
Computer science
— Theory vs Experimentation —

Part 2: Experimental Analysis of Algorithms

Christine Solnon

INSA de Lyon - 5IF

2023 / 2024

1/122

Theoretical Analysis of Algorithms

What have we learned so far?

Theory may be used to study a few things...

Complexity and decidability of a problem
Complexity, correctness, completeness and termination of an algorithm

...with some limits
A theoretical complexity gives a growth order
; Asymptotic convergence when the input size tends to infinity
An hand-made proof may contain errors
Static analysis may raise false alarms
...

It’s time to compare theory with practice

But the experimental analysis must be rigorous if we want it to be useful,
reliable, reproducible and efficient!
; Use a scientific approach to experimentally analyse algorithms

2/122

Experimental Analysis of Algorithms Experimental Process

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

3/122

Experimental Analysis of Algorithms Experimental Process

Experimental Process [McGeoch 2012]

Step 1: Prepare the experiment

Formulate a question
Design the experiment
; What should we measure? On which test suite? . . .
Prepare the test environment
; Scripts, Computers, Data analysis tools, . . .

Step 2: Perform the experiment

Run scripts
Collect results

Step 3: Analyse results

If question not answered, then go back to Step 1
If question answered, then publish!

Iterative process . . .
4/122

https://doi.org/10.1017/CBO9780511843747

Experimental Analysis of Algorithms Experimental Process

Example: Evaluation of a new algorithm for SAT

SAT problem (recall):

Input: A Boolean formula composed of m clauses and n variables
Output: A Boolean value
Postrelation: return true if the formula can be satisfied; false otherwise

Examples of questions:

Average time to solve an instance?
Empirical complexity of the program?
Influence of n and m on the run time?
Influence of the structure of instances on the run time?
What are the instances for which the algorithm is (not) efficient?
Influence of the algorithm parameters?
Is the algorithm competitive with state-of-the-art approaches?
What are the best data structures for implementing the algorithm?

5/122

Experimental Analysis of Algorithms Experimental Process

Two types of experiments

Exploratory experiment:

Identify what should be intensively experimented:

Relevant questions?

Parameters which have an impact on the solution process?

Relevant instances?

. . .

; Short cycles for preparing an intensive experiment

Intensive experiment:

Use an efficient and automated experimental process

Goals are well defined
Cycles may be quite long (up to several months in some cases...)

6/122

Experimental Analysis of Algorithms Experimental Process

The vocabulary of experimentation

Performance criterion: What do we want to evaluate?
; Duration, Solution quality, Memory, Robustness, . . .

Performance measure: What should we measure to evaluate a criterion?
; CPU time, Gap to a reference solution, . . .

Parameter: Feature that may change the value of a performance measure
Algorithm parameters
; Thresholds, Frequencies, Heuristics, . . .
Instance parameters
; Number of variables or clauses of a SAT formula, . . .
Environment parameters
; Compiler, OS, Computer, . . .

Factor: Parameter changed during the experiment

Level: Value assigned to a factor

Design point: Combination of levels to be tested during an experiment

Run: Execution for one design point

7/122

Experimental Analysis of Algorithms Experimental Process

Reproducibility of an experiment

Why reproducing an experiment?

To check published results
To compare a new algorithm with a published one
To evaluate a published algorithm on new benchmarks
...

Why is it difficult to reproduce an experiment?

All informations must be available (transparency):
Open source + Open data
Values of all parameters
Considered environment (processor, OS, compiler, ...)
Tools used to launch runs and analyse results
...

All tools must (still) be available ; Provide virtual machines
Some measures may be uncertain

8/122

Experimental Analysis of Algorithms Experimental Process

Uncertainty of Measures

Examples of uncertainty causes:

Generator of (pseudo-)random numbers
; In C, the implementation of rand() depends on the compiler!
CPU time depends on the computer load (among other things...)
Programs may use several threads or processors
Number of bits used to encode numbers
...
and cosmic rays!

9/122

Experimental Analysis of Algorithms Experimental Process

Different Reproducibility Levels [ACM 2016]

Repeatability

Same experimental conditions, same team

Replicability

Same experimental conditions, different team

Reproducibility

Different experimental conditions, different team

10/122

https://www.acm.org/publications/policies/artifact-review-badging

Experimental Analysis of Algorithms Experimental Process

The Machine Learning Reproducibility Checklist (1/2)
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

11/122

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

Experimental Analysis of Algorithms Experimental Process

The Machine Learning Reproducibility Checklist (2/2)
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

12/122

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

Experimental Analysis of Algorithms Experimental Process

How not to do it [Gent et al 1997] (1/2)

Getting started (Implementation step)

Don’t trust yourself
Do make it fast enough
Do use version control

Experimental design

Do measure with many instruments
Do use different hardware
Do vary all relevant factors
Don’t change two things at once
Do measure CPU time
Do collect all data possible
Do be paranoid
Do check your solutions

Do it all again
Do use the same instances
Don’t ignore crashes
Do it often and do it big
Don’t kill your machines
Do look for scaling results
Do be stupid

13/122

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.559

Experimental Analysis of Algorithms Experimental Process

How not to do it [Gent et al 1997] (2/2)

Data analysis

Do look at the raw data
Do look for good views
Don’t discard data

Do face up to the consequences of
your results
Don’t reject the obvious

Presentation of results

Do present statistics
Do report negative results
Don’t push deadlines

Do report important
implementation details
Do check your references

Problems with random numbers
Don’t trust your source of random numbers
Do understand your instance generator
Do control sources of variation

Random numbers should not
be generated with a method
chosen at random

D. Knuth

14/122

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.559

Experimental Analysis of Algorithms Choice of a Benchmark

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

15/122

Experimental Analysis of Algorithms Choice of a Benchmark

Choice of a Benchmark

The benchmark depends on the question addressed by the experiment

Is my program correct?
; Stress-test instances (boundary instances, happy path, . . .)
How does it behave in the worst-case?
; Worst-case/bad-case instances
What are its scale-up properties wrt some instance parameters?
; Random instances
Does it scale well for a given application?
; Real-world instances
Is it competitive with state-of-the-art approaches?
; Public benchmark

