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Algorithm Engineering

In almost every computation, a great variety of arrangements for the
succession of the processes is possible, and various considerations must
influence the selection amongst them for the purposes of a Calculating
Engine. One essential object is to choose that arrangement which shall tend
to reduce to a minimum the time necessary for completing the calculation.

Ada Byron, 1843

3 possible levels of tuning:

Algorithm ; Divide-and-conquer, Dynamic Programming, . . .

Code ; Loops, Memory management, . . .

Parameters ; Best setting for each instance / class of instances

Goal:

Improve performance (time, memory consumption, ...)

In most cases, theoretical complexities are not changed
But empirical performance may be greatly improved!
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Algorithm Engineering Algorithm Tuning

Plan
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3 Algorithm Engineering
Algorithm Tuning
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Algorithm Engineering Algorithm Tuning

Some General Rules to Improve Algorithms

Use memory to save time

Memoize sub-problem solutions (dynamic programming)
Incrementally maintain data instead of recomputing it from scratch
etc...

Use relevant data structures
Study operation frequencies to choose the best data structure
; Hash table, Tree, Heap, Disjoint-sets, Sparse-sets, Dancing links, . . .

Exit from loops as soon as possible
Examples: Dijkstra, Bellman-Ford, . . .

Prune branches of search trees
Compute tight bounds on objective functions ; Branch & Bound
Propagate constraints ; Branch & Propagate
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Permut: Enumate all permutations ; O(n!)
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Stop: Prune the current branch if current length ≥ best
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Branch & Bound 1: Bound = dmin ∗ nbNotVisited
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Branch & Bound 2: Bound =

∑
i∈notVisited minj∈notVisited,j 6=i dij
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Branch & Bound 3: Bound = minimal 1-tree cost
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Branch & Bound 4: Bound = subgradian opt. of Held-Karp (iterated 1-tree)
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
Branch & Bound 4 + h: Addition of an ordering heuristic
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
DPrec: Recursive Dynamic Programming ; O(n2 · 2n)
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
DPiter: Iterative Dynamic Programming ; O(n2 · 2n)
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Algorithm Engineering Algorithm Tuning

Illustration on the TSP
What if we change the benchmark?

Model used to generate graphs in the previous slide:

Random generation of n coordinates (x , y) ∈ [0,1000]2

; Uniform distribution

Edge cost = Euclidean distance (rounded to the closest integer value)

; Experiments on 10 graphs (performance measure = average CPU time)

New model:

For each edge: random generation of an integer cost ∈ [10,20]
; Uniform distribution

; Experiments on 10 graphs (performance measure = average CPU time)
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Results on Benchmark 2
Permut: Enumate all permutations ; O(n!)
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Results on Benchmark 2
DPiter: Iterative Dynamic Programming ; O(n2 · 2n)
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Illustration on the TSP
Comparison of Edge Cost Distributions on the 2 benchmarks
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Algorithm Engineering Code Tuning

Code Tuning

Finer grain optimisation:

Loops and procedures rather than algorithm paradigms
Memory management rather than data structures

; Small improvements... and loss of readability and generality!
; Many of these optimisations are done by compilers (-O3 option of gcc)

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. D. Knuth
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Algorithm Engineering Code Tuning

Example 1: Insertion Sort

for i ranging from 1 to n − 1 do
/* Invariant: tab[0..i − 1] is sorted */
j ← i

while j > 0 and tab[j] > tab[j − 1] do
exchange(tab[j], tab[j − 1])

j ← j − 1

Possible optimisations?

Opt1: Memorise tab[i] before entering the loop
Opt2: Add a sentinel value (assuming tab[0] is not used)

n=40000 n=80000 n=160000
Initial code 0.65 2.66 10.59

Opt1 0.40 -38% 1.61 -40% 6.43 -39%
Opt2 0.67 2.72 10.91
Opt1+Opt2 0.30 -54% 1.22 -54% 4.88 -54%
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Algorithm Engineering Code Tuning

Example 2: Enumerate all permutations of an array

permut(int* tab, int k , int n)
begin

if k = n − 1 then display(tab, n);
else

for i ranging from k to n − 1 do
exchange(tab[k ], tab[i])
permut(tab, k + 1, n)
exchange(tab[k ], tab[i])

if k = n − 1 then display(tab, n);
else

for i ranging from k to n − 1 do
exchange(tab[k ], tab[i])
for j from k + 1 to n − 1 do

exchange(tab[k + 1], tab[i])
permut2(tab, k + 2, n)
exchange(tab[k + 1], tab[i])

exchange(tab[k ], tab[i])

Possible optimisations?

