Object Oriented and Agile Software Development
Part 1: Agile and Iterative Software Development

Christine Solnon

INSA de Lyon - 41F - 2022/2023

1/88

Context

Organisation of the IF Curriculum:

Information systems
Computer networks
Computer architecture
Operating systems
Mathematical methods and tools
General formation
Software development:
Last year (3IF): This year (41F):
e OO Programming o PLD Agile

o Algorithms e Formal approaches
e Software engineering e Grammars and languages

2/88

Skills (1/2)

Use UML diagrams to model systems

@ Understand a given UML diagram
~» IF3-GL, IF4-MARS, IF4-Agile

@ Design a UML diagram to model a system
~ |IF3-GL, IF4-MARS, IF4-Agile

@ Check the consistency of different UML diagrams modeling a same

system
~» IF3-GL, IF4-MARS, IF4-Agile

Design the architecture of an object oriented software

@ Structure a software in loosely coupled and highly cohesive classes
~ |IF3-GL, IF3-C++, IF4-Agile

@ Understand and use Design Patterns
~ |IF3-GL, IF3-C++, IF4-Agile

2/88

Skills (2/2)

Use a methodology to design, implement and maintain softwares

@ Use an iterative software development process
~ IF4-Agile

@ Implement principles of the Agile manifesto
~> IF4-Agile

Implement high quality softwares

@ Use appropriate object oriented mechanisms (inheritance, genericity, ...

~» IF3-C++, IF3-GL, IF4-Agile

4/88

Organisation

Courses
@ CM1 and CM2: lterative Software Development
@ CMS3 and CM4: Object Oriented Design and Design Patterns

@ CM5: Social and Environmental Challenges of Software Development
@ CM®6 and CM7: Software quality (P.-E. Portier)

Long Duration Project (PLD)
@ 1 session to introduce the project
@ 8 practical sessions of 4h

Design and implement a software for planning delivery tours

Evaluation
@ Project deliverables

5/88

Some references that you may read ...

Books:

@ Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and lterative Development
Craig Larman

@ Modélisation Objet avec UML
Pierre-Alain Muller, Nathalie Gaertner

@ Head first: Design Patterns
Eric Freeman & Elizabeth Freeman

Web sites:
@ www.agilealliance.org

@ www.scrumguides.org

6/88

Introduction Motivations

Overview

o Introduction
@ Motivations

e Agile and Unified Software Development Process (UP)

e Description of one iteration

7/88

Introduction Motivations

Two quotes for starting

Philippe Kruchten:

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the "vision", and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are
easy to communicate, to review, to implement, and to evolve is what...

... you will learn in this course (7?)

Craig Larman:

The proverb "owning a hammer doesn’t make one an architect” is especially
true with respect to object technology. Knowing an object-oriented language
(such as Java) is a necessary but insufficient first step to create object
systems. Knowing how to "think in objects" is also critical.

8/88

Introduction Motivations

Software Crisis?

1968: NATO Software Engineering Conference
First mentions of "software crisis” and "software engineering"

1972: ACM Turing Award Lecture of Dijkstra

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming became
a mild problem, and now we have gigantic computers, programming has become an equally
gigantic problem.

.

1979: Study of the Government Accounting Office on 163 projects
@ 29% have never been completed
@ 45% have been completed, but not used
@ 19% have been completed, but have been modified before utilisation

@ 7% have been completed and used without modifications

9/88

Introduction Motivations

Some examples

1994 ~ 2005: Baggage handling system at Denver Airport
@ Cost=193 M$; 16 months late ~ Replaced by manual system in 2005

v

1999 ~- 2011: New York City Automated Payroll (NYCAP) System
@ Estimated cost = 66 M$ ~ Actual cost > 360 M$

Logiciel unique a vocation interarmées de la solde (Louvois)
@ From 1999 to 2003: Adaptation of an ERP; aborted (Cost=20M<€)

@ 2004: Dev. of an engine linked with an existing information system
Progressive deployment in 2011 ~» Abortion in 2013 (Cost=470M<€)

@ 2019: Launching of "Source Solde" (128M<€)
@ 2021: "Source Solde" is successfully used!

And two very expensive bugs...
@ 1996: Ariane 5
@ 1999: NASA Mars Climate Orbiter

10/

2’8

Cost of Poor Software Quality (CPSQ) in the US in 2020
https://www.it-cisq.org/pdf/CPSQ-2020-report .pdf

11/88

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

Introduction Motivations
Study of the Standish Group (1/3)
Success/Failure of IT projects (over 50000 projects / year)

100%
80%

1994 | 1996 | 1998 | 2000 | 2002 | 2004 | 2009 | 2011 | 2012 | 2013 | 2014 | 2015
M Failed 31% | 40% | 28% | 23% | 15% | 18% | 24% | 22% | 17% | 19% | 17% | 19%
M Challenged | 53% | 33% | 46% | 49% | 51% @ 53% | 44% | 49% | 56% | 50% | 55% | 52%
B Successful | 16% | 27% | 26% | 28% | 34% | 29% | 32% | 29% | 27% | 31% | 28% | 29%