Homogeneous vs Heterogeneous Benchmarks

Homogeneous benchmark⇒ The analysis of results is simplified
Heterogeneous benchmark⇒ Results are more general
; Decompose benchmarks in homogeneous classes to analyse results

16/122

Experimental Analysis of Algorithms Choice of a Benchmark

Hardness of Instances

Beware of ceil/floor effects!
Extreme instances are useless for comparing algorithms

Too easy⇒ Quickly solved by all algorithms
Too hard⇒ No algorithm can solve them

Reduce the number of instances that are too easy or too hard
Gradually increase instance hardness

Factors that may influence hardness:

Input size
Structure of input data
; Example: Tree width of the constraint graph
Constrainedness (for decision problems)
; Phase transition
Distribution of local optima (for optimisation problems)
; Search landscape

17/122

Experimental Analysis of Algorithms Choice of a Benchmark

Phase transition (1/2)

Ex.: Satisfiability of a Boolean formula with n var. and p clauses (SAT)

Hardness depends on n...
... but also on the ratio between p and n

p/n small⇒ under-constrained instance⇒ Easy
(except for rare cases which are exceptionally hard!)
p/n large⇒ over-constrained instance⇒ Easy
Between these two cases, things become difficult!

Experiment [Leyton-Brown et al 2014]:

Randomly generate 3-SAT
instances with n = 400
Each instance = a point (x , y)

x = p/n
y = log10(runtime)
colour=black if feasible
colour=pink if infeasible

18/122

https://cacm.acm.org/magazines/2014/5/174350-understanding-the-empirical-hardness-of-np-complete-problems/fulltext

Experimental Analysis of Algorithms Choice of a Benchmark

Phase transition (1/2)

Ex.: Satisfiability of a Boolean formula with n var. and p clauses (SAT)

Hardness depends on n...
... but also on the ratio between p and n

p/n small⇒ under-constrained instance⇒ Easy
(except for rare cases which are exceptionally hard!)
p/n large⇒ over-constrained instance⇒ Easy
Between these two cases, things become difficult!

Experiment [Leyton-Brown et al 2014]:

Randomly generate 3-SAT
instances with n = 400
Each instance = a point (x , y)

x = p/n
y = log10(runtime)
colour=black if feasible
colour=pink if infeasible

18/122

https://cacm.acm.org/magazines/2014/5/174350-understanding-the-empirical-hardness-of-np-complete-problems/fulltext

Experimental Analysis of Algorithms Choice of a Benchmark

Phase Transition (2/2)

What is a phase transition?

Abrupt state change (satisfiable vs unsatisfiable) wrt parameters
; For uniform 3-SAT: When p/n = 4.26
Corresponding to a hardness pic independent from the solving approach

How to locate the phase transition?

Compute the probability that an instance is feasible:
Close to 0 ; Over-constrained instance (easy)
Close to 0.5 ; Critically constrained instance (hard)
Close to 1 ; Under-constrained instance (easy)

References:
P. Cheeseman, B. Kanefsky, W. Taylor (1991): Where the Really Hard Problems Are. IJCAI

K. Leyton-Brown, H. Hoos, F. Hutter, L. Xu (2014): Understanding the Empirical Hardness
of NP-Complete Problems. Communications of the ACM

C. Solnon (2021): Où sont les problèmes difficiles. Tangente (Hors-série 75)
19/122

https://www.ijcai.org/Proceedings/91-1/Papers/052.pdf
https://cacm.acm.org/magazines/2014/5/174350-understanding-the-empirical-hardness-of-np-complete-problems/fulltext
https://cacm.acm.org/magazines/2014/5/174350-understanding-the-empirical-hardness-of-np-complete-problems/fulltext
https://hal.archives-ouvertes.fr/hal-03350964

Experimental Analysis of Algorithms Choice of a Benchmark

Illustration on the Subgraph Isomorphism Problem (SIP)

Goal: Search for a copy of a pattern graph Gp in a target graph Gt

Gp = (Np,Ep) Gt = (Nt ,Et)

Find an injective mapping f : Np → Nt

Non-induced case:

∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et

Induced case:
∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et
∀u, v ∈ Np : (u, v) 6∈ Ep ⇒ (f (u), f (v)) 6∈ Et

20/122

Experimental Analysis of Algorithms Choice of a Benchmark

Illustration on the Subgraph Isomorphism Problem (SIP)

Goal: Search for a copy of a pattern graph Gp in a target graph Gt

Gp = (Np,Ep) Gt = (Nt ,Et)

Find an injective mapping f : Np → Nt

Non-induced case:

∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et

Induced case:
∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et
∀u, v ∈ Np : (u, v) 6∈ Ep ⇒ (f (u), f (v)) 6∈ Et

20/122

Experimental Analysis of Algorithms Choice of a Benchmark

Illustration on the Subgraph Isomorphism Problem (SIP)

Goal: Search for a copy of a pattern graph Gp in a target graph Gt

Gp = (Np,Ep) Gt = (Nt ,Et)

Find an injective mapping f : Np → Nt

Non-induced case:

∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et

Induced case:
∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et
∀u, v ∈ Np : (u, v) 6∈ Ep ⇒ (f (u), f (v)) 6∈ Et

20/122

Experimental Analysis of Algorithms Choice of a Benchmark

Experimental evaluation of VF3 in [Carletti et 2018]

Table VII shows an experimental comparison between VF2 and VF3 in terms
of computational complexity.

Considered benchmark = Randomly generated instances:

Randomly generate a target graph with η · n · (n − 1) edges
Pattern graph = Connected subgraph of the target

; What is the difficulty of these instances?

