PLD Agile

Introduction to the Long Duration Project (PLD)

Christine Solnon

INSA de Lyon - 4IF - 2022/2023

1/17 .



Overview
Introduction to the Long Duration Project

o Description of the Application

2/17 .



Description of the Application

Your mission:

@ Design and implement an application for preparing delivery tours ...
... with bicycles

2/17 .



Use Case "Load a map"

@ Read an XML file which contains lists of intersections and road sections:

e Each intersection has a latitude and a longitude
e Each section links 2 intersections and has a length and a name

@ Display the map

5

I\

a17 .



Use Case "Enter a new request"

@ The user selects an intersection, a courier, and a time-window
~ time-window € {[8, 9], [9, 10], [10, 11],[11,12]}
@ The system updates the tour of the selected courier:
e Start from the warehouse at 8 a.m.
e Visit each delivery during its time-window (service time = 5mn)
e Minimise the arrival time back to the warehouse

5/17 .



Use Case "Save/load tours"

@ Save the current tours in a file

@ Restore a set of tours from a file

5

5

6/17 .



Overview
Introduction to the Long Duration Project

9 Algorithms for computing tours

717 .



Two step solving process

Step 1: Computation of the shortest path graph
@ Input: Set of delivery points + city map
@ Output: Complete directed graph with 1 vertex per delivery point

8/17 .



Two step solving process

Step 1: Computation of the shortest path graph
@ Input: Set of delivery points + city map
@ Output: Complete directed graph with 1 vertex per delivery point

8/17 .



Two step solving process

Step 1: Computation of the shortest path graph
@ Input: Set of delivery points + city map
@ Output: Complete directed graph with 1 vertex per delivery point

8/17 .



Two step solving process

Step 1: Computation of the shortest path graph
@ Input: Set of delivery points + city map
@ Output: Complete directed graph with 1 vertex per delivery point

Step 2: Solve the Asymetric Travelling Salesman Problem (ATSP)
@ Input: Complete directed graph with 1 vertex per delivery point
@ Output: Shortest Hamiltonian cycle

8/17 .



How to handle time-windows?

By removing edges from the directed graph:
Given two deliveries i and j with time-windows [e;, ;] and [e;, [;]
@ If e; = ¢;: Don’t remove edges between i and j
@ Ifl; = e;: Remove (j,1)
@ If[; = e;: Remove (i, )
@ Otherwise: Remove both (i, 7) and (4, ¢)

Example when {1,2,3} < {4,5,6} < {7,8,9}:

~+ Check that each non visited vertex can be visited when building a tour




Approaches for solving the TSP (Recalls from 3IF)
The TSP is NP-hard!

~» Use appropriate approaches to explore the search space

Complete approaches (Dynamic Programming, Branch & Bound, ...)
@ Exhaustive exploration of the search space
~ Proof of optimality but exponential time complexity
@ Use mechanisms to prune branches

@ Use heuristics to explore first the most promising branches

Incomplete approaches (Local search, Ant Colony Optimisation, ...)
@ Heuristic exploration of the search space
~» May not find the optimal solution, but polynomial time-complexities
@ Use mechanisms to intensify the search towards promising areas
@ Use exploration mechanisms to guide the search towards new areas

For the PLD, you are free to choose your favorite approach/library
... but we provide you a very basic implementation




Enumeration of all Hamiltonian Tours (Recalls from 3IF)

public void allTours(Graph g){
Collection<Integers> visited = new Arraylist<Integer>(g.getNbVertices());
visited.add(@);
Collection<Integer> unvisited = new ArraylList<Integer>(g.getNbVertices()-1);
for (int i=1; i<g.getNbVertices(); i++) unvisited.add(i);
allTours(@, unvisited, wvisited);

public void allTours(int currentVertex,
Collection<Integer> unvisited,
Collection<Integer> visited){
if (unvisited.size() == @){
if (g.isArc(currentVertex,@)){
// visited is an hamiltonian tour

}
} else {
for (Integer nextVertex : unvisited){
if (g.isArc(currentVertex,nextVertex)){

visited.add(nextVertex);
unvisited. remove(nextVertex);
allTours(nextVertex, unvisited, visited);
visited. remove(nextVertex);
unvisited.add(nextVertex);

11/17 .



