the following equation which gives, for each value of β = log2 α, the maximal
size m of the knapsack problem which may be handled by the architecture.

m ≤ β +

⌊

log2

(

1− β +

⌊

S

2βsr + s0

⌋)⌋

(2)

Here sr is the area of one FIFO register, and s0 the area of one processor,
excluding the internal FIFO. An extensive search over the values of β (from 0
to 16 is obviously sufficient) gives the optimal value of α in the worst case.

5 Conclusion

We have presented a systematic derivation of a wavefront array processor from a
recurrence equation specifying the (forward phase of the) dynamic programming
algorithm for the 0/1 knapsack problem. The final array is interesting in its own
right (although it remains an open problem whether it is possible to perform the
backtracking phase with similar space/time complexity).
The main advantage of this approach is to combine the strong points of an

irregular algorithm (time efficiency due to asynchrony, and space efficiency due
to sparsity) with the strong points of a parallel regular array (simplicity of the
design and efficiency due to potential massive parallelism). Thus the methodol-
ogy consists of two systematic, independent transformations: the first transforms
regular to irregular (and thus increases algorithmic efficiency), and the second
transforms irregular to regular (and thus increases implementation efficiency).
Problems, however, arise when we try to generalize both steps:
The first transformation uses some property of the data (here sparsity and

monotonicity) to lead to an irregular algorithm, expressed as a stream functional

5 The price to pay for this is roughly doubling the number of pins per chip.

program, which is more efficient in average than the regular one. This is based
on manually proving properties of the computations, and is related to program
synthesis. It is not likely that it can be automated.
The second transformation is more classical and leads from a irregular stream

functional program to a regular (but asynchronous) WAP, whose parameters are
derived from properties of the algorithm or data. The crucial problem here is to
prove bounds on buffers in order to obtain a VLSI implementation. We conjecture
that this can be done systematically, however slight variations in the algorithm
can lead to crucial problems (for example, a direct adaptation of the program
used in [3] yields an array where buffer sizes cannot be bounded).
We believe that our methodology may be applied to other irregular problems,

such as sparse matrix computations.

References

1. R. Andonov, F. de Dinechin, S. Rajopadhye, and D. Wilde. – Systematic design
of wavefront array processors : A case study. – Internal Report 743, IRISA, March
1994.

2. R. Andonov and S. Rajopadhye. – An optimal algo-tech-cuit for the knapsack
problem. – Technical Report PI-791, IRISA, January 1994. – (to appear in IEEE
Transactions on Parallel and Distributed Systems).

3. R. Andonov and S. V. Rajopadhye. – A sparse knapsack algo-tech-cuit and its
synthesis. – In International Conference on Application-Specific Array Processors
(ASAP-94), pages 302–313, San Francisco, August 1994. IEEE.

4. R. Bellman. – Dynamic Programming. – Princeton University Press, Princeton,
NJ, 1957.

5. G.H. Chen and J.H. Jang. – An improved parallel algorithm for 0/1 knapsack
problem. – Parallel Computing, 18:811–821, 1992.

6. E. Horowitz and S. Sahni. – Computing partitions with aplications to the knapsack
problem. – Journal of the ACM, 21(2):277–292, April 1974.

7. T. C. Hu. – Integer Programming and Network Flows. – Addison-Wesley, 1969.
8. G. Kahn. – The semantics of a simple language for parallel processing. – In

Proceedings of IFIP, pages 471–475. IFIP, August 1974.
9. S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. B. Rao. – Wavefront array
processor: Language, architecture and applications. – IEEE Transactions on Com-
puters, C-31:1054–1066, 1982.

10. J. Lee, E. Shragowitz, and S. Sahni. – A hypercube algorithm for the 0/1 knapsack
problems. – J. of Parallel and Distributed Computing, 5:438–456, 1988.

11. J. Lin and J. A. Storer. – Processor-efficient hypercube algorithm for the knapsack
problem. – J. of Parallel and Distributed Computing, 13:332–337, 1991.

12. S. Martello and P. Toth. – Knapsack Problems: Algorithms and Computer Imple-
mentation. – John Wiley and Sons, 1990.

13. G. Nemhauser and J. Ullman. – Discrete dynamic programming and capital allo-
cation. – Management Science, 15(9):494–505, 1969.