How to control hardness when generating instances?
McCreesh, Prosser, Solnon & Trimble (2018): When Subgraph Isomorphism is Really Hard, and
Why This Matters for Graph Databases. Journal of Artificial Intelligence Research

21/122

https://ieeexplore.ieee.org/document/7907163
https://jair.org/index.php/jair/article/view/11187
https://jair.org/index.php/jair/article/view/11187

Experimental Analysis of Algorithms Choice of a Benchmark

Random generation of an SIP instance

Random generation of a graph G(n,d) wrt Erdös-Rényi model:

n = number of vertices
d = probability of adding an edge between 2 vertices

d close to 0 ; Sparse graphs
d close to 1 ; Dense graphs

Random generation of an SIP instance:

Generation of a pattern graph G(np,dp) and a target graph G(nt ,dt)

Parameters = np, dp, nt , dt

How can we control hardness for the non-induced case?
; Probabilities dp and dt control graph densities

Sparse pattern and dense target ; Easy to find a solution
Dense pattern and sparse target ; Easy to prove inconsistency
Hard instances should be between these two extreme cases!?

22/122

Experimental Analysis of Algorithms Choice of a Benchmark

Phase transition from feasibility to infeasibility (non-induced case)

We fix np = 20, nt = 150, dt = 0.4, and we vary dp from 0 to 1
; Each point (x , y) is an instance generated with dp = x

y = Search effort to solve the instance with Glasgow
Colour = Feasibility of the instance (green=yes; blue=no)

23/122

Experimental Analysis of Algorithms Choice of a Benchmark

Phase transition from feasibility to infeasibility (non-induced case)

Satisfiable instances Unsatisfiable instances

Phase transition

dp ≤ 0.44: Satisfiable instances
; Most of them are trivial; a few of them are harder
dp ≥ 0.67: Unsatisfiable instances
; Neither trivial, nor extremely hard
0.44 < dp < 0.67: Phase transition between sat and unsat
; Hardest instances

23/122

Experimental Analysis of Algorithms Choice of a Benchmark

Phase transition when varying dp and dt (non-induced case)

Ta
rg

et
de

ns
ity

none

half

all

Pattern density

We fix np = 30, nt = 150, and we vary dp and dt from 0 to 1
; Each point (x , y) = 10 instances generated with dp = x and dt = y

Colour = proportion of satisfiable instances

Top left: sparse patterns and dense targets ; All satisfiable
Bottom right: dense patterns and sparse targets ; All unsatisfiable

Black line = Theoretical prediction of the phase transition location

24/122

Experimental Analysis of Algorithms Choice of a Benchmark

Locating the phase transition (non-induced case)

How to compute the probability that an instance is feasible?
Consider the random var. S corresponding to the number of solutions
p(S ≥ 1) = 0.5⇔ E(S) = 1 if S has a normal distribution

Expected number of solutions for pattern G(np,dp) and target G(nt ,dt):

Expected number of pattern edges = dp · np(np−1)
2

Probability for one pattern edge to be mapped to a target edge = dt

Probability for one injective mapping to be a solution = ddp·
np (np−1)

2
t

Number of possible injective mappings = nt · (nt − 1) · ... · (nt − np + 1)

E(S) = nt · (nt − 1) · ... · (nt − np + 1) · ddp·
np (np−1)

2
t

Theoretical prediction of the phase transition location:

E(S) much larger than 1 ; Easy to find a solution
E(S) close to 0 ; Not very difficult to prove inconsistency
E(S) close to 1 ; Really hard instance (black line)

25/122

Experimental Analysis of Algorithms Choice of a Benchmark

Feasibility vs Search Effort (non-induced case)

Feasibility:

none

half

all

Green = 100% feasible

White = 50% feasible

Brown = 0% feasible

Search Effort of Glasgow:

fail

100
102
104
106
108

Black = not solved in 1000s

White = solved without
backtracking

26/122

Experimental Analysis of Algorithms Choice of a Benchmark

Scale-up properties when increasing np (non-induced case)
np = 10 np = 20 np = 30

none

half

all

fail

100
102
104
106
108

The search effort slowly increases in easy regions
; Empirical polynomial time complexities on these instances

The search effort strongly increases in the phase transition region
; Empirical exponential time complexities on these instances

27/122

Experimental Analysis of Algorithms Choice of a Benchmark

What about other solvers?

Glasgow:

LAD:

VF2:

RI:

fail

100
102
104
106
108

fail

100
102
104
106
108

fail

100
102
104
106
108

100

102

104

106

108

28/122

Experimental Analysis of Algorithms Choice of a Benchmark

What about the induced case?

Feasibility (np = 15): Glasgow search effort (np = 15):

Theoretical prediction:

Expected number of solutions for pattern G(np,dp) and target G(nt ,dt):

E(S) = nt · (nt − 1) · . . . · (nt − np + 1) · ddp·
np (np−1)

2
t · (1− dt)

(1−dp)·
np (np−1)

2

Phase transition when E(S) close to 1 (black line)

29/122

Experimental Analysis of Algorithms Choice of a Benchmark

Scale-up properties when increasing np (induced case)

np = 10 np = 15 np = 20 np = 30

none

half

all

fail

100
102
104
106
108

Some hard instances are far from the phase transition!

