
Object Oriented and Agile Software Development
Part 1: Agile and Iterative Software Development

Christine Solnon

INSA de Lyon - 4IF - 2022/2023

1/88

Context

Organisation of the IF Curriculum:

Information systems

Computer networks

Computer architecture

Operating systems

Mathematical methods and tools

General formation

Software development:

Last year (3IF):

OO Programming
Algorithms
Software engineering

This year (4IF):

PLD Agile
Formal approaches
Grammars and languages

2/88

Skills (1/2)

Use UML diagrams to model systems

Understand a given UML diagram
; IF3-GL, IF4-MARS, IF4-Agile

Design a UML diagram to model a system
; IF3-GL, IF4-MARS, IF4-Agile

Check the consistency of different UML diagrams modeling a same
system
; IF3-GL, IF4-MARS, IF4-Agile

Design the architecture of an object oriented software

Structure a software in loosely coupled and highly cohesive classes
; IF3-GL, IF3-C++, IF4-Agile

Understand and use Design Patterns
; IF3-GL, IF3-C++, IF4-Agile

3/88

Skills (2/2)

Use a methodology to design, implement and maintain softwares

Use an iterative software development process
; IF4-Agile

Implement principles of the Agile manifesto
; IF4-Agile

Implement high quality softwares

Use appropriate object oriented mechanisms (inheritance, genericity, ...)
; IF3-C++, IF3-GL, IF4-Agile

4/88

Organisation

Courses
CM1 and CM2: Iterative Software Development
CM3 and CM4: Object Oriented Design and Design Patterns
CM5: Social and Environmental Challenges of Software Development
CM6 and CM7: Software quality (P.-E. Portier)

Long Duration Project (PLD)

1 session to introduce the project
8 practical sessions of 4h

Design and implement a software for planning delivery tours

Evaluation
Project deliverables

5/88

Some references that you may read ...

Books:

Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development
Craig Larman

Modélisation Objet avec UML
Pierre-Alain Muller, Nathalie Gaertner

Head first: Design Patterns
Eric Freeman & Elizabeth Freeman

Web sites:

www.agilealliance.org

www.scrumguides.org

6/88

Introduction Motivations

Overview

1 Introduction
Motivations
Some (quick) recalls on the context

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration

7/88

Introduction Motivations

Two quotes for starting

Philippe Kruchten:

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the "vision", and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are
easy to communicate, to review, to implement, and to evolve is what...
... you will learn in this course (?)

Craig Larman:

The proverb "owning a hammer doesn’t make one an architect" is especially
true with respect to object technology. Knowing an object-oriented language
(such as Java) is a necessary but insufficient first step to create object
systems. Knowing how to "think in objects" is also critical.

8/88

Introduction Motivations

Software Crisis?

1968: NATO Software Engineering Conference

First mentions of "software crisis" and "software engineering"

1972: ACM Turing Award Lecture of Dijkstra
The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming became
a mild problem, and now we have gigantic computers, programming has become an equally
gigantic problem.

1979: Study of the Government Accounting Office on 163 projects

29% have never been completed

45% have been completed, but not used

19% have been completed, but have been modified before utilisation

7% have been completed and used without modifications

9/88

Introduction Motivations

Some examples

1994 ; 2005: Baggage handling system at Denver Airport

Cost=193 M$; 16 months late ; Replaced by manual system in 2005

1999 ; 2011: New York City Automated Payroll (NYCAP) System

Estimated cost = 66 M$; Actual cost > 360 M$

Logiciel unique à vocation interarmées de la solde (Louvois)

From 1999 to 2003: Adaptation of an ERP; aborted (Cost=20Me)
2004: Dev. of an engine linked with an existing information system
Progressive deployment in 2011 ; Abortion in 2013 (Cost=470Me)
2019: Launching of "Source Solde" (128Me)
2021: "Source Solde" is successfully used!

And two very expensive bugs...

1996: Ariane 5
1999: NASA Mars Climate Orbiter 10/88

Introduction Motivations

Cost of Poor Software Quality (CPSQ) in the US in 2020
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

11/88

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

Introduction Motivations

Study of the Standish Group (1/3)
Success/Failure of IT projects (over 50000 projects / year)

Failed: cancelled at some point during the development cycle
Challenged: completed and operational but over-budget, over the time
estimate, and offers fewer features and functionalities
Successful: completed on-time and on-budget, with all features and
functionalities as initially specified

In 2020: 19% failed, 50% challenged, 31% success
12/88

Introduction Motivations

Study of the Standish Group (2/3)
Influence of the size of the project on success (from 2011 to 2015)

Conclusion of the Standish group:
It is critical to break down large projects into a sequence of smaller ones, prioritized on
direct business value, and install stable, full-time, cross-functional teams that execute
these projects following a disciplined agile and optimization approach.

