
FPLibrary v0.94

User documentation

Jérémie Detrey Florent de Dinechin

LIP – ÉNS Lyon
46, allée d’Italie

69364 Lyon cedex 07
France

{Jeremie.Detrey,Florent.de.Dinechin}@ens-lyon.fr

Contents

1 Introduction 2
1.1 Description . 2
1.2 Installation . 2
1.3 Usage . 2

1.3.1 Synthesizing the library . 2
1.3.2 Using FPLibrary operators . 4

1.4 Examples . 4

2 Number representation formats 5
2.1 Floating-point . 5
2.2 Logarithmic number system . 5

3 Arithmetic operators 7
3.1 Addition / subtraction . 7

3.1.1 Synopsis . 7
3.1.2 Parameter mapping . 7
3.1.3 Description . 8

3.2 Multiplication . 9
3.2.1 Synopsis . 9
3.2.2 Parameter mapping . 9
3.2.3 Description . 9

3.3 Division . 10
3.3.1 Synopsis . 10
3.3.2 Parameter mapping . 10
3.3.3 Description . 10

3.4 Square root . 11
3.4.1 Synopsis . 11
3.4.2 Parameter mapping . 11
3.4.3 Description . 11

4 Conversion operators 12
4.1 Fixed-point/floating-point conversions . 12

4.1.1 Synopsis . 12
4.2 Conversion between IEEE754 and FPLibrary floating-point formats 12

4.2.1 Synopsis . 12
4.2.2 Description . 13

4.3 Conversion between IEEE754 and LNS formats . 13
4.3.1 Synopsis . 13

Bibliography 14

1

Chapter 1

Introduction

1.1 Description

FPLibrary is a library of parameterizable arithmetic operators for “real” numbers, such as floating-
point numbers. It supports both floating-point and logarithmic number systems, and provides classical
arithmetic operators (+/−, ×, ÷ and

√
) along with some conversion operators for a number system

to an other.
The whole library is written in portable VHDL code, mainly targeted for FPGAs (Field-Programable

Gate Arrays). All operators are parameterizable in terms of precision and range for their operands and
result, and are available in both combinatorial or pipelined flavours.

1.2 Installation

The latest version of FPLibrary can be freely downloaded from http://www.ens-lyon.fr/LIP/
Arenaire/Ware/FPLibrary/ as a tar-gzipped archive of the VHDL source tree.

To extract this archive:
$ tar xzvf FPLibrary-0.94.tgz

This will create the following directories:
FPLibrary-0.94/doc/ contains the documentation (i.e. this file),
FPLibrary-0.94/vhdl/ contains the source code of the library,
FPLibrary-0.94/misc/ contains some files for integrating FPLibrary to a VHDL project.

1.3 Usage

1.3.1 Synthesizing the library

In this section you will find how to synthesise the VHDL source of the library in order to import the
operators it provides in your own designs. However, this procedure strongly depends on the VHDL
environment you are using. We can only give the detailed procedure for Xilinx ISE and XST, but we
hope the general guidelines will be precise enough for other environments.

Remark: if you feel like contributing to this section, you can send us the procedures for the missing
VHDL environments, we will be glad to integrate them here.

General guidelines

First, you should integrate all the VHDL source files into your project as a library called fplib. This is
very important, because the default working library for a VHDL project is work. You perhaps need to
create the library fplib beforehand and then add the whole source tree (including all sub-directories)
to this library.

The proper order of compilation from the file hierarchy, in case the synthesizer cannot figure it out
by itself.

2

Finally, you will perhaps need to explicitly synthesize the library, but most synthesizers will proba-
bly automatically do so when synthesizing a design using FPLibrary operators.

Xilinx ISE

This section guides you through the different steps required to integrate FPLibrary to your project using
Xilinx ISE tools and their graphical frontend (Project Navigator).

Before starting, you should have opened your project in the Xilinx Project Navigator. You should
focus on the Sources window (you can show/hide it from the View menu), and more precisely on the
Library View tab (Figure 1.1(a)).