; Prediction of hardness by means of constrainedness (see [JAIR 2018])

2
3
≥4

0

1

30/122

https://jair.org/index.php/jair/article/view/11187

Experimental Analysis of Algorithms Choice of a Benchmark

Scale-up properties when increasing np (induced case)

np = 10 np = 15 np = 20 np = 30

none

half

all

fail

100
102
104
106
108

2
3
≥4

0

1

30/122

Experimental Analysis of Algorithms Choice of a Benchmark

Induced case: Other solvers

Glasgow:

LAD:

VF2:

VF3:

fail

100
102
104
106
108

fail

100
102
104
106
108

fail

100
102
104
106
108

fail

100
102
104
106
108

31/122

Experimental Analysis of Algorithms Choice of a Benchmark

What about Optimisation Problems? (1/3)

Definition of a Constrained Optimisation Problem (COP)

Input:

A set X of variables
A set C of constraints
An objective function f : X → R

Output: An assignment of X that satisfies C and maximises f

Classical approaches to solve NP-hard COPs:

Complete approaches: Iteratively solve decision problems
; Optimality proof but exponential time complexity

Incomplete approaches: Heuristic exploration of the search space
; Polynomial time complexity but no guarantee on solution quality

32/122

Experimental Analysis of Algorithms Choice of a Benchmark

What about Optimisation Problems? (2/3)

Complete approaches:

Most complete approaches solve sequences of decision problems

1 Search for an assignment a which satisfies C

Use heuristics to find "good" assignments
Use bounding functions to prune the search
...

2 If there does not exist such an assignment, then stop

3 Add the constraint f (X) > f (a) to C and go to (1)

Hardness of the successively solved instances:
The last two instances are the closest to the phase transition

The penultimate one is the most constrained satisfiable instance

The last one is the less constrained unsatisfiable instance

; In general, at least one of these two instances is really hard
33/122

Experimental Analysis of Algorithms Choice of a Benchmark

What about Optimisation Problems? (3/3)

Incomplete approaches (Tabu Search, Genetic Algo., ...)

Heuristic exploration of the search space: Use mechanisms to build new
solutions from previously visited solutions

Neighbourhood graph G = (V ,N) associated with an incomplete
approach:

Vertices: V = set of all possible solutions
Edges: N = {(vi , vj) ∈ V × V : vj can be built from vi}
; Depends on mechanisms used to build solutions
Notation: neighbourhood of vi = N(vi) = {vj / (vi , vj) ∈ N}

Hardness depends on the fitness landscape associated with G

34/122

Experimental Analysis of Algorithms Choice of a Benchmark

Fitness Landscape (1/3)

Fitness landscape associated with a neighbourhood graph G = (V ,N):

Each solution in V corresponds to a point
The objective function f corresponds to the point height
The neighbourhood N is used to position points wrt other dimensions

35/122

Experimental Analysis of Algorithms Choice of a Benchmark

Fitness Landscape (2/3)

Topological features of a fitness landscape:

Local optimum = Point with no neighbour strictly better

vi ∈ V such that ∀vj ∈ N(vi), f (vj) < f (vi)

Plateau = Set of connected points in G which all have the same height
Basin of attraction of a local optimum vi = Set of all points from which vi
can be reached by hill-climbing

; These features are used to study hardness

36/122

Experimental Analysis of Algorithms Choice of a Benchmark

Fitness Landscape (3/3)

Influence of the landscape on performance:

Landscape with a single local optimum (= global opt.) and no plateau
; A greedy (hill-climbing) algorithm is efficient and optimal
Rugged landscape = many optima uniformly distributed
; No correlation between height and distance to the global optimum
; A pure random algorithm is probably the most efficient approach
Massif Central landscape
; Find the right compromise between intensification and diversification

37/122

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

38/122

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Choice of Factors, Levels and Design Points

Factors: Choose the most influential parameters
; Exploit literature, knowledge on the algorithm, and exploratory experiments

Levels: Identify relevant values for each factor

Symbolic factor: 1 level per value
Numeric factor:

Identify intervals of relevant values
Sample with an exponential progression
; 1, 2, 4, 8, 16, . . . or 1, 10, 100, 1000, . . .

Design Points:

Full factorial design = All possible Factor/Level combinations
Pros: Identify all factor effects, including interaction effects due to
inter-dependency of factors
Cons: Exponential number of combinations wrt number of factors

Fractional factorial design = Selection of a subset of combinations
; Choose representative and complementary combinations 39/122

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Performance Criteria

Three most common criteria:

Duration

Memory

Quality

Warning: These criteria are often inter-dependent...

40/122

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Performance measures for duration (1/2)

Number of dominant operations:

Identify dominant operations:

Number of comparisons for sorting algorithms
Number of constraint checks when solving constraint satisfaction pb
...

Count the number of times these operations are done

Number of Mems:
; Number of memory accesses (load and store)

Pros:
Measures independent from the language, the OS, the processor, . . .

Cons:
Not always representative of duration...

41/122

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Performance measures for duration (2/2)

Elapsed real time

Difference of time between the beginning and the end of the run
Not reliable because it depends on the CPU load

CPU time
Total time of CPU utilisation
Also depends on the CPU load!

Illustration [McGeoch 2012]

Experiment on an 8 core HP: CPU time Real time
1 process on 1 core: = 27.9 = 28.2

9 concurrent processes on 8 cores: ∈ [36.0;37.6] ∈ [43.4;43.6]

Experiment on a 2 core MAC: CPU time Real time
1 process on 1 core: = 67 = 79

9 concurrent processes on 2 cores: ∈ [97;100] ∈ [630;649]

42/122

https://doi.org/10.1017/CBO9780511843747

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Performance measures for duration (2/2)

Elapsed real time

Difference of time between the beginning and the end of the run
Not reliable because it depends on the CPU load

CPU time
Total time of CPU utilisation
Also depends on the CPU load!

Illustration [McGeoch 2012]

Experiment on an 8 core HP: CPU time Real time
1 process on 1 core: = 27.9 = 28.2

9 concurrent processes on 8 cores: ∈ [36.0;37.6] ∈ [43.4;43.6]

Experiment on a 2 core MAC: CPU time Real time
1 process on 1 core: = 67 = 79

9 concurrent processes on 2 cores: ∈ [97;100] ∈ [630;649]
42/122

https://doi.org/10.1017/CBO9780511843747

Experimental Analysis of Algorithms Choice of Factors, Design Points and Performance Measures

Performance Measures for Optimisation Problems

Recall: Definition of a COP (X ,C, f)

Find an assignment a∗ of X that satisfies C and maximises f

Complete/exact algorithm:

Find a∗ and prove its optimality
Performance measure: CPU time, or number of mems/operations

Question: What if some instances aren’t solved within the time limit?