13/88

Introduction Motivations

Study of the Standish Group (3/3)

Main failure causes
1 Lack of implication of the user . 12,8%
2 Incomplete requirements and specifications . 12,3%
3 Modification of the requirements and specifications 11,8%

Conclusion:
“Research at the Standish Group indicates that smaller time frames, with
delivery of software components early and often, will increase the
success rate. Shorter time frames result in an iterative process of design,
prototype, develop, test and deploy small elements. This process is known as
growing software as opposed to the old concept of developping software.
Growing software engages the user earlier."

1999: Unified Software Development Process (USDP or UP)

Iterative process for developing software
Flexible and open process ; Agile and XP compatible!

14/88

Introduction Some (quick) recalls on the context

Overview

1 Introduction
Motivations
Some (quick) recalls on the context

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration

15/88

Introduction Some (quick) recalls on the context

What is a software?

Set of artifacts

Code: Source, Binary, Tests, ...

User documentation: Reference manuals, tutorials, ...

Technical documentation: UML diagrams, ...

...

Designed by and for different actors

Client

Users

Programmers

Hotline

...

16/88

Introduction Some (quick) recalls on the context

What is a good software?

Different points of view:

The user What does it do?
; Functional and non functional needs

The programmer How is it done?
; Source code, Architecture, Technical documents, ...

The provider How much does it cost/payoff?
; Development and maintenance costs, ...

The hotline Why does it fail?
; diagnostic, reproducibility, remote administration, ...

...

17/88

Introduction Some (quick) recalls on the context

Activities of a Software Process (recalls from 3IF):

Capture and analysis of the requirements
; Specification of functional and non functional needs

Design
; Conceptual solution (models) that fulfills the requirements

Development and Test
; Code

Integration and Test
; Operational software

Maintenance

18/88

Introduction Some (quick) recalls on the context

Linear Software Development Life Cycle Models

Waterfall V-shaped

Problem:
These models assume that

It is possible to specify complete and correct needs
Needs won’t change

However, 90% of the costs are due to maintenance and evolution!

19/88

Introduction Some (quick) recalls on the context

Maintenance and Evolution

Utilisation of specified functionalities in waterfall models [C. Larman]:
Never . 45%
Rarely . 19%
Sometimes . 16%
Often . 13%
Always . 7%

Repartition of maintenance costs [C. Larman]:
User extensions . 41,8%
Error correction .21,4%
Modification of data format . 17,4%
Hardware modification . 6,2%
Documentation . 5,5%
Efficiency .4%

If you think writing software is difficult, try re-writing software

Bertrand Meyer
20/88

Agile and Unified Software Development Process (UP)

Overview

1 Introduction

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration

21/88

Agile and Unified Software Development Process (UP)

The Agile manifesto (2001) www.agilealliance.com

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions . . . over processes and tools

Working software . . . over comprehensive documentation

Customer collaboration . . . over contract negotiation

Responding to change . . . over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

22/88

Agile and Unified Software Development Process (UP)

12 Principles of the Agile Manifesto (1/2)

1: Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2: Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

3: Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

4: Business people and developers must work together daily
throughout the project.

5: Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

6: The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

23/88

Agile and Unified Software Development Process (UP)

12 Principles of the Agile Manifesto (2/2)

7: Working software is the primary measure of progress.

8: Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

9: Continuous attention to technical excellence and good design
enhances agility.

10: Simplicity (the art of maximizing the amount of work not done)
is essential.

11: The best architectures, requirements, and designs emerge
from self-organizing teams.

12: At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Warning: “Be agile” doesn’t mean “Don’t design models”
; Models are used to understand, communicate, and explore

24/88

Agile and Unified Software Development Process (UP)

Subway Map to Agile Practices
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

25/88

Agile and Unified Software Development Process (UP)

The UP Life Cycle

The life of a software is composed of cycles

1 cycle⇒ 1 new version of the software
Each cycle is composed of 4 phases:
; Inception, Elaboration, Construction, Transition
Each phase is composed of iterations⇒ Increments

Why an Iterative Process?