@ Failed: cancelled at some point during the development cycle
@ Challenged: completed and operational but over-budget, over the time
estimate, and offers fewer features and functionalities

@ Successful: completed on-time and on-budget, with all features and
functionalities as initially specified

In 2020: 19% failed, 50% challenged, 31% success L
12/88

Introduction Motivations

Study of the Standish Group (2/3)

Influence of the size of the project on success (from 2011 to 2015)

CHAOS RESOLUTION BY PROJECT SIZE

Grand 2% 7% 17%
Large 6% 17% 24%
Medium 9% 26% 31%
Moderate 21% 32% 1%
Small 62% 16% 11%
OTA 100% 100% 100%

The resolution of all software projects by size from FY2011-2015 within
the new CHAOS database

Conclusion of the Standish group:

It is critical to break down large projects into a sequence of smaller ones, prioritized on
direct business value, and install stable, full-time, cross-functional teams that execute
these projects following a disciplined agile and optimization approach.

13/88

Study of the Standish Group (3/3)

Main failure causes

@ Lack of implication of the user.................iiiiiiiene.... 12,8%

© Incomplete requirements and specifications 12,3%

© Modification of the requirements and specifications............... 11,8%
Conclusion:

“Research at the Standish Group indicates that smaller time frames, with
delivery of software components early and often, will increase the
success rate. Shorter time frames result in an iterative process of design,
prototype, develop, test and deploy small elements. This process is known as
growing software as opposed to the old concept of developping software.
Growing software engages the user earlier."

1999: Unified Software Development Process (USDP or UP)
@ lterative process for developing software
@ Flexible and open process ~ Agile and XP compatible!

v
14/88

Introduction Some (quick) recalls on the context

Overview

o Introduction

@ Some (quick) recalls on the context
e Agile and Unified Software Development Process (UP)

e Description of one iteration

15/88

Introduction Some (quick) recalls on the context

What is a software?

Set of artifacts
@ Code: Source, Binary, Tests, ...
@ User documentation: Reference manuals, tutorials, ...
@ Technical documentation: UML diagrams, ...
o ..

Designed by and for different actors
@ Client
@ Users
@ Programmers

@ Hotline

16/88

Introduction Some (quick) recalls on the context

What is a good software?

Different points of view:

@ The user What does it do?
~» Functional and non functional needs

@ The programmer How is it done?
~» Source code, Architecture, Technical documents, ...

@ The provider How much does it cost/payoff?
~» Development and maintenance costs, ...

@ The hotline Why does it fail?

~ diagnostic, reproducibility, remote administration, ...

17/88

Introduction Some (quick) recalls on the context

Activities of a Software Process (recalls from 3IF):

@ Capture and analysis of the requirements
~» Specification of functional and non functional needs

@ Design
~» Conceptual solution (models) that fulfills the requirements

@ Development and Test
~» Code

@ Integration and Test
~» Operational software

@ Maintenance

18/88

Some (quick) recalls on the context

Linear Software Development Life Cycle Models

Waterfall

q Requirements
Analysis

q Development

q Maintenance

Problem:

These models assume that

V-shaped

3
% - Module ., Unit
% - i i
% Design Testing
% A &

Coding

@ It is possible to specify complete and correct needs
@ Needs won't change

However, 90% of the costs are due to maintenance and evolution!

19/88

Introduction Some (quick) recalls on the context
Maintenance and Evolution

Utilisation of specified functionalities in waterfall models [C. Larman]:

O NV .. e 45%
@ Rarely ... 19%
@ SOMELMES . it 16%
O Ot BN Lo e 13%
@ AIWAY S . ettt 7%)

Repartition of maintenance costs [C. Larman]:

@ USEr BXtENSIONS ..ottt e e 41,8%
@ Error Correction ... e 21,4%
@ Modificationof dataformat L. 17,4%
@ Hardware modification ...t 6,2%
@ Documentationc.iiiii e 5,5%
@ EffiCienCy ..o 4%)

If you think writing software is difficult, try re-writing software

Bertrand Meyer

20/88

Agile and Unified Software Development Process (UP)

Overview

e Agile and Unified Software Development Process (UP)

721/88

Agile and Unified Software Development Process (UP)

The Aglle manifesto (2001) www.agilealliance.com

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

@ Individuals and interactions . .. over processes and tools
@ Working software ... over comprehensive documentation
@ Customer collaboration . .. over contract negotiation
@ Responding to change ... over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

729/88

Agile and Unified Software Development Process (UP)

12 Principles of the Agile Manifesto (1/2)

1: Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2: Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

3: Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

4: Business people and developers must work together daily
throughout the project.

5: Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

6: The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

721/88

Agile and Unified Software Development Process (UP)

12 Principles of the Agile Manifesto (2/2)

: Working software is the primary measure of progress.

