
PLD Agile
Introduction to the Long Duration Project (PLD)

Christine Solnon

INSA de Lyon - 4IF - 2022/2023

1/17 .



Overview
Introduction to the Long Duration Project

1 Description of the Application

2 Algorithms for computing tours

3 Organisation of the PLD

2/17 .



Description of the Application

Your mission:

Design and implement an application for preparing delivery tours ...
... with bicycles

3/17 .



Use Case "Load a map"

Read an XML file which contains lists of intersections and road sections:

Each intersection has a latitude and a longitude
Each section links 2 intersections and has a length and a name

Display the map

4/17 .



Use Case "Enter a new request"

The user selects an intersection, a courier, and a time-window
; time-window ∈ {[8, 9], [9, 10], [10, 11], [11, 12]}
The system updates the tour of the selected courier:

Start from the warehouse at 8 a.m.
Visit each delivery during its time-window (service time = 5mn)
Minimise the arrival time back to the warehouse

5/17 .



Use Case "Save/load tours"

Save the current tours in a file

Restore a set of tours from a file

6/17 .



Overview
Introduction to the Long Duration Project

1 Description of the Application

2 Algorithms for computing tours

3 Organisation of the PLD

7/17 .



Two step solving process

Step 1: Computation of the shortest path graph

Input: Set of delivery points + city map
Output: Complete directed graph with 1 vertex per delivery point

Step 2: Solve the Asymetric Travelling Salesman Problem (ATSP)

Input: Complete directed graph with 1 vertex per delivery point
Output: Shortest Hamiltonian cycle

8/17 .



Two step solving process

Step 1: Computation of the shortest path graph

Input: Set of delivery points + city map
Output: Complete directed graph with 1 vertex per delivery point

Step 2: Solve the Asymetric Travelling Salesman Problem (ATSP)

Input: Complete directed graph with 1 vertex per delivery point
Output: Shortest Hamiltonian cycle

8

1

2

3

4

6

5

12

8/17 .



Two step solving process

Step 1: Computation of the shortest path graph

Input: Set of delivery points + city map
Output: Complete directed graph with 1 vertex per delivery point

Step 2: Solve the Asymetric Travelling Salesman Problem (ATSP)

Input: Complete directed graph with 1 vertex per delivery point
Output: Shortest Hamiltonian cycle

20

1

2

3

4

6

5

12

8

13

10

5

8

7

9

14

12

6
9

13

4

7

8

23

19

8

12

6

9

10

11

10
7

10

5

17

8/17 .



Two step solving process

Step 1: Computation of the shortest path graph

Input: Set of delivery points + city map
Output: Complete directed graph with 1 vertex per delivery point

Step 2: Solve the Asymetric Travelling Salesman Problem (ATSP)

Input: Complete directed graph with 1 vertex per delivery point
Output: Shortest Hamiltonian cycle

1

2

3

4

6

5

12

8

13

10

5

8

7

9

14

12

6
9

13

4

7

8

23

19

8

12

6

9

10

11

10
7

10

5

17
20

8/17 .



How to handle time-windows?

By removing edges from the directed graph:

Given two deliveries i and j with time-windows [ei, li] and [ej , lj ]

If ei = ej : Don’t remove edges between i and j

If li = ej : Remove (j, i)

If lj = ei: Remove (i, j)

Otherwise: Remove both (i, j) and (j, i)

Example when {1, 2, 3} < {4, 5, 6} < {7, 8, 9}:

9

e

1

2

3

4

5

6

7

8

; Check that each non visited vertex can be visited when building a tour
9/17 .



Approaches for solving the TSP (Recalls from 3IF)

The TSP is NP-hard!
; Use appropriate approaches to explore the search space

Complete approaches (Dynamic Programming, Branch & Bound, ...)

Exhaustive exploration of the search space
; Proof of optimality but exponential time complexity
Use mechanisms to prune branches
Use heuristics to explore first the most promising branches

Incomplete approaches (Local search, Ant Colony Optimisation, ...)

Heuristic exploration of the search space
; May not find the optimal solution, but polynomial time-complexities
Use mechanisms to intensify the search towards promising areas
Use exploration mechanisms to guide the search towards new areas

For the PLD, you are free to choose your favorite approach/library
... but we provide you a very basic implementation

10/17 .



Enumeration of all Hamiltonian Tours (Recalls from 3IF)

11/17 .



Branch & Bound (Recalls from 3IF)

Different instantiations may be obtained by changing:
The order vertices of unvisited are visited (iterator)
The function used to compute a lower bound of the cost (bound)

How to avoid duplicating code?
12/17 .



GoF Pattern: Template

Template method (branchAndBound) defines the sequence of steps

Steps that may change (bound, iterator) = Abstract methods defined in
sub-classes (TSP1, TSP2, TSP3)

13/17 .



Overview
Introduction to the Long Duration Project

1 Description of the Application

2 Algorithms for computing tours

3 Organisation of the PLD

14/17 .



Organisation of the PLD

Teams of 5 to 7 students:

You are free to choose your organisation

Projet manager? Quality manager?
Product owner ? SCRUM manager ?
Daily stand-ups ?
...

But we’ll ask you to take stock at the end of the project

15/17 .



Implementation of an Agile Iterative development process

Iteration 1: Inception

Duration: 4 sessions of 4 hours
Goals:

Identify the main use cases
Analyse the most important use cases
Design and implement a first version of your application
; Demo with the client at the end of the fourth session

Next iterations: from 1 to 4 iterations
For each iteration:

Choose some use case scenarios
Analyse, implement and integrate them to your application

; Compare previsional and effective plannings at the end of each iteration

Test Driven Development:
Experiment it on at least one class...

16/17 .



Technical Environment

Some tools that you may use:

Version Control System: Git
Language: Java ; JavaDoc + Oracle Style guide
(http://www.oracle.com/technetwork/java/codeconventions-150003.pdf)
GUI: Swing (example with PlaCo) or Java FX
IDE: Eclipse
Unit Tests: JUnit4 (http://www.junit.org/)
Reverse engineering: ObjectAid (http://www.objectaid.com/)
UML diagram edition: Paper and pencil or StarUML
(http://staruml.io/)

You may use other tools...

...But this must be discussed with us before!

17/17 .


	Description of the Application
	Algorithms for computing tours
	Organisation of the PLD