User feedback at the end of each iteration
; Adapt the system to actual user needs
Development team feedback at the end of each iteration
; Improve organisation
Shorter and simpler steps
; Avoid the “analysis paralysis”
Important risks are studied during the first iterations
; Design and stabilise the architecture quickly

26/88

Agile and Unified Software Development Process (UP)

Graphical Representation of the UP Life Cycle

[figure from C. Larman]

27/88

Agile and Unified Software Development Process (UP)

Phase 1: inception

Very short phase (usually: only one iteration)

Preliminary study to evaluate feasibility and risks

What should the system do?
What could the architecture look like?
What are the risks?
Very rough approximation of costs and durations

; Should we accept the project?

28/88

Agile and Unified Software Development Process (UP)

Phase 2: Elaboration

A few iterations, guided by risks

Identify and stabilize most needs
; Most use cases are specified

Design the basic architecture
; Framework of the system

Code and test the most critical use cases (<10% of the needs)
; Test as soon as possible, often, and within a realistic context

Reliable estimation of costs and durations

; The main needs are identified
; The architecture is stabilized
; Risks are controlled

29/88

Agile and Unified Software Development Process (UP)

Phase 3: Construction

Most expensive phase (>50% of the cycle)

Incremental growth
; Stable architecture with minor changes

Until all use cases are realized

; The system is correct and complete enough to be deployed

30/88

Agile and Unified Software Development Process (UP)

Phase 4: Transition

Beta version deployed

Correction of the remaining errors

Tests and improvements, user formation, installation of online help, ...

31/88

Description of one iteration

Overview

1 Introduction

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration

32/88

Description of one iteration

Overview of an iteration

Each iteration is a small waterfall:
Requirement, analysis ; Model the system seen from the outside
Design ; Model the system seen from the inside
Integration and tests ; Operational software

; Proportions of these activities vary from one iteration to another

[Figure extraite de http://www.ibm.com/developerworks/rational]

33/88

Description of one iteration

Agile iteration ; Sprint / Timebox

Mode details on www.scrumguides.org
34/88

Description of one iteration Capture and Analysis of the Requirements

Overview

1 Introduction

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration
Capture and Analysis of the Requirements
Design
Development and Test
Project Management

35/88

Description of one iteration Capture and Analysis of the Requirements

Capture and Analysis of the Requirements

Goal: Agree on the features of the system to build

; Specification of functional and non functional needs

Why is it difficult?

Users don’t really know their needs...
... and needs change, especially when introducing a new system!

Developers may not know the application domain

Users and developers have different languages

A compromise between services and costs must be found

...

36/88

Description of one iteration Capture and Analysis of the Requirements

Goals and Artifacts

Goals Artifacts / Deliverables

Understand the system context Domain Model and
Business Object Model
Glossary

Capture functional needs Use Case Model

Capture non functional needs Supplementary
Specifications

37/88

Description of one iteration Capture and Analysis of the Requirements

Domain Model

What is a domain model?
Class diagram with conceptual classes only (real world classes)
; Few attributes, no operations, no software classes

How to build a domain model?
Reuse (and modify) existing models!
Use category lists:

Classes: Business transactions, Products/services related to
transactions, Actors, Places, ...
Associations: is-a-description-of, is-part-of, ...

Identify names (and noun phrases) in textual descriptions

Domain Models in Agile Projects

Goal: Understand key concepts and their relations ; Visual dictionary
Don’t try to be exhaustive and correct since the first iteration
Domain models evolve through iterations

38/88

Description of one iteration Capture and Analysis of the Requirements

Exercise: Domain Model of PlaCo

A sawmill wants a system for drawing plans and transfer them to a wood
cutting machine.

A plan is a rectangle with an height and a width.

The system must be able to add, delete and move shapes on a plan, to
save and load plans, and to transfer a plan to the cutting machine.

A shape is a rectangle or a circle:

A rectangle has an height and a width, and its position is defined by
its upper left corner coordinates;
A circle has a radius, and its position is defined by its centre
coordinates.

Coordinates and length are integer values expressed with respect to
some given unit. Shapes must have empty intersections.