Opt1: Unfold exchange (inlining procedure call)
Opt2: Divide by 2 the number of recursive calls (Assumption: n odd)

n Initial code Opt1 Opt2 Opt1+Opt2
11 0.89

0.35 0.63 0.34 0.82 0.28 0.56 0.28

13 143.64

52.92 97.60 52.87 126.21 44.28 85.20 44.27

Results with the -O3 option of gcc
; In many cases, we’d better let the compiler do optimisations!
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Algorithm Engineering Code Tuning

Tools for Algorithm and Code Tuning

Profilers:

gprof (gcc)

Cachegrind and Callgrind (Valgrind)

Instruments (Xcode)

. . .

Time spent in each function (percentage and absolute value)
; Not always compatible with compiler optimisations!

Tools for the experimental evaluation and data analysis
Experimentally check that your optimisations actually optimise the program!
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Algorithm Engineering Code Tuning

Illustration 1: Optimisation of AntClique

MaxClique Problem (recall)

Input: a graph G = (V ,E)

Output: Largest subset C ⊆ V such that ∀{i , j} ⊆ C, {i , j} ∈ E

AntClique:

Incomplete algorithm: May find a sub-optimal solution

Based on the Ant Colony Optimization (ACO) meta-heuristic
; Particular kind of reinforcement learning

Reference:
C. Solnon & S. Fenet: A study of ACO capabilities for solving the Maximum Clique Problem,
Journal of Heuristics, 12(3):155-180, Springer, 2006
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Algorithm Engineering Code Tuning

Basic Idea of AntClique

initialize pheromone trails

repeat

1 each ant builds a clique
2 update pheromone trails

until optimal clique found or stagnation

xxx
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Basic Idea of AntClique

initialize pheromone trails

repeat

1 each ant builds a clique
2 update pheromone trails

until optimal clique found or stagnation

Pheromone is laid on edges:

; τ(i , j) = learned desirability of selecting both i and j in a same clique

Initialize τ(i , j) to τmax , for each edge {i , j} ∈ E

; τmax = parameter

x
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Algorithm Engineering Code Tuning

Basic Idea of AntClique

initialize pheromone trails

repeat

1 each ant builds a clique
2 update pheromone trails

until optimal clique found or stagnation

Greedy randomized construction of a clique C
Randomly choose i ∈ V and initialize C to {i}
While cand = {j ∈ V \ C : ∀i ∈ C, {i , j} ∈ E} 6= ∅:

Select randomly a vertex vj ∈ cand wrt probability

p(vj ) =
[
∑

i∈C τ(i,j)]
α∑

k∈cand [
∑

i∈C τ(i,k)]α

where α = pheromone weight (parameter)
Add vj to C

Return C

x
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Algorithm Engineering Code Tuning

Basic Idea of AntClique

initialize pheromone trails

repeat

1 each ant builds a clique
2 update pheromone trails

until optimal clique found or stagnation

Pheromone updating step

Evaporation: multiply pheromone trails by (1− ρ)
; ρ = evaporation rate (0 ≤ ρ ≤ 1)

Reward: add pheromone on all edges of the best clique

Bound all pheromone trails to prevent early stagnation:

If τ(i , j) < τmin then τ(i , j)← τmin
If τ(i , j) > τmax then τ(i , j)← τmax

x
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Algorithm Engineering Code Tuning

Profiling of main

96.3% of the time spent in buildClique
; Zoom on buildClique

Profiling of buildClique

75.4% of the time spent in selectCandidates
; Opt1: Incrementally maintain the candidate list
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Algorithm Engineering Code Tuning

Code of buildClique2:

Profiling of buildClique2

77.2% of the time spent in computeProba
; Opt2: Incrementally maintain the pheromone factor
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Algorithm Engineering Code Tuning

Code of buildClique3:

Profiling of buildClique3

57.7% of the time spent in pow (from math.h)
; Opt3: replace pow with myPow !
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Algorithm Engineering Code Tuning

Profiling of buildClique4

20.2% of the time spent in computeProba4
; Opt4: merge the loop that computes proba. with candidate filtering
Profiling of buildClique5

A last optimisation?
; Opt5: replace the sequential search of chooseNextVertex with a
dichotomous search
Profiling of buildClique6

Gains are getting smaller and smaller . . . Is it still useful?
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Algorithm Engineering Code Tuning

Experimental Comparison (with -O3!)