Anytime algorithm:

Solution continuously improved ; may be stopped before the end
Performance measures for a given time limit t :

Best objective function value f (a′)
Approximation ratio f (a′)

f (a∗) or gap to optimality f (a′)−f (a∗)
f (a∗)

Questions: How to choose t? How to compute f (a′)
f (a∗) if a∗ isn’t known?

43/122

Experimental Analysis of Algorithms Analysis of the Results

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

44/122

Experimental Analysis of Algorithms Analysis of the Results

Data Analysis

Goal of data analysis:

Transform raw data into information

Tools for data analysis:

Descriptive statistics:
; Concise description of the main properties

Graphical data analysis:
; Visualisation that highlights data properties

Statistical tests:
; Procedure used to reject or not a statistical hypothesis

; See the 4IF course on statistics

45/122

Experimental Analysis of Algorithms Analysis of the Results

Descriptive statistics (recalls)

Central tendency measures:

Mean: X =
∑

xi
n

; May be sensible to outliers
Median: Middle value in the ordered sequence of values
; Not sensible to outliers
Mode: Most frequent value
; Used to describe non numerical data

In a normal distribution, these 3 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n
InterQuartile Range: IQR = Q3−Q1 with

Q1 = largest value of the 25% lowest values
Q3 = smallest value of the 25% largest values

46/122

Experimental Analysis of Algorithms Analysis of the Results

Look at Raw Data before starting Data Analysis!

Mean Median StDv IQR
Ciel 5.94 6.24 1.16 1.90
Vert 6.12 6.34 3.49 4.40
Rose 5.84 5.55 2.83 1.81
Violet 5.83 7.19 2.26 4.21
Bleu 5.88 4.91 2.52 2.21

 0

 2

 4

 6

 8

 10

 12

ciel vert rose violet bleu

. . . and use box plots!

47/122

Experimental Analysis of Algorithms Analysis of the Results

Look at Raw Data before starting Data Analysis!

Mean Median StDv IQR
Ciel 5.94 6.24 1.16 1.90
Vert 6.12 6.34 3.49 4.40
Rose 5.84 5.55 2.83 1.81
Violet 5.83 7.19 2.26 4.21
Bleu 5.88 4.91 2.52 2.21

 0

 2

 4

 6

 8

 10

 12

ciel vert rose violet bleu

. . . and use box plots!

47/122

Experimental Analysis of Algorithms Analysis of the Results

Look at Raw Data before starting Data Analysis!

Mean Median StDv IQR
Ciel 5.94 6.24 1.16 1.90
Vert 6.12 6.34 3.49 4.40
Rose 5.84 5.55 2.83 1.81
Violet 5.83 7.19 2.26 4.21
Bleu 5.88 4.91 2.52 2.21

 0

 2

 4

 6

 8

 10

 12

ciel vert rose violet bleu

. . . and use box plots!

47/122

Experimental Analysis of Algorithms Analysis of the Results

[Datasaurus dataset]

48/122

https://www.autodesk.com/research/publications/same-stats-different-graphs

Experimental Analysis of Algorithms Analysis of the Results

Generate Data Easy to Analyse!

Collect all relevant data (parameters, solutions, performance measures,
etc) and format the output to ease the parsing

Enlarge level intervals to amplify factor impacts
; Choose the right scale

Use Variance Reduction Techniques (VRT):

Same reference benchmark for all experiments
Normalise Data before analysing them
; Percentage gap to optimal solution, for example
Cluster heterogeneous benchmarks into homogeneous classes
; Analyse each class separately

“If your experiment needs statistics then you ought to have done a better
experiment.”

E. Rutherford

49/122

Experimental Analysis of Algorithms Analysis of the Results

What are we going to see now?

Data analysis for four different kinds of experimental results:

Non deterministic algorithms
; Illustration on the car sequencing problem
Anytime (and non deterministic) algorithms
; Illustration on the maximum clique problem
Large and heterogeneous benchmarks
; Illustration on the subgraph isomorphism problem
Classifiers

All data and scripts are available on Moodle

And what shall we not see (among other things...)?

Experimental evaluation of algorithms for multi-criteria optimisation
Experimental evaluation of parallel algorithms
; See IF-5-PRJ33

50/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

51/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Data Analysis for Non Deterministic Algorithms

What is a non deterministic algorithm?

Algorithm that uses a (pseudo-)random function⇒ independent runs on the
same input data (except the random seed) do not necessarily return the
same result

How to measure performance of non deterministic algorithms?

Consider each measure as a random variable

Time ; Probability that time is smaller than a given bound
Quality ; Probability that quality is greater than a given bound

Empirical estimation of the probability distribution of the measure
; Perform a large number of runs (with different random seeds)

How to compare probability distributions?

; Illustration on the Car Sequencing Problem

52/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

The Car Sequencing Problem

Description of the problem(1):

Input: A set of cars to be produced

with spacing constraints between options

≤ 1/2 ; ≤ 2/5 ; ≤ 1/5 ; ≤ 1/3

Output: Permutation of cars that satisfy constraints

Question addressed by the experiment:
What is the best parameter setting of a non deterministic algorithm(2) for
solving instance 26-82, among 5 given parameter settings?