39/88

Description of one iteration Capture and Analysis of the Requirements

First Domain Model of PlaCo

40/88

Description of one iteration Capture and Analysis of the Requirements

Other artifacts to “Understand the system context"

Business Object Model

Model more general than the domain model
Abstraction of the way workers and business entities are related, and
collaborate in order to achieve activities
; Class, Activity, Collaboration, and Sequence Diagrams
; More informations in PLD MARS

Glossary

Definition of the vocabulary related to the application
; Avoid ambiguities

Each term occuring in Use Cases, Domain or Business Object Models
must be defined in the glossary

41/88

Description of one iteration Capture and Analysis of the Requirements

Goals and Artifacts

Goals Artifacts / Deliverables

Understand the system context Domain Model and
Business Object Model
Glossary

Capture functional needs Use Case Model

Capture non functional needs Supplementary
Specifications

42/88

Description of one iteration Capture and Analysis of the Requirements

Use Cases (Recalls from 3IF)

What is a Use Case?
Utilisation of the system by an actor (human or exterior system)
; Sequence of interactions between the system and actors
Usually composed of several scenarios
; Nominal scenario (basic flow) and extensions (alternative flows)

Warning: System = Black Box

; Describe what the system must do, not how it will do it

Why Use Cases?

Simple procedure for the client to describe her needs
Reach an agreement between clients and development teams

Starting point for the next activities
Design and Implementation ; Realise Use Cases
Functional tests ; Use Case Scenarios

43/88

Description of one iteration Capture and Analysis of the Requirements

Use Cases (Recalls from 3IF)

How to discover Use Cases?

Identify the system boundary
Identify primary actors
; Those who achieve a goal when using the system
For each primary actor, identify her goals
Define Use Cases corresponding to these goals

; Requirements workshop that gather clients, users, architects and programmers

How to describe Use Cases?
Use Case Model:

Use Case Diagram
Textual Description of Use Cases
System Sequence Diagrams of Use Case Scenarios

44/88

Description of one iteration Capture and Analysis of the Requirements

Use Case Diagram (Recalls from 3IF)
Relations between Use Cases and Actors (image from Craig Larman)

45/88

Description of one iteration Capture and Analysis of the Requirements

Exercise: Use Case Diagram for PlaCo

A sawmill wants a system for drawing plans and transfer them to a wood
cutting machine.

A plan is a rectangle with an height and a width.

The system must be able to add, delete and move shapes on a plan, to
save and load plans, and to transfer a plan to the cutting machine.

A shape is a rectangle or a circle:

A rectangle has an height and a width, and its position is defined by
its upper left corner coordinates;
A circle has a radius, and its position is defined by its centre
coordinates.

Coordinates and length are integer values expressed with respect to
some given unit. Shapes must have empty intersections.

46/88

Description of one iteration Capture and Analysis of the Requirements

Use Case Diagram for PlaCo

47/88

Description of one iteration Capture and Analysis of the Requirements

Textual Description of a Use Case (Recalls from 3IF)

Each Use Case is composed of a set of scenarios

Nominal scenario
Alternate scenarios (one for each possible particular case)

What is a scenario?
Sequence of interactions between actors and the system

Description of a Use Case

Brief format: Nominal scenario described in one paragraph
; Story of an actor who uses the system to reach a goal
Structured description (according to Martin Fowler):

Title: Goal of the main actor of the use case (starts with a verb)
Preconditions: Conditions that must be true before starting
Nominal scenario: Sequence of interactions between actors and
the system
Extensions: A sequence of interactions for each alternative case

48/88

Description of one iteration Capture and Analysis of the Requirements

Example: Description of "Add a rectangle" (1/2)

Brief Format:
The user tells the system she wants to add a rectangle. She enters the
coordinates of two opposite corners of the rectangle. The system adds the
rectangle to the plan.

Structured Description:

Precondition: a plan is loaded

Nominal Scenario:
1 The user tells the system she wants to add a rectangle
2 The system asks to enter the coordinates of a first corner
3 The user enters the coordinates of a point p1
4 The system asks to enter the coordinates of the opposite corner
5 The user enters the coordinates of a point p2
6 The system adds the rectangle defined by (p1,p2) in the plan and

displays the plan

49/88

Description of one iteration Capture and Analysis of the Requirements

Example: Description of "Add a rectangle" (2/2)

Structured Description (continued):

Extensions:

3a Point p1 does not belong to the plan
The system notifies the user that p1 is not valid
and goes back to Step 2

3b Point p1 already belongs to a shape in the plan
The system notifies the user that p1 is not valid
and goes back to Step 2

5a Point p2 does not belong to the plan
The system notifies the user that p2 is not valid
and goes back to Step 4

