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Abstract

The Alpha language, based on systems of affine recurrence equations over polyhedral
domains, allows the expression of complex algorithms as hierarchical, parameterized struc-
tures of such systems. This paper discusses the static analysis of Alpha programs, an
extended type-checking process based on the single assignment rule. We present techniques
ensuring, on one hand, that a system is valid (with respect to this rule) within a certain
range of its parameters, and on the other, that no system is used with invalid values of its
parameters. These techniques have been implemented in a versatile tool for Alpha which
is demonstrated on the example of the Gaussian elimination.

1: Introduction

The background of this paper is the formalism of recurrence equations first introduced by
Karp, Miller and Winograd [6]. A regular problem or algorithm, expressed at the highest
level as a system of affine recurrence equations (SARE), may be transformed, through a
range of (semi-)automatic, provably correct, refinement steps, into an implementation-level
description such as a VLSI regular array [5], imperative code [10], or a collection of loop
nests aimed at a massively parallel architecture [9]. This paper addresses more specifically
the polyhedral model, in which the SARE variables are data arrays with polyhedral domains.
The results presented here have been implemented in the Alpha environment [8, 12], which
is based on polyhedral SAREs [13].
One of the strong points of data-parallel models [4] is the possibility of statically an-

alyzing algorithms to extract the information (e.g. dependency information) needed by
transformation tools. In this paper we show how such a static analysis may also be useful
at the early development stages: we show that there is a large set of conditions on the
correctness of a program which may be checked statically by an automatic tool, before any
simulation step. Due to lack of space, we concentrate here on static checks based on the
denotational semantics of the language [8]. Other very important checks, which are more
classical and purely syntactic (e.g. type-checking) are not described here, although also
implemented.
Basically, the semantic static analysis reduces to verifying the single assignment rule,

i.e. ensuring that the variables are correctly defined wherever expected. This analysis is
done in a formal manner, using symbolic computations over the polyhedra. One might
think that similar results could be obtained by an exhaustive enumeration of the domains,
however our approach has several advantages:
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• It is possible to analyze SAREs with infinite domains (e.g. a convolution involves
infinite data streams).

• It is possible to analyze parameterized SAREs. The range of the parameters being
often infinite, an exhaustive enumeration would be impossible.

• It is possible to detect problems specific to particular values of the parameters.

• Error messages are more verbose and synthetic, and may be parameterized, too.

• Last but not least, it is faster and independent of the size of the domains (although
it depends on their dimensionality).

However, even with such a static analysis tool, it is difficult to develop complex (real-
world) algorithms as single SAREs, in particular because of their high dimensionality. For
instance, a singular value decomposition (SVD) [1, 2, 7], involves data arrays of dimension
5. The SARE structures of the Alpha language [3] were designed to address the need for
divide and conquer in terms of dimensionality. They enrich the language with the usual
decomposition of a program into functions, but also with more complex program structures
which may be interpreted as function calls within loop nests in imperative languages, or
as an extension of the functional map operator to affine polyhedra instead of lists. Thus
a complex algorithm like the SVD may be broken down into smaller systems of increasing
dimensionality, just as the deep loop nest, in the sequential algorithm, is broken down into
functions consisting of simple loops. This paper shows that this divide and conquer strategy
is also valid for the analysis of large programs expressed as hierarchies of parameterized
SAREs: we show how the static analysis tool encourages the user to restrict the parameters
of each SARE to a maximal range where the SARE is valid. Then this SARE may be used
in a context of greater dimensionality, so its parameters are assigned a value which may
vary in an affine manner. We show how the tools checks, in this case, that the actual
parameters assigned fall within this parameter domain, which may therefore be viewed as
a set of preconditions on the parameters. The fact that these preconditions may only be
affine ones may seem very restrictive, but surprisingly much can be expressed this way since
we only deal with regular algorithms.
The paper is organized as follows. Sect. 2 briefly introduces the basics of the polyhedral

SARE model, with the Alpha syntax which we will use in the following. Sect. 3 presents
the analysis of a single, parameterized SARE. Sect. 4 discusses the hierarchical analysis of
a structure of SAREs.
Examples all along are based on a simple, two-system Alpha program for the Gaussian

elimination (Fig. 1), and the checks performed will therefore seem trivial. Most of this work,
however, was done while trying to implement two SVD algorithms, leading to programs
several pages long with 8-dimensional computation spaces (5 apparent dimensions and 3
size parameters) which happened to simulate correctly as soon as they passed our static
analysis.