Initial code

Opt1: Incrementally maintain candidates

Opt2: Incrementally maintain pheromone factor

Opt3: Replace pow of math.h with an ad-hoc function

Opt4: Merge loops

Opt5: Dichotomous search of the selected vertex

Init

Opt1 Opt2 Opt3 Opt4 Opt5 init
Opt5

C125.9 3.61

1.79 1.29 0.32 0.24 0.24 15

C250.9 8.34

3.65 2.78 0.71 0.51 0.51 16

C500.9 23.53

8.49 5.84 1.59 1.21 1.11 21

C1000.9 111.30

28.94 13.52 4.06 3.32 2.98 37

C2000.9 347.15

88.18 27.32 10.64 9.14 8.81 39
C2000.5 33.64

11.37 6.23 4.32 4.15 4.03 8

C4000.5 85.53

30.50 18.73 14.75 14.17 14.02 6
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Experimental Comparison (with -O3!)

Initial code

Opt1: Incrementally maintain candidates
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Algorithm Engineering Code Tuning

Scale-up Properties of the 6 Variants
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Algorithm Engineering Code Tuning

Illustration 2: LAD

Subgraph Isomorphism Problem (recall):

Given Gp = (Vp,Ep) and Gt = (Vt ,Et ), find an injective function f : Vp → Vt
such that ∀(u, v) ∈ Ep, (f (u), f (v)) ∈ Et

Exact constraint-based approach LAD(1):

∀u ∈ Vp, maintain the set D(u) of target vertices that may be matched with u
∀v ∈ D(u), every neighbour of u must be matched with a different vertex
in the neighbourhood of v
Every pattern vertex must be matched with a different target vertex

; Extended to PathLAD(2) by exploiting invariant properties(3)

References:
(1) Solnon: Alldifferent-based filtering for subgraph isomorphism, in AI 2010
(2) Kotthoff, McCreesh, Solnon: Portfolios of Subgraph Isomorphism Algorithms, in Learning

and Intelligent OptimizatioN Conference (LION), 2016
(3) McCreesh, Prosser: A parallel, backjumping subgraph isomorphism algorithm using

supplemental graphs, in CP 2015
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Algorithm Engineering Code Tuning

Refactoring of LAD

Improve performance without changing the number of explored nodes:

Tarjan instead of Kosaraju for searching for SCC
Ford-Fulkerson instead of Hopcroft-Karp for augmenting paths
Data structures: Sparse sets, timestamps, ...

Speed-up:

images : 38.9
LV : 7.6
meshes : 3.8
randER : 11.9
rand : 6.5

Is it enough to outperform
the state-of-the-art?
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Algorithm Engineering Code Tuning

Comparison with state-of-the-art approaches
Big picture: With a zoom:

newLAD is outperformed by:

RI for short time limits (<0.04s)
Glasgow for long time limits (>0.5s)

; We need to improve the algorithm, not just the code!
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Algorithm Engineering Code Tuning

Improvement of LAD algorithm
Big picture: With a zoom:

New invariant properties (cliques of order 4, 5, and 6)

New variable ordering heuristic (wdeg)

Random restarts + nogood learning

New value ordering heuristic

Replace LAD filtering with a cheaper one when density > 15%
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Algorithm Engineering Automatic Algorithm Configuration
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Algorithm Engineering Automatic Algorithm Configuration

Parameters and Hyper-Parameters

Parameters = Variables that define thresholds, weights, frequencies, . . .