Branch & Bound (Recalls from 3IF)

private void branchAndBound(int currentVertex, Collection<Integer> unvisited,
Collection<Integer> visited, int currentCost){
if (System.currentTimeMillis() - startTime > timelLimit) return;
if Cunvisited.size() == @){
if (g.isArc(currentVertex,0)){
if (currentCost+g.getCost(currentVertex,®) < bestSolCost){
visited.toArray(bestSol);
bestSolCost = currentCost+g.getCost(currentVertex,®);
}

} else if (currentCost+bound(currentVertex,unvisited) < bestSolCost){
Iterator<Integer> it = iterator(currentVertex, unvisited, g);
while (it.hasNext()){

Integer nextVertex = it.next();
visited.add(nextVertex);
unvisited.remove(nextVertex);
branchAndBound(nextVertex, unvisited, visited,
currentCost+g.getCost(currentVertex, nextVertex));
visited.remove(nextVertex);
unvisited.add(nextVertex);
1
}

§
Different instantiations may be obtained by changing:

@ The order vertices of unvisited are visited (iterator)

@ The function used to compute a lower bound of the cost (bound)

How to avoid duplicating code?



GoF Pattern: Template

@ Template method (branchAndBound) defines the sequence of steps

@ Steps that may change (bound, iterator) = Abstract methods defined in
sub-classes (TSP1, TSP2, TSP3)

@TSP @ Graph
& searchSolution() # | g getNbVertices()
@ getSolution() 0.1 @ getCost()
@ getSolutionCost() @ IsArc()
5 A S
& TemplateTSP i
C?TemprI‘aSte'IFStlF'(}(} ?TSP" @TSP2 ®TsP3
o searchSolution FTSPI) | -
@ getSolution() <] < bound() shise2) &TSP3()
o getSolutionCost() - iterator() © bound() < Iterator()
boundy) :
Miterator() v \.’
(3 Seqlter
— © lterator<E> @ MinFirstiter
a T & MinFirstiter()
@ hasNex() o hasNex(() < o hasNext)
@ next) onexl) © next()
. 1317




Overview
Introduction to the Long Duration Project

e Organisation of the PLD

14/17



Organisation of the PLD

Teams of 5 to 7 students:

@ You are free to choose your organisation

Projet manager? Quality manager?
Product owner ? SCRUM manager ?
Daily stand-ups ?

o ...

@ But we’ll ask you to take stock at the end of the project

15/17 .



Implementation of an Agile Iterative development process

Iteration 1: Inception
@ Duration: 4 sessions of 4 hours

@ Goals:

o Identify the main use cases

o Analyse the most important use cases

e Design and implement a first version of your application
~ Demo with the client at the end of the fourth session

Next iterations: from 1 to 4 iterations
For each iteration:
@ Choose some use case scenarios
@ Analyse, implement and integrate them to your application

~ Compare previsional and effective plannings at the end of each iteration

y

Test Driven Development:
Experiment it on at least one class...

16/17



Technical Environment

Some tools that you may use:
@ Version Control System: Git

@ Language: Java ~ JavaDoc + Oracle Style guide
(http: //www.oracle.com/technetwork/java/codeconventions-150003 .pdf)

@ GUI: Swing (example with PlaCo) or Java FX

@ |DE: Eclipse

@ Unit Tests: JUnit4 (http://www. junit.org/)

@ Reverse engineering: ObjectAid (http://www.objectaid.com/)

@ UML diagram edition: Paper and pencil or StarUML
(http://staruml.io/)

You may use other tools...
...But this must be discussed with us before!

17/17 .



	Description of the Application
	Algorithms for computing tours
	Organisation of the PLD