2: Basics

This section presents the formalism of polyhedral SAREs as it is implemented in Alpha.
The example program (Fig. 1) will illustrate most of the concepts presented here, and the
interested reader is refered to [8, 3, 12] for more details.
Recurrence equations relate spatial variables, which are arrays of values defined over some



1 system ZeroColumn: {N,K| 1<=K<N} (A : {i,j | 1<=i,j<=N} of real )

2 returns (Ar: {i,j | 1<=i,j<=N} of real );

3 let

4 Ar[i,j] = case

5 {| i<=K} : A[i,j];

6 {| i>K; j<=K} : 0[];

7 {| i>K; j>K} : A[i,j] - A[K,j]*A[i,K]/A[K,K];

8 esac;

9 tel;

10

11

12 system Gauss: {N | N>1} (A : {i,j | 1<=i,j<=N} of real)

13 returns (T : {i,j | 1<=i,j<=N} of real);

14 var Ak : {i,j,k | 1<=i,j<=N; 1<=k<=N} of real;

15 Ak1: {i,j,k | 1<=i,j<=N; 1<=k<N} of real;

16 let

17 use {k| 1<=k<N} ZeroColumn[N,k] (Ak) returns (Ak1);

18 Ak[i,j,k] = case

19 {| k=1} : A[i,j];

20 {| k>1} : Ak1[i,j,k-1];

21 esac;

22 T[i,j] = Ak[i,j,N];

23 tel;

Figure 1. Gaussian elimination in Alpha

index space (or domain). In the polyhedral model, these domains are convex polyhedra of
some integer vector space ZZ

n. A convex polyhedron may be described as a finite intersection
of halfspaces expressed as affine inequations of the coordinates in ZZ

n. An example of a
polyhedron with the Alpha syntax is {i,j| 0<=i,j<N; i<=j}. The strong point of this
model is that the set DOM of finite unions of such integral convex polyhedra has a lattice
structure under inclusion, and is closed under the following operations: intersection, union,
set difference, preimage by an affine function, and convex hull of the image by an affine
function. This allows the easy formal manipulation of such domains [13].
An ARE defines the value of such a spatial variable at each point of its domain as a

function of other values. This function is given as an expression relating the variables
and involving computation (or pointwise) operators, and communication (or spatial) ones.
These operators are detailed later in 3.1. The dependency of one variable to another must
be affine. Thus an ARE expression, like a variable, denotes a polyhedral data array, with
a domain and values which are a combination of those of the variables.
A SARE defines the values of some output variables as a function of the values of some

input variables, using mutually recursive AREs involving the input, output and local vari-
ables. The class of each variable, along with the type of its values, is declared in the header
of the system. For instance, in system Gauss, A is input, B is output, Ak and Ak1 are local.
Furthermore, an Alpha SARE may be parameterized by any number of size parameters

whose permitted range is given as a parameter domain in the header of the system. These



parameters are actually implicit indices of all the objects (domains and affine functions)
appearing in the system. For example the system Gauss of Fig. 1 has {N| N>1} as a pa-
rameter domain. Therefore, within this system, the two-dimensional parametric domain
{i,j| 1<=i,j<=N}, which is the domain of the input variable A, actually denotes the follow-
ing 3-dimensional closed domain: {i,j,N| 1<=i<=N; 1<=j<=N; N>1}. Thus parameterized
domain also belong to DOM.
Lastly, it is possible to define hierarchical structures of parametric SAREs thanks to

the use1 construct [3], which allows us to increase the dimensionality of a subsystem by
instantiating a regular collection of this subsystem. As an example, the line containing
the use, line 17 of Fig. 1, should be read: instantiate a regular collection (indexed by
{k|1<=k<N}) of system ZeroColumn, assigning the values N and k to the parameters of instance
k, the input (resp. output) of instance k being the k-th “slice” of expression Ak (resp. of
variable Ak1). The actual inputs and outputs (I/Os) are of greater dimensionality than
the formal ones, because of the dimensions indexing the subsystem instance (which are the
rightmost ones in the index lists [3]).

3: Static analysis of a system in isolation

Consider one of the systems of Fig. 1. It is of course not possible to ensure statically
that it computes the expected result (to start with, the termination of such a computation
is well known to be undecidable). However it is possible to define a few conditions which
ensure that certain well-defined properties hold, and may be verified statically. The most
SARE-specific of these conditions is the single assignment rule (SAR):
For each point of the domain of a variable, there is one and only one computation defining

the value of the variable at this point.
In the following, we will say that a system or an equation is valid if it satisfies this rule.