Parameters change the algorithm performance
Examples:

Simulated Annealing: Initial temperature, Cooling rate
Tabu Search: Tabu list length
GA: Population size, Cross-over rate, Mutation rate

Hyper-parameters = Variables that correspond to design choices

Hyper-parameters change the algorithm
Examples:

Branch & Bound: Bound function
Local Search: Neighborhood function
Constraint Programming: Filtering algorithm

Both param. and hyper-param. are called "Parameters" in what follows
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Algorithm Engineering Automatic Algorithm Configuration

The Vocabulary of Experimentation (recalls)
Factors = Parameters that are studied in the experiment
; Identify “important” parameters, and fix the other parameters

Levels = Set of possible values for a factor
Symbolic factor: 1 level per value
Numeric factor: Identify intervals of relevant values by sampling
; Use a geometric serie to sample: 1, 2, 4, 8, . . . or 1, 10, 100, . . .

Configuration = An assignment of one level to each factor

Design Point = Configuration that must be experimentally evaluated
Full factorial design = All Factor/Level combinations (grid search)

Pros: Identify all factor effects, including interaction effects due to
inter-dependency of factors
Cons: Exponential number of combinations wrt number of factors

Fractional factorial design = Selection of a subset of configurations
; How to select configurations that must be evaluated?
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Algorithm Engineering Automatic Algorithm Configuration

Manual Tuning vs Automatic Configuration

Main drawbacks of manual parameter tuning:

It is time consuming

Intuitions may be misleading

It may be unfair
; Are we spending the same time for tuning all approaches?

The tuning step is not reproducible

Programming by Optimisation [Hoos 2012]:

Developers specify a potentially large design space of programs that
accomplish a given task, from which versions of the program optimised for
various use contexts are generated automatically.
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Algorithm Engineering Automatic Algorithm Configuration

Automatic Configuration

Definition of the problem:

Given:
A set of configurations Θ of an algorithm A
A distribution D over the set of instances I of the problem solved by A
A performance measure m : Θ× I → R

Search for θ∗ ∈ Θ which optimises the expectation of m(θ∗, i) when i ∼ D

How to define the distribution D?
D should be representative of the actual instances that must be solved
; Gather a set S of representative instances

How to obtain training instances from S?

Solution 1: Design a model for randomly generating instances that have
the same distribution as S

Solution 2: Use S as a finite support definition of D
; Split S into training and test sets for cross-validation
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Algorithm Engineering Automatic Algorithm Configuration

Example of Automatic Configuration Tool
; Sequential Model-based Algorithm Configuration (SMAC)

Basic Idea:

Perform an initial set R of runs and select a first configuration θ∗

Iterate the following steps:

Use R to build a model for predicting configuration performances
Use that model to select promising configurations
For each selected configuration θ:

Compare θ with θ∗ using Random Online Agressive Racing (ROAR)
Update θ∗ if θ wins the race, and update the set R of runs

Reference:
F. Hutter, H. Hoos, K. Leyton-Brown (2011): Sequential Model-Based
Optimization for General Algorithm Configuration. LION

Source code available at
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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Algorithm Engineering Automatic Algorithm Configuration

Some other Automatic Configuration Tools

ParamILS: Greedy Local Search with Restarts

F. Hutter, H. Hoos, K. Leyton-Brown, T. Stützle (2009): ParamILS: An
Automatic Algorithm Configuration Framework. JAIR

Source code available at
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

Iterated F-race: Iteratively sample configurations to race

M. Lopez-Ibanez, J. Dubois-Lacoste, L. Perez Caceres, M. Birattari, T. Stützle
(2016): The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives

Available as a R package
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Algorithm Engineering Per Instance Algorithm Selection

From Configuration to Selection

Automatic configuration finds the Single Best Solver (SBS)...

...But SBS may be far from VBS when instances are heterogeneous

Illustration on the subgraph isomorphism problem

CDF for Image instances:

SBS = VBS = RI
; No need for per-instance selection

CDF for Rand instances:

SBS depends on time limit
VBS outperforms SBSs

; Use per-instance selection!
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Algorithm Engineering Per Instance Algorithm Selection

Per Instance Algorithm Selection

Definition of the problem:

Given a portfolio P of algorithms (or of algorithm configurations) and an
instance i , select an algorithm A ∈ P expected to perform best on i

Offline training:

Given:
A distribution D over the set of instances I
A performance measure m : P × I → R
An embedding function f : I → F where F ⊆ Rm is the feature space
; Each instance i ∈ I is described by f (i) ∈ F

Build a selector S : F → P which optimises m(S(f (i)), i) when i ∼ D

Online selection of an algorithm for an instance i ∈ I
Return S(f (i))
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Algorithm Engineering Per Instance Algorithm Selection