8: Agile processes promote sustainable development. The

10:

11:

12:

sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

: Continuous attention to technical excellence and good design

enhances agility.

Simplicity (the art of maximizing the amount of work not done)
is essential.

The best architectures, requirements, and designs emerge
from self-organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Warning: “Be agile” doesn’t mean “Don’t design models”
~» Models are used to understand, communicate, and explore

24/88

Agile and Unified Software Development Process (UP)

Subway Map to Agile Practices

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

Definition of Done Point astimates Planning poker Backiog
O
Kanban board Defintion of Ready Relative estimation Role-Feature 80D
e}
Lead time
Task board Backiog grooming ATOD
Bumdown chart Personas © Acoeptance tests
Story mapping Ubiquitous language
(e}

Scrum of Scrums:

Three Questions Storyspiing Q) Continuous Mock objects

Niko-nlko deployment
Susiginale O) User stories Confinuous Refacionn
Pace Sign up Iterations Intagration '
TOD
Pair Programming Daly mesting Veloclty Frequent Coliective Simple design
releases: Ownarship
Rules of simplieity
o Q Team room Timebax 3Cs o] Unit tests
Project Faciltation
chartars o Automated build
Hearbeat INVEST
refrospective Quick design session Exploratory testing
o o]
Team Incremental development Vrsion control

Itecative development
Usabilty testing

CRC cards

25/88

Agile and Unified Software Development Process (UP)

The UP Life Cycle

The life of a software is composed of cycles
@ 1 cycle = 1 new version of the software

@ Each cycle is composed of 4 phases:
~» Inception, Elaboration, Construction, Transition

@ Each phase is composed of iterations = Increments

Why an Iterative Process?

@ User feedback at the end of each iteration
~» Adapt the system to actual user needs

@ Development team feedback at the end of each iteration
~ Improve organisation

@ Shorter and simpler steps
~» Avoid the “analysis paralysis”

@ Important risks are studied during the first iterations
~» Design and stabilise the architecture quickly

26/88

Agile and Unified Software Development Process (UP)

Graphical Representation of the UP Life Cycle

development cycle
A
s , , 3\
iteration phase
A
e r S
inc. elaboration construcfion trangition
milestone release increment final production
release

An iteration end-
point when some
significant decision
or evaluation occurs.

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

The difference
(delta) between the
releases of 2
subsequent
iterations.

At this point, the
system is released
for production use.

[figure from C. Larman]

27/88

Agile and Unified Software Development Process (UP)

Phase 1: inception

@ Very short phase (usually: only one iteration)

@ Preliminary study to evaluate feasibility and risks

What should the system do?

What could the architecture look like?

What are the risks?

Very rough approximation of costs and durations

~» Should we accept the project?

28/88

Agile and Unified Software Development Process (UP)

Phase 2: Elaboration

A few iterations, guided by risks

@ Identify and stabilize most needs
~» Most use cases are specified

@ Design the basic architecture
~» Framework of the system

@ Code and test the most critical use cases (<10% of the needs)
~ Test as soon as possible, often, and within a realistic context

@ Reliable estimation of costs and durations

~> The main needs are identified
~> The architecture is stabilized
~> Risks are controlled

20/88

Agile and Unified Software Development Process (UP)

Phase 3: Construction

Most expensive phase (>50% of the cycle)

@ Incremental growth
~ Stable architecture with minor changes

@ Until all use cases are realized

~ The system is correct and complete enough to be deployed

20/88

Agile and Unified Software Development Process (UP)

Phase 4: Transition

@ Beta version deployed
@ Correction of the remaining errors

@ Tests and improvements, user formation, installation of online help, ...

21/88

Description of one iteration

Overview

e Description of one iteration

29/89

Description of one iteration
Overview of an iteration

Each iteration is a small waterfall:
@ Requirement, analysis ~ Model the system seen from the outside
@ Design ~ Model the system seen from the inside
@ Integration and tests ~ Operational software

~ Proportions of these activities vary from one iteration to another

Disciplines || jan | | co || ransition |

Business Modeling H R
Requirements i H

Analysis & Design _ .

Implementation b S
Test R =
Deployment T
Configuration i
& Change Mgmt e —
Project Management | ! et i | o o oo o
Environment — d

—
Const || Const CnnstHTran
‘ Initial ||ElannHmn#2” o0 ” o0t | 2z

Tran
#2

Iterations an/a8

Description of one iteration

Agile iteration ~ Sprint / Timebox

(08
6~ 6

\ Daily Scrum
Scrum S Meeting
& Moter Dwelnpment (Stand up)
aam
15 minutes
int Planning Analyse
Product {6 to & hours) Design
Ovmer =1 “working™ day i
‘ - ‘ 7 to 10 days
Creating the Sprint (2 to 4 weeks)
product backlog Backlog Traditionally
Sprint Review .
(2 to 4 hours) 4 Testing
4 Acceptance Criteria
Planning a b | Deployment /
project release Sprint Retrospective Distribution

(1 to 3 hours)

“Shippable” product features
(Bug-free product increments)

Mode details on www.scrumguides.org
24/88

Description of one iteration Capture and Analysis of the Requirements

Overview

o Introduction
e Agile and Unified Software Development Process (UP)

e Description of one iteration
@ Capture and Analysis of the Requirements

25/88

Description of one iteration Capture and Analysis of the Requirements

Capture and Analysis of the Requirements

Goal: Agree on the features of the system to build
~ Specification of functional and non functional needs

Why is it difficult?