This section describes the static verification of the SAR within a single, parameterized
system. We assume that this SARE is syntactically correct (all the variables are declared,
all the dimensions match, etc).

3.1: Computation of the domain of an expression

An Alpha expression e denotes a data array, i.e. a collection of values defined over a
domain. While the values usually depend on the inputs of the system, the domain, which
we note Dom(e), may be computed statically, by recursively applying the rules listed below.
Notice that these rules are valid because they rely on operators preserving DOM.

Constants Dom(c) = ZZ
0

Variables Dom(V ) is declared in the header

Unary operators Dom(−e) = Dom(e)

Binary operators Dom(e1 + e2) = Dom(e1) ∩Dom(e2)

The sum is defined where both expressions are defined.

1Instead of saying that a SARE “calls” another one, we prefer the term “use” which is free of the
sequential connotation of “call”.



Ternary operator Dom(if e1 then e2 else e3) =
⋂

3

i=1 Dom(ei)

The if then else is considered as a ternary operator and

is defined where the condition and both alternatives are defined.

Restriction Dom(D : e) = D ∩Dom(e)

D is a domain This operator restricts an expression to the domain D.

Affine dependency Dom(e[f ]) = f−1(Dom(e))

f is an affine function The value of e[f ] at point z is the value of e

of the indices of the LHS at point f(z), hence the domain of e[f ].

case operator Dom(case e1; ..; en; esac) =
⋃n

i=1 Dom(ei)

This operator allows the piecewise definition of an expression

by several subexpressions ei with disjoint domains.

3.2: Equation analysis

Now consider an equation V [i, j . . .] = e. To ensure that there is at least one computation
defining the value of V for each point (i, j, . . .) of its domain, it is sufficient to ensure that:

Dom(V ) ⊂ Dom(e)

where Dom(V ) is the domain of the variable V (in Alpha, this domain is declared in the
header of the system).
Practically, the analysis tool computes D′ = Dom(V ) \ Dom(e), where \ denotes the

set difference. If D′ is non empty, an error is issued, stating that V is not defined over
D′. Thus not only does the tool detect the error, it also points it precisely to the user for
correcting. Section 3.4 will show how this message may be made even more helpful.
Example: In the equation defining Ar in ZeroColumn, suppose line 5 was mistyped:

{| i<K} : A[i,j];

(notice <K instead of <=K). The analysis tool will output the following message:
ERROR: Variable Ar not defined over the domain: {i,j| i=K; 1<=j<=N}

3.3: Validity of the case statement

The case operator introduces the possibility of having more than one subexpression
define the value of the same point of the domain. Therefore the analysis tool has to
perform an additional check: if two of the case subdomains intersect, i.e.

D = Dom(ei) ∩Dom(ej) 6= ∅

then the case expression is overdefined on the domain D, which is reported as an error by
the tool 2. Since the case operator is the only possibility of introducing several definitions
of the same value of a variable, the condition that subdomains have empty intersections is
sufficient to ensure the and only one part of the single assignment rule.

2Actually there may be a surrounding restriction operator which restricts the case to a domain D′ such
that D ∩ D′ = ∅. In this case the expression is valid: to avoid flagging an error, the analysis tool has to
maintain a context domain which is computed similarly as Dom(e), but from the root of the expressions
to their leaves. The error is issued only if the intersection of two case domains and the context domain is
non-empty.



Example: in the same equation, if the second line of the case (line 6) was wrongly written:
{| i>=K; j<=K}: 0[];

The analysis tool will output the following message:
ERROR: in case statement: (...), domains of subexpressions overlap on:

{i,j | i=K; 1<=j<=K}

The previous analysis suffices to verify the single assignment rule, however there is other
useful information which a static analysis may provide. For example it is useful to detect
empty expressions3, which are at best pointless (in a case statement) or a source of errors.
To avoid cascaded error messages (if e1 is empty, then from the rules above it is also the
case of e1 + e2 and D : e1), only the deepest empty subexpression needs reporting to the
user.
Example: Still in the same equation, a mistake in line 5:

{| i<=0} : A[i,j];

will cause the following messages:
WARNING: This expression has an empty domain: {| i<=0} : A[i,j]