Then, right-click in this tab, and select New Source.... In the dialog box that opens, select VHDL
Library for the type of source, and type fplib for the file name (Figure 1.1(b)). Make sure that the Add
to project box is ticked, and click on Next and then Finish. Now the fplib library is created.

Third, you need to add all the VHDL sources of FPLibrary to fplib. Right-click on the fplib library,
and select Add Source... (Figure 1.1(c)), and select all the FPLibrary source files. Note that this operation
does not recursively add all sub-folders, so you will have to do this manually1.

Eventually, when all the source files are added, FPLibrary will be ready to be used (Figure 1.1(d)).
ISE will automatically synthesize the library when sythesizing your project.

(a) Library View tab. (b) Creating the library.

(c) Adding source files. (d) FPLibrary is loaded.

Figure 1.1: Xilinx Project Navigator screenshots.

1This task is quite painful, but an ugly patch of the .npl project file can do the trick:
Edit the project file and look for a line that should be something like: SUBLIB fplib VhdlLibrary vhdl
After this line, insert the contents of file FPLibrary-0.94/misc/ise/npl patch and replace the dummy path PATH:\ by
the actual path to the FPLibrary source code.
Then, you just have to reload your project to take these modifications into account.

3

XST (Xilinx Synthesis Technology)

This section describes the FPLibrary installation steps for those who use Xilinx tools in a command-line
fashion, and therefore do not want to create a project using ISE.

To use the library, you just have to use the file FPLibrary-0.94/misc/xst/fplib.prj and
merge it into your own .prj file.

You can also compile each VHDL source file separatly using a script, as the order of compilation is
given by FPLibrary-0.94/misc/xst/fplib.prj. Be sure to compile the FPLibrary files into the
fplib library, using the command-line option -work lib fplib.

1.3.2 Using FPLibrary operators

To use FPLibrary operators in your own circuits, just add the following lines to the source code of the
concerned components:
library fplib;
use fplib.pkg fplib.all;

You then just have to instantiate the operators in the usual way. If FPLibrary was correctly integrated
into your project as the fplib library (as described in Section 1.3.1), the synthesizer will automatically
import them.

See Sections 3 and 4 for a complete description of the operators and their interfaces.

1.4 Examples

A few simple examples can be found in the directoryFPLibrary-0.94/vhdl/test/examples.

4

Chapter 2

Number representation formats

2.1 Floating-point

The floating-point (FP) number format used in FPLibrary is mainly inspired from the IEEE-754 stan-
dard [2]. Its main idea is to represent numbers with a fixed-point normalized mantissa multiplied by
an order of magnitude (an integer power of 2). For example: 1.25 × 221, −1.75 × 218, 1.00 × 2−5, ...

This representation is parameterized by two bitwidths wE and wF . An FP number X is then repre-
sented as a vector of wE + wF + 3 bits, and can be partitioned in 4 fields as shown Figure 2.1:

• exn (2 bits): the exception tag;

• SX (1 bit): the sign bit;

• EX (wE bits): the exponent (biased by E0 = 2wE−1 − 1);

• FX (wF bits): the fraction (mantissa).

2 1 wE wF

SX EX FXexn

Figure 2.1: Floating-point number format.

The value of X is given according to the exception tag:

• zero (exn = 00): X = (−1)SX × 0
note that 0 is signed, as stated in the IEEE-754 standard;

• normalized number (exn = 01): X = (−1)SX × 1.FX × 2EX−E0 ;

• infinity (exn = 10): X = (−1)SX ×∞;

• not-a-number (exn = 11): X = NaN
NaN is an undefined value, such as 0/0 or ∞−∞.

Remark: FPLibrary does not handle the denormalized numbers described by the IEEE-754 standard.

2.2 Logarithmic number system

The logarithmic number system (LNS) was first introduced by Schwartzlander in [3]. The idea here is
to use a fixed-point exponent instead of a mantissa. For example: 242.25, 2−12.50, −223.75, ...