@ Users don't really know their needs...
... and needs change, especially when introducing a new system!

@ Developers may not know the application domain

@ Users and developers have different languages

@ A compromise between services and costs must be found
o .

26/88

Description of one iteration Capture and Analysis of the Requirements

Goals and Artifacts

Goals Artifacts / Deliverables

@ Understand the system context @ Domain Model and
Business Object Model

@ Glossary

27/88

Description of one iteration Capture and Analysis of the Requirements

Domain Model

What is a domain model?

Class diagram with conceptual classes only (real world classes)
~ Few attributes, no operations, no software classes

How to build a domain model?

@ Reuse (and modify) existing models!
@ Use category lists:

o Classes: Business transactions, Products/services related to
transactions, Actors, Places, ...
e Associations: is-a-description-of, is-part-of, ...

@ |dentify names (and noun phrases) in textual descriptions

Domain Models in Agile Projects

Goal: Understand key concepts and their relations ~ Visual dictionary

@ Don'’t try to be exhaustive and correct since the first iteration
@ Domain models evolve through iterations

29/89

Description of one iteration Capture and Analysis of the Requirements

Exercise: Domain Model of PlaCo

A sawmill wants a system for drawing plans and transfer them to a wood
cutting machine.

@ A plan is a rectangle with an height and a width.

@ The system must be able to add, delete and move shapes on a plan, to
save and load plans, and to transfer a plan to the cutting machine.

@ A shape is a rectangle or a circle:

e Arectangle has an height and a width, and its position is defined by
its upper left corner coordinates;

e Acircle has a radius, and its position is defined by its centre
coordinates.

Coordinates and length are integer values expressed with respect to
some given unit. Shapes must have empty intersections.

20/88

Description of one iteration

First Domain Model of PlaCo

Plan .
shapeList

height o+ Shape

width

Capture and Analysis of the Requirements

A%

Circle

radius

centre

1

Coordinates

Rectangle

height
width

1
corner

40/88

Description of one iteration Capture and Analysis of the Requirements

Other artifacts to “Understand the system context"

Business Object Model

@ Model more general than the domain model
Abstraction of the way workers and business entities are related, and
collaborate in order to achieve activities

~ Class, Activity, Collaboration, and Sequence Diagrams
~ More informations in PLD MARS

Glossary

@ Definition of the vocabulary related to the application
~ Avoid ambiguities

@ Each term occuring in Use Cases, Domain or Business Object Models
must be defined in the glossary

41/88

Description of one iteration Capture and Analysis of the Requirements

Goals and Artifacts

Goals Artifacts / Deliverables
@ Understand the system context @ Domain Model and
Business Object Model
@ Glossary

@ Capture functional needs @ Use Case Model

42/88

Description of one iteration Capture and Analysis of the Requirements

Use Cases (Recalls from 3IF)

What is a Use Case?
@ Utilisation of the system by an actor (human or exterior system)
~» Sequence of interactions between the system and actors

@ Usually composed of several scenarios
~ Nominal scenario (basic flow) and extensions (alternative flows)

Warning: System = Black Box
~» Describe what the system must do, not how it will do it

Why Use Cases?

@ Simple procedure for the client to describe her needs
e Reach an agreement between clients and development teams
@ Starting point for the next activities

e Design and Implementation ~» Realise Use Cases
@ Functional tests ~ Use Case Scenarios

43/88

Description of one iteration Capture and Analysis of the Requirements

Use Cases (Recalls from 3IF)

How to discover Use Cases?

@ |dentify the system boundary
@ Identify primary actors
~» Those who achieve a goal when using the system
@ For each primary actor, identify her goals
@ Define Use Cases corresponding to these goals

~ Requirements workshop that gather clients, users, architects and programmers

How to describe Use Cases?
Use Case Model:

@ Use Case Diagram
@ Textual Description of Use Cases
@ System Sequence Diagrams of Use Case Scenarios

44/88

Description of one iteration

Use Case Diagram (Recalls from 3IF)

Relations between Use Cases and Actors (image from Craig Larman)

system boundary

Cashiex

’
/
J
/
-

actor

«aciors
Sales Activity [—_|
System

System
Administrator

MNextGen

Capture and Analysis of the Requirements

. — communication

Payment
Aulhon?atlnn -
Service

zaciors
Tax Calculator

waciors
Accounting
System

wactors
HR System

alternate
notation for
a computer
system actor

e
]

i
I
s

L

45/88

Description of one iteration Capture and Analysis of the Requirements

Exercise: Use Case Diagram for PlaCo

A sawmill wants a system for drawing plans and transfer them to a wood
cutting machine.