ERROR: Variable Ar not defined over the domain: {i,j| 1<=i<=K; 1<=j<=N}

3.4: Parameter related analysis

The previous examples illustrate how verbose and practically helpful these error detection
techniques may be. In addition, it is even possible to refine the analysis by taking the
parameters into account: suppose there was no restriction on the parameter N of the system
Gauss (whose header would then be system Gauss: {N |}...). Obviously for negative values
of N, all the variables of this system have an empty domain, which should be pointed to
the user as a possible source of errors. The previous analysis will not detect such problems:
extending the domains to N ≤ 0 does not change them, and therefore does not change the
result of the analysis.
We now show how the analysis tool may prevent the user from writing a system which

is not valid for some of the values in its parameter domain. This will prove useful for two
reasons: it will help to detect more errors, and it will also allow the incremental validation
of structured SAREs, as shown in Sect. 4.
All the previous domain checks come down to verifying the emptiness or non-emptiness

of a domain D′. To ensure such a property for all the values of the parameters, we use the
fact that the parameter domain is a canonical subspace of any domain appearing within
a system: therefore we may compute the projection projp(D

′) of D′ on this parameter
subspace. This is an orthogonal projection, therefore projp(D

′) is a domain of DOM, which
may then be compared to the declared parameter domain of the system (Fig. 2).
The following is the detail of the parameter related checks:

• The domain of an expression should be non-empty for all the values of the parameters.
Let P be the parameter domain, dim(P ) = p. Let D = Dom(e) be the domain to
verify, dim(D) = n + p. The domain projp(D) is the set of the parameter values
(permitted or not by the parameter space) for which the expression is non empty.
The analysis tool therefore computes

D′ = P \ projp(D)

3Here again the context domain of the subexpression has to be taken into account.
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Figure 2. Projection on the parameter subspace

which is the set of values of the parameter spaces for which the expression has an
empty domain. If D′ 6= ∅, a warning is issued to state that the expression e is empty
for the parameter values in D′.
Example: We may restrict the parameter N of the system Gauss to be positive:

12 system Gauss: {N | N>0} ...

One may check that the system is valid even for N=1.
However the analysis will issue the following message:
WARNING: for parameters {N| N=1}, the expression Ak1 has an empty domain

• Similarly, the declared domains of output variables should be non-empty for all the
values of the parameters (they do not necessarily appear on the RHS of an equation,
unlike input and local variable which are tested for emptiness as they appear in an
expression).

• The condition Dom(V ) ⊂ Dom(e) should be true for all the values of the parameters.
Actually the proper check is already done in the previously described expression anal-
ysis, but we may make its output easier to read in case of a problem: after computing
D′ = Dom(V )\Dom(e) as previously, and if D′ is non empty, we compute projp(D

′),
the set of parameter values on which there is a problem. If P \ projp(D

′) = ∅, there
is a problem of definition for the whole parameter space. Otherwise, the problem
might be parameter-related: the tool outputs an additional message stating that the
problem only occurs for the parameter values in D′′ = P ∩ projp(D

′), thus inviting
the user to restrict the parameter space.
Example: The following parameter domain for ZeroColumn:

1 system ZeroColumn: {N,K| 0<=K<N} ...

will yield the following message (among others):
ERROR: For parameters {N,K| N>0; K=0},

variable Ar not defined over the domain: {i,j| 1<=i,j<=N}

• the intersection of two case sub-domains should be empty for all the values of the
parameters. This problem is similar to the previous one and also allows a refinement
of the error message.

Remark that a dual approach would be possible: using similar technique (projection,
cut-set and union) we could compute the maximal domain of the parameters where the



system is valid, then impose it to the system. Our approach, however, is more helpful at
the development stage. Besides it allows the programmer to be more restrictive than the
maximal domain.

4: Static analysis of a collection of systems

4.1: Analysis of use statements

We consider now the case of a use statement, where a caller system uses a subsystem.
The general form of such statement, with the notations of [3], is the following:

use Dext subsystem.f (e1, .., em) returns (v1, ..vn);

where Dext is the (parametric) extension domain and f is the affine function assigning
values to the parameters. We will note Psub the parameter domain of the subsystem.
The analysis of this statement is deduced from its substitution semantics [3]: in short,

a program containing a use statement is equivalent to one where this statement has been
replaced with the body of the subsystem (properly modified to take into account the extra
dimensions and the affine parameter assignation) and additional equations to perform the
I/O passing: input equations relate the actual inputs and the formal ones:

SubSystemInputVariable = ActualInputExpression;

and output equations relate the actual outputs and the formal ones:
ActualOutputVariable = SubSystemOutputVariable;