In FPLibrary, this representation is also parameterized by wE and wF , and an LNS number X is
represented as a vector of wE + wF + 3 bits, and can be partitioned in 4 fields as shown Figure 2.2:

5

• exn (2 bits): the exception tag;

• SX (1 bit): the sign bit;

• ELX
(wE bits): the integer part of the logarithm LX ;

• FLX
(wF bits): the fractional part of the logarithm.

Remark: the logarithm LX = ELX
.FLX

is represented in 2’s complement.

.SX ELX
FLX

2 1 wE wF

LX

exn

Figure 2.2: Logarithmic number format.

As for FP numbers, the exception tag dictates the value of X :

• zero (exn = 00): X = (−1)SX × 0;

• general case (exn = 01): X = (−1)SX × 2LX where LX = ELX
.FLX

;

• infinity (exn = 10): X = (−1)SX ×∞;

• not-a-number (exn = 11): X = NaN.

6

Chapter 3

Arithmetic operators

3.1 Addition / subtraction

3.1.1 Synopsis

component Add is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nB : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0));

end component;

component Add_Clk is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13;
reg : boolean := true);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nB : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0);
clk : in std_logic);

end component;

function addLatency(fmt : format;
wE, wF : positive) return natural;

3.1.2 Parameter mapping

Generic parameters

fmt The number system for the operands and result. Should be set to either FP or LNS.

wE The value of wE used in the representation of the operands and result (default: 6).

wF The value of wF used in the representation of the operands and result (default: 13).

reg Indicates if the design should be pipelined or not (default: yes).

Signal ports

nA, nB The two operands A and B.

nR The result R = A + B.

7

clk The clock signal.

3.1.3 Description

Add The pure combinatorial version of the addition/subtraction operator.

Add Clk The combinatorial version if reg is set to no or the pipelined version if reg is set to yes.

addLatency The number of stages of the pipelined version of the operator.

Remark: the result is rounded to nearest for FP operators, but this rounding cannot be achieved in
LNS. See [1] for more details.

8

3.2 Multiplication

3.2.1 Synopsis

component Mul is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nB : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0));

end component;

component Mul_Clk is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13;
reg : boolean := true);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nB : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0);
clk : in std_logic);

end component;

function mulLatency(fmt : format;
wE, wF : positive) return natural;

3.2.2 Parameter mapping

Generic parameters

fmt The number system for the operands and result. Should be set to either FP or LNS.

wE The value of wE used in the representation of the operands and result (default: 6).

wF The value of wF used in the representation of the operands and result (default: 13).

reg Indicates if the design should be pipelined or not (default: yes).

Signal ports

nA, nB The two operands A and B.

nR The result R = A × B.

clk The clock signal.

3.2.3 Description

Mul The pure combinatorial version of the multiplication operator.

Mul Clk The combinatorial version if reg is set to no or the pipelined version if reg is set to yes.

mulLatency The number of stages of the pipelined version of the operator.

Remark: the result is rounded to nearest for both FP and LNS operators.

9

3.3 Division

3.3.1 Synopsis

component Div is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nB : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0));

end component;

component Div_Clk is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13;
reg : boolean := true);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nB : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0);
clk : in std_logic);

end component;

function divLatency(fmt : format;
wE, wF : positive) return natural;

3.3.2 Parameter mapping

Generic parameters

fmt The number system for the operands and result. Should be set to either FP or LNS.

wE The value of wE used in the representation of the operands and result (default: 6).

wF The value of wF used in the representation of the operands and result (default: 13).

reg Indicates if the design should be pipelined or not (default: yes).

Signal ports

nA The dividend A.

nB The divisor B.

nR The result R = A/B.

clk The clock signal.

3.3.3 Description

Div The pure combinatorial version of the division operator.

Div Clk The combinatorial version if reg is set to no or the pipelined version if reg is set to yes.

divLatency The number of stages of the pipelined version of the operator.

Remark: the result is rounded to nearest for both FP and LNS operators.