@ A plan is a rectangle with an height and a width.

@ The system must be able to add, delete and move shapes on a plan, to
save and load plans, and to transfer a plan to the cutting machine.

@ A shape is a rectangle or a circle:

e Arectangle has an height and a width, and its position is defined by
its upper left corner coordinates;

e Acircle has a radius, and its position is defined by its centre
coordinates.

Coordinates and length are integer values expressed with respect to
some given unit. Shapes must have empty intersections.

46/88

Description of one iteration Capture and Analysis of the Requirements

Use Case Diagram for PlaCo

User

-

PlaCo

L cmesnenp
g
~Coom G

R —————
>

/
——— Load a plan]

EE— Transfer plan —]

File System

Cutting Machine System
47/88

Description of one iteration Capture and Analysis of the Requirements
Textual Description of a Use Case (Recalls from 3IF)

Each Use Case is composed of a set of scenarios
@ Nominal scenario

@ Alternate scenarios (one for each possible particular case)

What is a scenario?

Sequence of interactions between actors and the system

Description of a Use Case

@ Brief format: Nominal scenario described in one paragraph
~» Story of an actor who uses the system to reach a goal

@ Structured description (according to Martin Fowler):

o Title: Goal of the main actor of the use case (starts with a verb)
e Preconditions: Conditions that must be true before starting

e Nominal scenario: Sequence of interactions between actors and
the system

e Extensions: A sequence of interactions for each alternative case

V.
48/88

Description of one iteration Capture and Analysis of the Requirements

Example: Description of "Add a rectangle” (1/2)

Brief Format:

The user tells the system she wants to add a rectangle. She enters the
coordinates of two opposite corners of the rectangle. The system adds the
rectangle to the plan.

Structured Description:
@ Precondition: a plan is loaded
@ Nominal Scenario:

@ The user tells the system she wants to add a rectangle

© The system asks to enter the coordinates of a first corner

© The user enters the coordinates of a point p;

© The system asks to enter the coordinates of the opposite corner

© The user enters the coordinates of a point p,

Q@ The system adds the rectangle defined by (p1, p2) in the plan and
displays the plan

49/88

Description of one iteration Capture and Analysis of the Requirements
Example: Description of "Add a rectangle” (2/2)

Structured Description (continued):

@ Extensions:

3a Point p; does not belong to the plan

@ The system notifies the user that py is not valid
and goes back to Step 2

3b Point p; already belongs to a shape in the plan
@ The system notifies the user that p; is not valid
and goes back to Step 2
5a Point p, does not belong to the plan
@ The system notifies the user that p» is not valid
and goes back to Step 4
5b The rectangle defined by (py, p2) has a non empty intersection with
a shape of the plan
@ The system notifies the user that p» is not valid
and goes back to Step 4
1-5a The user tells the system she wants to cancel the action
@ The system cancels the action

7(),

Description of one iteration Capture and Analysis of the Requirements

System Sequence Diagram of a Use Case (Recalls from 3IF)

~» Graphical representation of a Use Case scenario

Add Rectangle)

User PlaCo

1: Ask to add a rectangle

2 : Ask to enter the first corner coordinates

3 : Coordinates of a point p1

4 : Ask to enter the opposite corner coordinates
5 : Coordinates of a point p2

7 : Display plan with the new rectangle(pl,p2)

6 : Add rectangle(pl,p2)

51/88

Description of one iteration Capture and Analysis of the Requirements

Iterative Modelling of Use Cases

Use Case Models are progressively refined:
@ lteration 1/ Inception Phase:

o Most Use Cases are identified
o Nearly 10% of them are analysed
~ Most significant/risky/valuable cases

@ lteration 2 / Elaboration Phase:

o Nearly 30% of the cases are analysed
e Design and implementation of the most significant/risky/valuable ones

@ Each of the next iterations of the Elaboration Phase:
e Detailed analysis, design and implementation of some use cases
@ Last iteration of the Elaboration Phase:

o Most cases are identified
o from 40 to 80% of them are analyzed
e The most significant/risky/valuable ones are implemented

~» The architecture is stable

52/88

Description of one iteration Capture and Analysis of the Requirements

Goals and Artifacts

Goals Artifacts / Deliverables
@ Understand the system context @ Domain Model and
Business Object Model
@ Glossary
@ Capture functional needs @ Use Case Model
@ Capture non functional needs @ Supplementary

Specifications

53/88

Description of one iteration Capture and Analysis of the Requirements

Goal “Capture non functional needs"

Supplementary Specifications:

@ Some non functional needs are already expressed in use case models
~» Gather them
@ List other non functional needs: URPS+

o Usability

Reliability

Performance

Supportability

+: Other needs
@ Languages and tools, hardware, etc
@ Interface with external systems

@ Legal issues, licence

o

54/88

Description of one iteration Design

Overview

0 Introduction
o Agile and Unified Software Development Process (UP)

e Description of one iteration

@ Design

B55/88

Description of one iteration Design

Design

Why designing models?
To understand and communicate:
@ What are object responsibilities?
@ How do objects collaborate?
@ What design patterns can be used?