(1) C. Solnon, VD. Cung, A. Nguyen, C. Artigues: The car sequencing problem: Overview of state-of-the-art methods and
industrial case-study of the ROADEF’2005 challenge, European Journal of Operational Research (EJOR), 2008

(2) C. Solnon: Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization,
European Journal of Operational Research (EJOR), 2008

53/122

https://doi.org/10.1016/j.ejor.2007.04.033
https://doi.org/10.1016/j.ejor.2007.04.033
https://doi.org/10.1016/j.ejor.2007.04.037
https://doi.org/10.1016/j.ejor.2007.04.037

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Experimental Data to Analyse

For each parameter setting i ∈ {1,2,3,4,5}, the file resParami.txt
contains traces of 100 runs with this setting

Example of trace (for 2 runs):

; The first run has found a solution at iteration 91988
; The second run has not found a solution (best sol. violates 1 constraint)

54/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Performance criterion and measure

Performance criterion:
Duration needed to solve the instance

Performance measure:

Two possible measures: CPU time and number of iterations
An iteration spends (nearly) always the same CPU time
; Measure the number of iterations

What should we do for runs that did not solve the instance?
; Maximum number of iterations (=150000)
; Warning: This is a lower bound of the actual measure

Shell script for extracting performance measures from run traces:

55/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Let’s start with some descriptive statistics

Central tendency measures:

Mean: X =
∑

xi
n

; Lower bound in case of time out (TO)

Median: Middle value in the ordered sequence of values

; In a normal distribution, these 2 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n

Inter Quartile Range: IQR = Q3−Q1 where Q1 (resp. Q3) is the
largest value of the 25% lowest (resp. 75%) lowest values

Mean Median

σ IQR

1 8657 8705

3323 4481

2 5082 4743

1813 2725

3 3055 3111

1053 1259

4

≥

56205 1378

- -

5

≥

8746 1728

- 863

Mean ranking: 3, 2, 1, 5, 4

or 3, 2, 1, 4, 5

Median ranking: 4, 5, 3, 2, 1

σ not computed in case of TO

IQR not computed in case of TO before Q3

56/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Let’s start with some descriptive statistics

Central tendency measures:

Mean: X =
∑

xi
n ; Lower bound in case of time out (TO)

Median: Middle value in the ordered sequence of values

; In a normal distribution, these 2 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n

Inter Quartile Range: IQR = Q3−Q1 where Q1 (resp. Q3) is the
largest value of the 25% lowest (resp. 75%) lowest values

Mean Median

σ IQR

1 8657 8705

3323 4481

2 5082 4743

1813 2725

3 3055 3111

1053 1259

4 ≥56205 1378

- -

5 ≥8746 1728

- 863

Mean ranking: 3, 2, 1, 5, 4 or 3, 2, 1, 4, 5

Median ranking: 4, 5, 3, 2, 1

σ not computed in case of TO

IQR not computed in case of TO before Q3

56/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Let’s start with some descriptive statistics

Central tendency measures:

Mean: X =
∑

xi
n ; Lower bound in case of time out (TO)

Median: Middle value in the ordered sequence of values

; In a normal distribution, these 2 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n

Inter Quartile Range: IQR = Q3−Q1 where Q1 (resp. Q3) is the
largest value of the 25% lowest (resp. 75%) lowest values

Mean Median σ IQR
1 8657 8705 3323 4481
2 5082 4743 1813 2725
3 3055 3111 1053 1259
4 ≥56205 1378 - -
5 ≥8746 1728 - 863

Mean ranking: 3, 2, 1, 5, 4 or 3, 2, 1, 4, 5

Median ranking: 4, 5, 3, 2, 1

σ not computed in case of TO

IQR not computed in case of TO before Q3

56/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Scripts for Drawing Box Plots

Shell script for computing Mean, Min, Q1, Median, Q3 and Max:

Gnuplot script to build box plots::

57/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Box Plots

With a log scale!
(set logscale y)

58/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Box Plots

With a log scale!
(set logscale y)

58/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Utilisation of a Statistical Test

Distributions are not normal
; Use a non parametric test, e.g., Mann–Whitney U test

Null hypothesis H0 for a couple of parameters (pi ,pj):

Proba(time with pi > time with pj) = Proba(time with pi < time with pj)

Python script to use the Mann–Whitney U test:

59/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Results of the Statistical Test
p1 p2 U p-value
1 2 1690.5 3.104e-16
1 3 542.5 6.418e-28
1 4 4307.0 0.045
1 5 974.0 3.944e-23
2 3 1675.0 2.273e-16
2 4 4412.0 0.075
2 5 1164.0 3.571e-21
3 4 4509.0 0.115
3 5 2218.0 5.366e-12
4 5 4826.0 0.335

Conclusions:

Reject the null hypothesis when p-value ≤ α

How to choose the threshold value α?

Use the Bonferroni correction in case of multiple hypothesis
; Divide α by the number of hypothesis

60/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Comparison of Cumulative Distribution Functions (CDFs)

What is the CDF of a random variable X?
fX (x) = Probability that X is smaller than or equal to x
If X is the random variable associated with the number of iterations:

x is a number of iterations
fX (x) is the probability that the number of iterations needed to solve
the instance is smaller than or equal to x

Empirical estimation by considering a large number of runs

Shell script to compute CDFs:

Gnuplot script to visualise CDFs:

61/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

With a log scale! (set logscale x)

62/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

With a log scale! (set logscale x)
62/122

Experimental Analysis of Algorithms Illustration: Non Deterministic Algorithms

Conclusions

Param. 1 and Param. 2 are dominated by Param. 3
Choice between Param. 3, 4 and 5 depends on the nb of iterations we
are willing to do ; Compromise between time and solution quality

63/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

64/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Data Analysis for Anytime Algorithms

What is an anytime algorithm?

Algorithm that produces a sequence of solutions of increasing quality

The longer the time limit, the better the last solution in the sequence

; Many algorithms for optimisation problems are anytime algorithms

Question addressed by the experiment:

Given 4 parameter settings of an anytime and non deterministic algorithm for
the maximum clique problem(1), what is the best parameter setting for 16
graphs coming from 3 different benchmarks (C, gen, and brock)?