Parameter checking Here again, we assume that the program is syntactically correct:
the subsystem has been declared somewhere in the program, the correct number of actual
inputs/outputs are given, their respective dimensions match the formal ones, etc.
The tool first checks, using the same techniques as before, that the extension domain is

non-empty for all the values of the caller parameters.
Then it analyzes the values given to the parameters of the subsystem: they are defined by

f which is an affine function of the caller parameters and, possibly, the extension indices (e.g.
in the Gauss system, f(N, k) = (N, k) where N is a caller parameter and k is the extension
index). The tool checks that, for all the possible values of the caller parameters, and for all
the points in the extension domain, the values assigned to the subsystem parameters fall
within the range permitted, i.e. within the parameter domain of the subsystem. This is
expressed4 by:

f(Dext) ⊂ Psub

As the image of an Alpha domain by an affine function is not always an Alpha domain
(in the general case it is a linearly bounded lattice, as defined in [11]), we compute the
convex hull of this image, which belongs to DOM : if ConvexHull(f(Dext)) ⊂ Psub then,
since f(Dext) ⊂ ConvexHull(f(Dext)) we ensure f(Dext) ⊂ Psub. Otherwise an error mes-
sage is issued. Since the points in ConvexHull(f(Dext)) \ f(Dext) are only “holes” in the
polyhedron, this algorithm only issues an error message when there is a problem on the
polyhedron.

4In this expression, f as well as Psub are parameterized by the callers’ parameters.



As before, a verbose error message is obtained by computing the domain:

D′ = ConvexHull(f(Dext)) \ Psub

which is the set of disallowed values, and checking its emptiness.
Example: Line 17, the following use statement:
use {k| 0<=k<=N} ZeroColumn[N,k] (Ak) returns (Ak1);

will cause the following message:
ERROR : in statement ‘‘use ... ZeroColumn ... ’’,

parameter values in {N,K| K=0, N>=1} not allowed

Obviously, the more restricted the parameter domain of the subsystem, the more acute
the checks performed here.

Input/Output checks The substitution semantics implies that the verifications to be
performed on the I/Os of a subsystem use may be deduced from those of the equations
described in 3.2. There is slightly more work involved, however, since the domains of the
added variables are transformed as described in [3], but no new technique is involved, and
we will not describe the details here.

Validity of the use statement Suppose that the three previous conditions are satisfied:

1. the subsystem is valid on its parameter domain.

2. f(Dext) ⊂ Psub.

3. the virtual I/O passing equations are valid.

It is then possible to inline this use statement thanks to its substitution semantics [3]: the
use is replaced with several equations, of two kinds: some are the I/O passing equations,
and are valid (third condition). The other ones are the body of the subsystem, transformed
according to the substitution semantics. Since all the equation transformations involved
in this process preserve the single assignment rule, these equations are valid, too (first
condition). By definition of the use semantics, both programs (the one containing the use
and the inlined one) are equivalent. Since they only differ by the previous equations, we
conclude that the three conditions above define the validity of the use statement.

4.2: Global analysis of a collection of systems

Now we may describe a general down-top validation method for a complete program.
Such a program is an acyclic graph of Alpha systems using each others. Systems without
a use statement among their equations are called sinks. A system using a subsystem is
called a predecessor of this subsystem.

• First, the sinks are analyzed, and their parameter domain is restricted as much as
possible. No warning message should remain. For example, for the system ZeroColumn,
we have to restrict K and N at least to the domain given Fig. 1. It is possible, however,
to constraint the parameters more than what the analysis suggests, for example we
could put a higher bound on N depending on the intended application.

• Then the predecessors of the leaves are analyzed. If they are written to use a sink
with invalid values of its parameters, the tool will spot it and the programmer will
be encouraged either to correct the error, or to restrict more the caller parameters.
Meanwhile, the other equations of the caller are also analyzed, with the same effect.



• This process is repeated on the parents of the parents, and so on until the whole
program passes the static analysis.

5: Conclusion

We have presented an automatic tool for the analysis of structured systems of affine
recurrence equations. This tool has been implemented in the Alpha environment. For
each system of the program, it checks that the single assignment rule is satisfied, helps
define strong correctness conditions on the parameters, and prevents this system to be used
with incorrect values of these parameters, thus allowing the incremental specification and
validation of a hierarchy of SARE.
All the errors won’t be detected: typically the program consisting of a single equation

A = A is considered valid by our analysis tool, for it satisfies the single assignment rule.
Whether a SARE actually does something is the SARE version of the termination problem,
and is of course undecidable. However we found that usually a program works as soon as
it passes the static analysis.
These methods are obviously portable to any system based on the formalism of SARE.

Similar static analysis techniques should also apply to more general formalisms, such as
that of linearly bounded lattices as defined in [11], where in fact some tests can be made
more precise.
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