~» Documentation may be generated from the code (reverse engineering)

How to desigh models?

@ Design several models concurrently

e Dynamic diagrams to model the behavior
e Static diagrams to model the structure

~» Check the consistency of these models

@ Design with programmers, not for them!

56//88

Description of one iteration Design

Goals and Artifacts

Goals Artifacts / Deliverables

@ Model the behaviour @ Sequence diagrams

57/88

Description of one iteration Design

Sequence Diagrams (Recalls from 3IF)

~» Temporal point of view of object interactions

When capturing the requirements: System = black box
~» Sequences of interactions between actors and the system

@ Describe use case scenarios

During the design step: Open the black box
~ Interactions between software objects
@ Assign responsibilities to objects

Who creates objects?
How to access to an object?
What object receives messages from the GUI?

in order to have loosely coupled and highly cohesive objects

58/88

Description of one iteration

Design

Example (see Part 2 of this course)

interaction Sequence diagram: leftClick(window,plan,|,p})

currentState: Circl 1 | circl Cirel 2 || I: ListOfC 1ds plan: Plan || shapes: Collection<Shape> || ¢: Controll
PY leftClick(] searchip) |
€ s. L L L L T L e L LT I—l
alt Enull)
EntryAction(p,plan,l) ! :

)| emd: AddCommand : :
iy dog) 3 : :
add(c)b‘ add(c))
notifyObservers(c) L

setCurrentState(circleState:! T : I o

50/88

Description of one iteration

Goals and Artifacts

Goals

@ Model the behaviour

Design

Artifacts / Deliverables

@ Sequence diagrams

@ Statechart diagrams

60/88

Description of one iteration Design
Parenthesis on finite state automata (1/3)

A finite state automaton is defined by:
@ A finite set of symbols (alphabet) ©

@ Afinite set of states Q
@ A set of initial states / C Q and accept states F C Q
@ Atransition relation RC Q x ¥ x Q
e Interpretation of (g, s, g;): Transition from g; to g; when reading s

v

Graph representation:
@ Each state corresponds to a vertex

@ Each transition (g;, s, gj) corresponds to an edge g — q;

Example:
@ >=1{e.01,23,4,56,7,8,9} 0l..19 0L..19 0l..19

°Q {Q»qaqaqqu‘J} O '
° /—{Qoi e 46’&’
® F=1{091,02,03,05}

61/88

Description of one iteration Design

Parenthesis on finite state automata (2/3)

Using a finite state automaton to accept words:

@ Input = a sequence of symbols from *
@ Output = true (accept) or false (don’t accept)

@ Aword < sy,..., S, > is accepted if there exist < qo, ..., g, > such that:
Qo €l,q9,€ FandVie[1..n],(gi-1,Si,q) € R
~ Path from a state of / to a state of F

Example :
0119 0119 0119

@ Accepted words:

0,0.123e45, 125, ... *@u..w . e @1|..|9
@ Non accepted words: 0 :

012,4.5.6, 1le2, ...
How to modify the automaton to accept 1e2?

62/88

Description of one iteration Design

Parenthesis on finite state automata (3/3)

Deterministic and complete finite state automata
@ An automaton is deterministic if R is a function from Q x X to Q

@ An automaton is complete if R is a total function

It is always possible to transform a finite state automaton into an equivalent
deterministic and complete automaton

Example:

al...lz al...lz

63/88

Description of one iteration Design
Beyond finite state automata

Finite state automata are very efficient
@ Time complexity linear wrt the size of the word
@ But they cannot represent all languages

e Ex: They cannot recognise well-formed parentheses!

Pushdown automata (finite state + stack) are more powerful

@ They can recognise any context-free language (C++, Java, ...)

@ But some languages are not context-free

A Turing machine (finite state + tape) is even more powerful
@ It can recognise any decidable language

@ But some languages are not decidable!

v

More on this topic in the course on Grammars and Languages! l
$e!

Description of one iteration Design

Back to Statechart Diagrams

Why using Statechart diagrams?
To model the evolution of the state of a system with respect to events

What is the difference with automata?

@ Statechart diagram without actions nor guards:
~» Finite state automata

@ When actions are limited to pushing/poping symbols into/from a stack:

~» Pushdown automata

@ In the general case: Turing complete

65/88

Description of one iteration Design

Statechart Diagrams without Guards nor Actions

Particular kind of finite state automata:
@ Replace symbols with events (reception of a signal, a message, ...)