Reference:
(1) C. Solnon & S. Fenet: A study of ACO capabilities for solving the Maximum Clique Problem,
Journal of Heuristics, 12(3):155-180, Springer, 2006

65/122

https://dx.doi.org/10.1007/s10732-006-4295-8
https://dx.doi.org/10.1007/s10732-006-4295-8

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Input Data

For each parameter setting p ∈ {1,2,3,4} and each instance i ,
res-p-i.txt contains the trace of 100 runs with setting p on instance i

Heuristic algorithm⇒ No optimality proof

Example: file res-3-C500.9.txt

66/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Performance Measures

Duration measure = Number of iterations of the algorithm

Quality measure = Size of the largest clique found

Shell script for extracting performance measures:

Example:

67/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Can we study each criterion separately?

Let’s fix the quality and plot the CDF associated with duration

; Probability of finding a clique of size k wrt number of iterations

Shell script for computing CDFs:

Results for different values of k :
k=57: k=55: k=53:

How to choose k?

c

68/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Can we study each criterion separately?

Let’s fix the quality and plot the CDF associated with duration

; Probability of finding a clique of size k wrt number of iterations

Visualisation of CDFs for instance C500.9:

Result for k=57
(Size of the maximum
clique of C500.9)

What can we do if the
algorithm does not find a
clique of size 57?

Results for different values of k :
k=57: k=55: k=53:

How to choose k?

c

68/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Can we study each criterion separately?

Let’s fix the quality and plot the CDF associated with duration

; Probability of finding a clique of size k wrt number of iterations

Results for different values of k :
k=57: k=55: k=53:

How to choose k?

c

68/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

What if we fix the number of iterations and plot the
CDF associated with quality?

Probability of finding a clique of size x in less than t iterations:

Result for instance C500.9
when t=3000

CDFs for different values of t:
t=3000: t=1000: t=100:

How to choose the number of iterations?

69/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

What if we fix the number of iterations and plot the
CDF associated with quality?

CDFs for different values of t:
t=3000: t=1000: t=100:

How to choose the number of iterations?

69/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Evolution of Quality with respect to Duration

Plot f (x) = size of the best clique found within x iterations

Non deterministic algorithm ; Empirical estimation of the expected size
by considering a large number of runs

Shell script:

Visualisation for C500.9:

How to aggregate plots of different
instances (that have maximum cliques
of different sizes)?

70/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Evolution of Quality with respect to Duration

Plot f (x) = size of the best clique found within x iterations

Non deterministic algorithm ; Empirical estimation of the expected size
by considering a large number of runs

Visualisation for C500.9:

How to aggregate plots of different
instances (that have maximum cliques
of different sizes)?

70/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Evolution of Quality with respect to Duration

Plot f (x) = size of the best clique found within x iterations

Non deterministic algorithm ; Empirical estimation of the expected size
by considering a large number of runs

Visualisation for C500.9:

How to aggregate plots of different
instances (that have maximum cliques
of different sizes)?

70/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Let’s normalise the measure!

Gap to the optimal solution (%):

gap = f (s∗)−f (s)
f (s∗)

; gap = 0 when f (s) = f (s∗)

; gap > 0 when f (s) < f (s∗)

Ratio to the optimal solution:

ratio = f (s)
f (s∗)

; ratio = 1 when f (s) = f (s∗)

; ratio < 1 when f (s) < f (s∗)

71/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Average Gap for each Class of Graphs
Gen graphs: C graphs: Brock graphs:

Can we explain why results are different from a class to another?
; Correlation between clique size and distance to the max clique

 0

 10

 20

 30

 40

 50

 60

 20 25 30 35 40 45 50 55

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

gen200_p0.9_55

 0

 5

 10

 15

 20

 25

 30

 35

 15 20 25 30 35

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

C125.9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 6 8 10 12 14 16 18

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

brock200_4

72/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Average Gap for each Class of Graphs
Gen graphs: C graphs: Brock graphs:

Can we explain why results are different from a class to another?
; Correlation between clique size and distance to the max clique

 0

 10

 20

 30

 40

 50

 60

 20 25 30 35 40 45 50 55

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

gen200_p0.9_55

 0

 5

 10

 15

 20

 25

 30

 35

 15 20 25 30 35

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

C125.9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 6 8 10 12 14 16 18
N

um
be

r
of

 v
er

tic
es

 s
ha

re
d

w
ith

 th
e

m
ax

im
um

 c
liq

ue

Size of the clique

brock200_4

72/122

Experimental Analysis of Algorithms Illustration: Anytime Algorithms

Conclusion

Duration and quality are inter-dependent criteria for anytime algorithms

Plot the evolution of quality wrt duration

Normalise measures to compare results of different instances
; Gap or ratio to the optimal solution

Performance changes from an instance to another

Analyse performance for each instance separately
; Aggregate results by grouping similar instances

Use automatic selection and configuration technics
; See part 3 of this course

73/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

74/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Illustration: Large scale evaluation

Subgraph Isomorphism Problem (non-induced case):

Search for a copy of Gp = (Np,Ep) in Gt = (Nt ,Et)
; Find an injection f : Np → Nt s.t. ∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et

See reference (1) for the induced case

Question addressed by the experiment:

What is the best among LAD(2), Glasgow(3), RI(4), PathLAD+(5), and LAD’23?