5b The rectangle defined by (p1,p2) has a non empty intersection with
a shape of the plan

The system notifies the user that p2 is not valid
and goes back to Step 4

1-5a The user tells the system she wants to cancel the action
The system cancels the action

50/88

Description of one iteration Capture and Analysis of the Requirements

System Sequence Diagram of a Use Case (Recalls from 3IF)

; Graphical representation of a Use Case scenario

51/88

Description of one iteration Capture and Analysis of the Requirements

Iterative Modelling of Use Cases
Use Case Models are progressively refined:

Iteration 1 / Inception Phase:

Most Use Cases are identified
Nearly 10% of them are analysed
; Most significant/risky/valuable cases

Iteration 2 / Elaboration Phase:

Nearly 30% of the cases are analysed
Design and implementation of the most significant/risky/valuable ones

Each of the next iterations of the Elaboration Phase:

Detailed analysis, design and implementation of some use cases

Last iteration of the Elaboration Phase:

Most cases are identified
from 40 to 80% of them are analyzed
The most significant/risky/valuable ones are implemented

; The architecture is stable

52/88

Description of one iteration Capture and Analysis of the Requirements

Goals and Artifacts

Goals Artifacts / Deliverables

Understand the system context Domain Model and
Business Object Model
Glossary

Capture functional needs Use Case Model

Capture non functional needs Supplementary
Specifications

53/88

Description of one iteration Capture and Analysis of the Requirements

Goal “Capture non functional needs"

Supplementary Specifications:

Some non functional needs are already expressed in use case models
; Gather them
List other non functional needs: URPS+

Usability
Reliability
Performance
Supportability
+: Other needs

Languages and tools, hardware, etc
Interface with external systems
Legal issues, licence
...

54/88

Description of one iteration Design

Overview

1 Introduction

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration
Capture and Analysis of the Requirements
Design
Development and Test
Project Management

55/88

Description of one iteration Design

Design

Why designing models?

To understand and communicate:

What are object responsibilities?

How do objects collaborate?

What design patterns can be used?

; Documentation may be generated from the code (reverse engineering)

How to design models?

Design several models concurrently

Dynamic diagrams to model the behavior
Static diagrams to model the structure

; Check the consistency of these models

Design with programmers, not for them!

56/88

Description of one iteration Design

Goals and Artifacts

Goals Artifacts / Deliverables

Model the behaviour Sequence diagrams

Statechart diagrams

Model the structure Class, package, and
deployment diagrams

57/88

Description of one iteration Design

Sequence Diagrams (Recalls from 3IF)
; Temporal point of view of object interactions

When capturing the requirements: System = black box

; Sequences of interactions between actors and the system

Describe use case scenarios

During the design step: Open the black box

; Interactions between software objects

Assign responsibilities to objects

Who creates objects?
How to access to an object?
What object receives messages from the GUI?
...

in order to have loosely coupled and highly cohesive objects

58/88

Description of one iteration Design

Example (see Part 2 of this course)

59/88

Description of one iteration Design

Goals and Artifacts

Goals Artifacts / Deliverables

Model the behaviour Sequence diagrams

Statechart diagrams

Model the structure Class, package, and
deployment diagrams

60/88

Description of one iteration Design

Parenthesis on finite state automata (1/3)

A finite state automaton is defined by:
A finite set of symbols (alphabet) Σ

A finite set of states Q
A set of initial states I ⊆ Q and accept states F ⊆ Q
A transition relation R ⊆ Q × Σ×Q

Interpretation of (qi , s,qj): Transition from qi to qj when reading s

Graph representation:
Each state corresponds to a vertex

Each transition (qi , s,qj) corresponds to an edge qi
s−→ qj

Example:

Σ = {e, .,0,1,2,3,4,5,6,7,8,9}
Q = {q0,q1,q2,q3,q4,q5}
I = {q0}
F = {q1,q2,q3,q5} 0

.

0|..|9 0|..|9

q5
1|..|9

q4
e

0|..|9

1|..|9
q1 q3

q2

q0
.

61/88

Description of one iteration Design

Parenthesis on finite state automata (2/3)

Using a finite state automaton to accept words:

Input = a sequence of symbols from Σ

Output = true (accept) or false (don’t accept)

A word < s1, ..., sn > is accepted if there exist < q0, ...,qn > such that:
q0 ∈ I, qn ∈ F and ∀i ∈ [1..n], (qi−1, si ,qi) ∈ R
; Path from a state of I to a state of F

Example :

Accepted words:
0, 0.123e45, 125, ...