@ Events trigger transitions between states
~ An event is lost if no transition is specified for it in the current state

@ There is one initial state, but not necessarily an accept state

Example:

[Image from C. Larman]
&8s

Description of one iteration Design

Different Kinds of Events:

@ Signals:
signalName
Qo > Q1
@ Messages/Operations:
N (t)
QO oplName (parametres S 01

@ Temporal events:

after (x)

Qo0 > Q1

~ Go to state Q1 x time units after arriving to state Q0

@ Conditions:
when (cond)

Qo0 > Q1

~» Go to state Q1 when cond becomes true

67/88

Description of one iteration Design
Actions and Activities

Actions (signal emission, method call, ...):
@ Actions may be done:
@ During a transition (ex. : action4)
e When entering a state (ex. : actionl)
@ When leaving a state (ex. : action3)

@ Actions are atomic (cannot be interrupted by an event)

Activities:
@ May be executed in a state (ex. : activity?2)
@ May be continuous or not
@ Are interrupted when leaving the state

Example:

Entry / actionl
Do / activity2
Exit / action3

el / actiond

Order of execution : actionl - activity2 - action3 - action4

B8/

Description of one iteration Design
Guards and Composite Transitions

Guard Conditions:
Guard =Boolean Expression

@ el [cond]

@ Transition from A to B if cond is true when e1 occurs
~ If cond is false then e1 is lost

Composite Transitions:

validation

[tot=0] [0<tat<1000 [tot>=1000]

@ Factorisation of the validation event

@ Guards must be mutually exclusive to ensure determinism

2’8

Description of one iteration Design

Some Tips...

@ Every transition must have an event
@ In most cases, automata must be deterministic

o If several transitions from a same state share a same event, then
use guards to ensure determinism

@ Every state must be reachable from the initial state

@ If the modelled system has a finite life, then there must exist a path from
every state to a final state

70/88

Description of one iteration Design

Other UML Diagrams for modelling behaviors

~» Communication Diagrams, Timing Diagrams, Activity Diagrams, ...

THE TFRIENDSHIP ALGOR\THM

PR. SHELDON COOPER, Ph.D
PLACE THONE
CALL

PARTAKE IN
BE“'N FRIENDSHIP! |NTEREST |

71/88

Description of one iteration

Goals and Artifacts

Goals

@ Model the behaviour

@ Model the structure

Design

Artifacts / Deliverables

@ Sequence diagrams

@ State-transition diagrams

@ Class, package, and
deployment diagrams

792/88

Description of one iteration Design
Class Diagrams (Recalls from 3IF)

When capturing requirements:

@ Classes = real-world (conceptual) classes

@ Few attributes, no operations, no visibility)
When designing the application:

@ Classes = Software Classes

@ Add visibility, interfaces, methods, ...)

.1 Concept; conceptual class L

O Sale
Register Captures
date
Domain Model 1 1| isComplete : Boolean
time
Register Sale
B Captures daée I Bool
i > isComplete : Boolean
Design Model endSale()] 1 time
enterltem(...) —_—
makePayment(...) makeLineltem(...)

**{ software class t’

73/88

Description of one iteration Design

Relation between Sequence and Class Diagrams

I i §
t messages in interaction
]

. | diagrams indicate operations
5 in the class diagrams

% Register

makePayment{cashTendered)

1

| makePayment{...)

[Figure from C. Larman]

currentSale

i Sale “
I

makePayment(...)

classes
identified in the

interaction
diagrams are
declared in the
class diagrams

74/88

Description of one iteration Design

Package Diagrams (Recalls from 3IF)

Why designing Package Diagrams?
@ To group Classes into Packages corresponding to sub-systems
@ To model inclusion relations between these groups

@ To model dependency relations between these groups

Why structuring a system in sub-systems?
@ To encapsulate and decompose complex systems
@ To ease collaborative development

@ To favour reuse

High Cohesion, Low Coupling and Protected Variations

75/88

Description of one iteration Design

Example of Package Diagram

Presentation

Swing

ProcessSale
Frame

[\
\' Domain \

Sales ‘ \
i - Pricing
"{ Register Sale 4 — 7 9

\ Payments | ~——_

\ ServiceAccess
- y «interface»
% SFe"V;"eS F\ \ CreditPayment ICreditAuthorization h
actory ServiceAdapter \

Val Inventory | \| \| POSRuleEngine W‘
I IInv“ei:S;T;anpter * POSRuleEngineFacade ’ ITax(;larI]tt:iT'aE:Z?A»dapter /
\ ——_ /
\ I ~/ 7
Technical Services I ’\ < -
~

Persistence Y Y

76/88

Deployment Diagram (Recalls from 3IF)

Goal: Describe
@ Distribution of software components on hardware components

@ Communication between hardware components

~Secver
wejb-servers
Chient
o
sbrowsers HTTP ! =
% Mozania [T] E‘} <EJBSessions
«pIOCEssSs S ngS
C
/
/
/
/
4
sdatabases SOL %
8 nods, or omducs:YouSQL [~
processing unil

77/88

Description of one iteration Design

From UML to Object Oriented Design

Craig Larman:
Drawing UML diagrams is a reflection of making decisions about the object
design. The object design skills are what really matter, rather than knowing
how to draw UML diagrams.
Fundamental object design requires knowledge of:

@ Principles of responsibility assignments

@ Design patterns

We’ll come back to this in Part 2 ...
~ lllustration with PlaCo

... and in the PLD too!