10

3.4 Square root

3.4.1 Synopsis

component Sqrt is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0));

end component;

component Sqrt_Clk is
generic (fmt : format;

wE : positive := 6;
wF : positive := 13;
reg : boolean := true);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0);
clk : in std_logic);

end component;

function sqrtLatency(fmt : format;
wE, wF : positive) return natural;

3.4.2 Parameter mapping

Generic parameters

fmt The number system for the operand and result. Should be set to either FP or LNS.

wE The value of wE used in the representation of the operand and result (default: 6).

wF The value of wF used in the representation of the operand and result (default: 13).

reg Indicates if the design should be pipelined or not (default: yes).

Signal ports

nA The operand A.

nR The result R =
√

A.

clk The clock signal.

3.4.3 Description

Sqrt The pure combinatorial version of the division operator.

Sqrt Clk The combinatorial version if reg is set to no or the pipelined version if reg is set to yes.

sqrtLatency The number of stages of the pipelined version of the operator.

Remark: the result is rounded to nearest for both FP and LNS operators.

11

Chapter 4

Conversion operators

4.1 Fixed-point/floating-point conversions

4.1.1 Synopsis

component FXP_To_FP is
generic (wE : positive := 6;

wF : positive := 13;
wFX_I : positive := 6;
wFX_F : positive := 13);

port (nA : in std_logic_vector(wFX_I+wFX_F-1 downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0));

end component;

component FP_To_FXP is
generic (wE : positive := 6;

wF : positive := 13;
wFX_I : positive := 6;
wFX_F : positive := 13);

port (nA : in std_logic_vector(wE+wF+2 downto 0);
nR : out std_logic_vector(wFX_I+wFX_F-1 downto 0));

end component;

4.2 Conversion between IEEE754 and FPLibrary floating-point for-

mats

The IEEE754 format is the standard format used inmost PCs. Single precision is (wE=8, wF=23), double-
precision is (wE=11, wF=52). This format is more memory-efficient, since it encodes infinities and zeros
respectively as the largest and smallest values of the exponent. Conversely, the internal FPLibrary
format is more hardware-efficient. It codes these special values as special bits, and therefore doesn’t
need to decode and encode special exponent values into the corresponding bits at each operation.

Therefore, a pipeline of operators should use the FPLibrary format. Conversion from and to the
IEEE754 format should be performed essentially at input and output.

Remark: If you store single precision data in internal memory blocks such as BlockRams or M9K,
youwill have 36 bits to store a single precision data, whichmeans that youmay keep the single precision
FPLibrary format (8+23+3=34 bits).

4.2.1 Synopsis

component IEEE754_To_FP is
generic (wE : positive := 6;

wF : positive := 13);

12

port (nA : in std_logic_vector(wE+wF downto 0);
nR : out std_logic_vector(wE+wF+2 downto 0));

end component;

component FP_To_IEEE754 is
generic (wE : positive := 6;

wF : positive := 13);
port (nA : in std_logic_vector(wE+wF+2 downto 0);

nR : out std_logic_vector(wE+wF downto 0));
end component;

4.2.2 Description

IEEE754 To FP Converts the IEE-754 format on wF+wE+1 bits into the internal FPLibrary format on
wF+wE+3 bits.

FP To IEEE754 Converts the internal FPLibrary format on wF+wE+3 bits into the IEE-754 format on
wF+wE+1 bits.

4.3 Conversion between IEEE754 and LNS formats

4.3.1 Synopsis

component IEEE754_To_LNS is
generic (wE : positive := 6;

wF : positive := 13);
port (nA : in std_logic_vector(wE+wF downto 0);

nR : out std_logic_vector(wE+wF+2 downto 0));
end component;

component LNS_To_IEEE754 is
generic (wE : positive := 6;

wF : positive := 13);
port (nA : in std_logic_vector(wE+wF+2 downto 0);

nR : out std_logic_vector(wE+wF downto 0));
end component;

end package;

13

Bibliography

[1] J. Detrey and F. de Dinechin. A VHDL library of LNS operators. In 37th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, USA, October 2003.

[2] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, 1985.

[3] E. E. Swartzlander and G. Alexopoulos. The sign/logarithm number system. IEEE Transactions on
Computers, 24(12):1238–1242, December 1975.

14