Non accepted words:
012, 4.5.6, 1e2, ...

0

.

0|..|9 0|..|9

q5
1|..|9

q4
e

0|..|9

1|..|9
q1 q3

q2

q0
.

How to modify the automaton to accept 1e2?

62/88

Description of one iteration Design

Parenthesis on finite state automata (3/3)

Deterministic and complete finite state automata

An automaton is deterministic if R is a function from Q × Σ to Q

An automaton is complete if R is a total function

It is always possible to transform a finite state automaton into an equivalent
deterministic and complete automaton

Example:

q3
e s t

a|...|za|...|z =e

e s t

a|...|ze

e=e,s

=e,t

q0 q1 q3q2 q0 q1 q2

63/88

Description of one iteration Design

Beyond finite state automata

Finite state automata are very efficient

Time complexity linear wrt the size of the word

But they cannot represent all languages

Ex: They cannot recognise well-formed parentheses!

Pushdown automata (finite state + stack) are more powerful

They can recognise any context-free language (C++, Java, ...)

But some languages are not context-free

A Turing machine (finite state + tape) is even more powerful

It can recognise any decidable language

But some languages are not decidable!

More on this topic in the course on Grammars and Languages!
64/88

Description of one iteration Design

Back to Statechart Diagrams

Why using Statechart diagrams?

To model the evolution of the state of a system with respect to events

What is the difference with automata?

Statechart diagram without actions nor guards:
; Finite state automata

When actions are limited to pushing/poping symbols into/from a stack:
; Pushdown automata

In the general case: Turing complete

65/88

Description of one iteration Design

Statechart Diagrams without Guards nor Actions

Particular kind of finite state automata:

Replace symbols with events (reception of a signal, a message, ...)

Events trigger transitions between states
; An event is lost if no transition is specified for it in the current state
There is one initial state, but not necessarily an accept state

Example:

[Image from C. Larman]
66/88

Description of one iteration Design

Different Kinds of Events:

Signals:

Q0
signalName

————————————–> Q1

Messages/Operations:

Q0
opName(parametres)

————————————–> Q1

Temporal events:

Q0
after(x)

————————————–> Q1

; Go to state Q1 x time units after arriving to state Q0

Conditions:

Q0
when(cond)

————————————–> Q1

; Go to state Q1 when cond becomes true

67/88

Description of one iteration Design

Actions and Activities

Actions (signal emission, method call, ...):
Actions may be done:

During a transition (ex. : action4)
When entering a state (ex. : action1)
When leaving a state (ex. : action3)

Actions are atomic (cannot be interrupted by an event)

Activities:
May be executed in a state (ex. : activity2)
May be continuous or not
Are interrupted when leaving the state

Example:

Exit / action3

A

e1 / action4
B

Entry / action1
Do / activity2

Order of execution : action1 - activity2 - action3 - action4
68/88

Description of one iteration Design

Guards and Composite Transitions

Guard Conditions:
Guard =Boolean Expression

A B
e1 [cond]

Transition from A to B if cond is true when e1 occurs
; If cond is false then e1 is lost

Composite Transitions:
Command

[tot=0]

validation

[0<tot<1000] [tot>=1000]

Cancel Treat Check

Factorisation of the validation event

Guards must be mutually exclusive to ensure determinism
69/88

Description of one iteration Design

Some Tips...

Every transition must have an event

In most cases, automata must be deterministic

If several transitions from a same state share a same event, then
use guards to ensure determinism

Every state must be reachable from the initial state

If the modelled system has a finite life, then there must exist a path from
every state to a final state

70/88

Description of one iteration Design

Other UML Diagrams for modelling behaviors
; Communication Diagrams, Timing Diagrams, Activity Diagrams, ...

71/88

Description of one iteration Design

Goals and Artifacts

Goals Artifacts / Deliverables

Model the behaviour Sequence diagrams

State-transition diagrams

Model the structure Class, package, and
deployment diagrams

72/88

Description of one iteration Design

Class Diagrams (Recalls from 3IF)

When capturing requirements:

Classes = real-world (conceptual) classes
Few attributes, no operations, no visibility

When designing the application:

Classes = Software Classes
Add visibility, interfaces, methods, ...

73/88

Description of one iteration Design

Relation between Sequence and Class Diagrams

[Figure from C. Larman]

74/88

Description of one iteration Design

Package Diagrams (Recalls from 3IF)

Why designing Package Diagrams?