78/88

Description of one iteration Development and Test

Overview

0 Introduction
o Agile and Unified Software Development Process (UP)

e Description of one iteration

@ Development and Test

70/88

Description of one iteration Development and Test

From Design Models to Code

Goal:
@ Write code that implements the targeted use cases

@ Test this code to ensure that it has no error and that it actually
corresponds to needs

Code skeletons can be automatically generated from design models:

@ From Class Diagrams:

e Declaration of Classes, Attributes, Method Signatures, ...
@ Encode 1-n associations with Collections
o ...

@ From Sequence Diagrams:

e Sequences of method calls
@ Constructor signatures
o ...

Description of one iteration Development and Test
Iterative Development and Reverse Engineering

Code skeletons must be completed
@ Implement visibility whenever o; must send messages to 0s:

o Persistent visibility:

@ Attribute visibility: o, is attribute of o
@ Global visibility: o, is a public static attribute or a Singleton instance

e Temporary visibility, within a method p of o4:

@ Parameter visibility: o, is parameter of p
@ Local Visibility: o0, is a local variable of p

@ Handle exceptions and errors

In general, automatically generated code must be modified
~ Add new attributes, methods, classes, ...

Use reverse engineering tools at the end of each iteration
~ Update design models for the next iteration

81

23

Description of one iteration

-

-
-

-

-

Requirements
Analysis

—

Design

Development and Test

Iterative Cycles
of Development

-

Requirements
Analysis

—

Requirements
Analysis

Design

-

Implementation
and Testing

Implementation
and Testing

Time

Implementation
and Testing

[Image from C. Larman]

Description of one iteration Development and Test

Test-Driven Development (TDD)

TDD Cycle:
@ Write unit tests (before starting implementation)
@ While some tests fail do:
e Complete code
~> Most simple implementation with respect to tests

@ Refactor, and test again

Advantages:
@ Unit tests are actually written
@ Nice and challenging way of programming, with a clear goal
@ Tests provide an operational specification of method behaviors
@ Tools (JUnit, CTest, ...) may be used to automate the test process

@ Non regression is automatically checked when refactoring

y
81/88

Description of one iteration Development and Test

Refactoring

Goal:

@ Transform/restructure code without changing behavior
~» Remove “code smells"

@ Warning: Run tests after each modification

Examples:
@ Suppress code duplication by creating new methods
@ Rename variables, methods, ... to improve readability

@ Shorten long methods by creating new methods
~» Ensure the single responsibility principle

@ Replace magic literals (3.14, 9.81, ...) with symbolic constants
@ Remove dead code
o ..

cfhttp://refactoring.com/catalog

84/88

Description of one iteration Development and Test

Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.

— Martin Fowler

Always code as if the guy who ends up
maintaining your code will be a violent
psychopath who knows where you live. Code for
readability.

POURQUOI FAIRE siMpLE
QUAND oN -PEUT™ FAIRE — John F.Woods
compLiaue Bf

Keep It Simple, Stupid

[Slide from Laurent Cottereau]

85/88

Description of one iteration Project Management

Overview

0 Introduction
o Agile and Unified Software Development Process (UP)

e Description of one iteration

@ Project Management

86/88

Description of one iteration

Project Management

Phase Planning vs Iteration Planning

Short; a few pages.
Estimates phase and
milestone end dates,
and their objectives.

Ty v

Phase Plan

*J_

milestone

+ Y

inc. elaporaljon

construcy

tion

trangition

AN

Detailed planning in an

Iteration Plan is like a rolling [teration Plan

wave that is only highly specific
around the present and the
near future (for example, the
next iteration).

i)

[Image from C. Larman]
27/88

Description of one iteration Project Management

Iteration Planning

When should we plan an iteration?
On the first iteration day

Who is involved in iteration planning?
Product Owner (PO), Team members, Scrum master

How to plan an iteration?

@ The PO identifies and ranks candidate items in the product backlog
@ For each item, by order of priority:

@ Quick estimation of the tasks that must be done
@ Quantification of the time wrt available human resources
~ Planning poker (http://www.planningpoker.com/)

Until total time = Iteration duration

88/88

	Introduction
	Motivations
	Some (quick) recalls on the context

	Agile and Unified Software Development Process (UP)
	Description of one iteration
	Capture and Analysis of the Requirements
	Design
	Development and Test
	Project Management