Examples of existing Automatic Selection Approaches

SATzilla:
Offline: Learn a model for each algorithm
; Prediction of performance given instance features
Online selection of an algorithm to solve a new instance i :
; Predict performance for each algorithm
; Select the algorithm with the best predicted performance

See L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown (2009): SATzilla2009: an Automatic Algorithm
Portfolio for SAT . SAT Competition 2009

ISAC:
Offline: Partition instances into homogeneous clusters and use
automatic configuration to determine the best algorithm for each cluster
Online selection of an algorithm to solve a new instance i :
; Search for the cluster of i and select the corresponding algorithm

See Y. Malitsky: Instance-Specific Algorithm Configuration, PhD thesis, Brown University, 2012

36/46

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
https://link.springer.com/article/10.1007/s10601-015-9210-1


Algorithm Engineering Per Instance Algorithm Selection

Related Problems

Reference:
P. Kerschke, H. Hoos, F. Neumann, H. Trautmann (2019): Automated Algorithm Selection:
Survey and Perspectives. ECJ
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Algorithm Engineering Per Instance Algorithm Selection

Illustration: Algorithm Selection for Subgraph Isomorphism
; CDF of 8 algorithms + VBS
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Virtual Best Solver (VBS)

Reference:
L. Kotthoff, C. McCreesh, C. Solnon: Portfolios of Subgraph Isomorphism Algorithms, in 10th
International Conference on Learning and Intelligent OptimizatioN Conference (LION), 2016
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Algorithm Engineering Per Instance Algorithm Selection

Overview of the process

Offline:

Describe each training instance by a feature vector

Train a model that predicts the best algorithm for each training instance

Online: Solve a new instance i ∈ I

Sequentially run 2 very fast and complementary algorithms
; Solve very easy instances
; Collect dynamic features for instances that are not solved

If instance not solved:

Extract features from i
Ask the model to select an algorithm given the features
Run the algorithm
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Algorithm Engineering Per Instance Algorithm Selection

Feature extraction

Static features extracted from the graphs

Number of vertices and edges

Density

Number of loops

Mean and max. degrees

Mean and max. distance between all pairs of vertices

Proportion of vertex pairs which are at least 2, 3 and 4 apart

Binary features: Regular? Connected?

Dynamic features collected when running the 2 algorithms

Number of value removals

Percentage (average, min and max) of removed values per variable

Algorithm solving time
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Algorithm Engineering Per Instance Algorithm Selection

Selection model: LLAMA

R package for designing algorithm selectors
https://bitbucket.org/lkotthoff/llama

Includes different models
; Best results: Pairwise regression approach with
random forest regression

For each pair of algorithm, train a model to
predict performance difference
Choose algorithm with highest cumulative
performance difference
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Algorithm Engineering Per Instance Algorithm Selection

Experimental evaluation (1/2)

Experimental setup:

10-fold cross-validation

Performance measures:

MCP: MisClassification Penalty
; Additional time required to solve an instance wrt VBS
# solved = number of instances that are solved
Time: time required to solve the instance, or 108 if not solved
; Lower bound of the actual time

Results:

Model Mean MCP # solved Mean time
VBS 0 5,608 2,375,913
LLAMA 287,704 5,592 2,664,293
SBS 798,660 5,562 3,174,573
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Algorithm Engineering Per Instance Algorithm Selection

Experimental evaluation (2/2)
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Conclusion

Take away message?

Computer science is a science...
... where theory and practice should be combined!

Theoretical analysis of algorithms
Study problem complexities before designing algorithms
Study the theoretical complexity of your algorithms
Prove properties of algorithms and codes

Experimental analysis of algorithms
Choose benchmarks, factors, design points, and performance
measures
Analyse results
Make it reproducible

Algorithm engineering
Algorithm tuning vs code tuning
; Find the right compromise between efficiency and readability
Parameter tuning
; Use tools to automate parameter setting
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Conclusion

Final words by Don Knuth

Computer programming is an art, because it
applies accumulated knowledge to the world,
because it requires skill and ingenuity, and
especially because it produces objects of
beauty. A programmer who subconsciously
views himself as an artist will enjoy what he
does and will do it better.

We should continually be striving to transform
every art into a science: in the process, we
advance the art.

An algorithm must be seen to be believed.
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