To group Classes into Packages corresponding to sub-systems

To model inclusion relations between these groups

To model dependency relations between these groups

Why structuring a system in sub-systems?

To encapsulate and decompose complex systems

To ease collaborative development

To favour reuse

High Cohesion, Low Coupling and Protected Variations

75/88

Description of one iteration Design

Example of Package Diagram

[Figure from C. Larman]
76/88

Description of one iteration Design

Deployment Diagram (Recalls from 3IF)

Goal: Describe

Distribution of software components on hardware components

Communication between hardware components

77/88

Description of one iteration Design

From UML to Object Oriented Design

Craig Larman:

Drawing UML diagrams is a reflection of making decisions about the object
design. The object design skills are what really matter, rather than knowing
how to draw UML diagrams.

Fundamental object design requires knowledge of:

Principles of responsibility assignments

Design patterns

We’ll come back to this in Part 2 ...
; Illustration with PlaCo

... and in the PLD too!

78/88

Description of one iteration Development and Test

Overview

1 Introduction

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration
Capture and Analysis of the Requirements
Design
Development and Test
Project Management

79/88

Description of one iteration Development and Test

From Design Models to Code

Goal:

Write code that implements the targeted use cases

Test this code to ensure that it has no error and that it actually
corresponds to needs

Code skeletons can be automatically generated from design models:

From Class Diagrams:

Declaration of Classes, Attributes, Method Signatures, ...
Encode 1-n associations with Collections
...

From Sequence Diagrams:

Sequences of method calls
Constructor signatures
...

...
80/88

Description of one iteration Development and Test

Iterative Development and Reverse Engineering

Code skeletons must be completed

Implement visibility whenever o1 must send messages to o2:

Persistent visibility:
Attribute visibility: o2 is attribute of o1

Global visibility: o2 is a public static attribute or a Singleton instance
Temporary visibility, within a method p of o1:

Parameter visibility: o2 is parameter of p
Local Visibility: o2 is a local variable of p

Handle exceptions and errors

...

In general, automatically generated code must be modified

; Add new attributes, methods, classes, ...

Use reverse engineering tools at the end of each iteration

; Update design models for the next iteration
81/88

Description of one iteration Development and Test

[Image from C. Larman]

82/88

Description of one iteration Development and Test

Test-Driven Development (TDD)

TDD Cycle:

Write unit tests (before starting implementation)

While some tests fail do:

Complete code

; Most simple implementation with respect to tests

Refactor, and test again

Advantages:

Unit tests are actually written

Nice and challenging way of programming, with a clear goal

Tests provide an operational specification of method behaviors

Tools (JUnit, CTest, ...) may be used to automate the test process

Non regression is automatically checked when refactoring

cf Partie 4 du cours (P.-E. Portier)
83/88

Description of one iteration Development and Test

Refactoring

Goal:
Transform/restructure code without changing behavior
; Remove “code smells"
Warning: Run tests after each modification

Examples:

Suppress code duplication by creating new methods
Rename variables, methods, ... to improve readability
Shorten long methods by creating new methods
; Ensure the single responsibility principle
Replace magic literals (3.14, 9.81, ...) with symbolic constants
Remove dead code
...

cf http://refactoring.com/catalog

84/88

Description of one iteration Development and Test

[Slide from Laurent Cottereau]

85/88

Description of one iteration Project Management

Overview

1 Introduction

2 Agile and Unified Software Development Process (UP)

3 Description of one iteration
Capture and Analysis of the Requirements
Design
Development and Test
Project Management

86/88

Description of one iteration Project Management

Phase Planning vs Iteration Planning

[Image from C. Larman]
87/88

Description of one iteration Project Management

Iteration Planning

When should we plan an iteration?

On the first iteration day

Who is involved in iteration planning?

Product Owner (PO), Team members, Scrum master

How to plan an iteration?

The PO identifies and ranks candidate items in the product backlog

For each item, by order of priority:

Quick estimation of the tasks that must be done
Quantification of the time wrt available human resources
; Planning poker (http://www.planningpoker.com/)

Until total time = Iteration duration

88/88

	Introduction
	Motivations
	Some (quick) recalls on the context

	Agile and Unified Software Development Process (UP)
	Description of one iteration
	Capture and Analysis of the Requirements
	Design
	Development and Test
	Project Management