References:
(1) Solnon: Experimental Evaluation of Subgraph Isomorphism Solvers. In Graph-based

Representations in Pattern Recognition. 2019
(2) Solnon: Alldifferent-based filtering for subgraph isomorphism, in AI 2010
(3) McCreesh, Prosser: A parallel, backjumping subgraph isomorphism algorithm using

supplemental graphs, in CP 2015
(4) Bonnici, Giugno: On the variable ordering in subgraph isomorphism algorithms, in

IEEE/ACM Trans. Comput. Biology Bioinform. 2017
(5) Wang, Jin, Cai, Lin: PathLAD+: An Improved Exact Algorithm for Subgraph Isomorphism

Problem, in IJCAI 2023
75/122

https://hal.archives-ouvertes.fr/hal-02086499
https://hal.archives-ouvertes.fr/hal-02086499
https://dx.doi.org/10.1016/j.artint.2010.05.002
http://dx.doi.org/10.1007/978-3-319-23219-5_21
http://dx.doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1109/tcbb.2016.2515595
https://doi.org/10.1109/tcbb.2016.2515595
https://www.ijcai.org/proceedings/2023/0626.pdf
https://www.ijcai.org/proceedings/2023/0626.pdf

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Performance criteria

Memory usage:

All algorithms have polynomial space complexities

; Memory is not an issue for graphs with thousands of nodes

Solving time:

In theory: All algorithms have exponential time complexities
In practice: Some very large instances can be very quickly solved...
...But some small instances cannot be solved within days

; Time is the big issue

Performance measure:
CPU time on Apple M1 Pro
Each run is limited to 1000 seconds

Some instances are not solved within this limit
Some instances are still not solved when the limit is 100,000s

76/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Benchmark Description

15,128 instances coming from 8 existing benchmarks

Instances coming from real applications: Images and Meshes
Random instances: randER (Erdös-Rényi) and rand (other models)
Instances generated from the Stanford graph base: LV

Number of nodes: Number of edges:

77/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Let’s start by looking at raw data...
For each instance, plot a point (x , y) where x = instance parameter and y = time

Plot when x = number of pattern vertices

LAD Glasgow RI PathLAD+ LAD’23

Plot when x = number of target vertices

LAD Glasgow RI PathLAD+ LAD’23

78/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Let’s start by looking at raw data...
For each instance, plot a point (x , y) where x = instance parameter and y = time

Plot when x = number of pattern edges

LAD Glasgow RI PathLAD+ LAD’23

Plot when x = number of target edges

LAD Glasgow RI PathLAD+ LAD’23

78/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

How to study interaction effects between two parameters?
; Plot a point (x , y) for each instance: x , y = instance parameters; colour = time

Example: x = nb of pattern edges; y = nb of target edges

LAD Glasgow RI PathLAD+ LAD’23

Log scale for time: yellow if t < 10−3s; red if t = 1s; black if t > 103s

First conclusions:
No correlation between the number of edges and the CPU time
Standard deviations are very high
Some instances are not solved within the time limit (black points)

It’s meaningless to plot the average solving time wrt the nb of nodes or edges!

79/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433

solved in 1 000s 14 678 14 858 14 242 14 916 14 972
solved in 1s 11 878 14 493 13 632 12 273 14 594
solved in 0.01s 4 918 5 831 12 438 5 799 7 483
avg time (solved) 3.69 1.62 5.82 4.91 1.98
bound on avg time 33.33 19.44 64.05 18.85 12.27

1 Number of instances for which a solver is the fastest
; Ranking = RI, Glasgow, LAD’23, PathLAD+, LAD

2 Number of instances whose solving time is lower than 1, 000s
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

3 Number of instances whose solving time is lower than 1s
; Ranking = LAD’23, Glasgow, RI, PathLAD+, LAD

4 Number of instances whose solving time is lower than or equal to 0.01s
; Ranking = RI, LAD’23, Glasgow, PathLAD+, LAD

5 Time to solve an instance (average on instances solved within 1000s)
; Ranking = Glasgow, LAD’23, LAD, PathLAD+, RI

6 Lower bound of the average solving time on the 15, 128 instances
(the time of unsolved instances is lower bounded by the time limit)
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

q

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433
solved in 1 000s 14 678 14 858 14 242 14 916 14 972

solved in 1s 11 878 14 493 13 632 12 273 14 594
solved in 0.01s 4 918 5 831 12 438 5 799 7 483
avg time (solved) 3.69 1.62 5.82 4.91 1.98
bound on avg time 33.33 19.44 64.05 18.85 12.27

1 Number of instances for which a solver is the fastest
; Ranking = RI, Glasgow, LAD’23, PathLAD+, LAD

2 Number of instances whose solving time is lower than 1, 000s
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

3 Number of instances whose solving time is lower than 1s
; Ranking = LAD’23, Glasgow, RI, PathLAD+, LAD

4 Number of instances whose solving time is lower than or equal to 0.01s
; Ranking = RI, LAD’23, Glasgow, PathLAD+, LAD

5 Time to solve an instance (average on instances solved within 1000s)
; Ranking = Glasgow, LAD’23, LAD, PathLAD+, RI

6 Lower bound of the average solving time on the 15, 128 instances
(the time of unsolved instances is lower bounded by the time limit)
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

q

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433
solved in 1 000s 14 678 14 858 14 242 14 916 14 972
solved in 1s 11 878 14 493 13 632 12 273 14 594

solved in 0.01s 4 918 5 831 12 438 5 799 7 483
avg time (solved) 3.69 1.62 5.82 4.91 1.98
bound on avg time 33.33 19.44 64.05 18.85 12.27

1 Number of instances for which a solver is the fastest
; Ranking = RI, Glasgow, LAD’23, PathLAD+, LAD

2 Number of instances whose solving time is lower than 1, 000s
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

3 Number of instances whose solving time is lower than 1s
; Ranking = LAD’23, Glasgow, RI, PathLAD+, LAD

4 Number of instances whose solving time is lower than or equal to 0.01s
; Ranking = RI, LAD’23, Glasgow, PathLAD+, LAD

5 Time to solve an instance (average on instances solved within 1000s)
; Ranking = Glasgow, LAD’23, LAD, PathLAD+, RI

6 Lower bound of the average solving time on the 15, 128 instances
(the time of unsolved instances is lower bounded by the time limit)
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

q

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433
solved in 1 000s 14 678 14 858 14 242 14 916 14 972
solved in 1s 11 878 14 493 13 632 12 273 14 594
solved in 0.01s 4 918 5 831 12 438 5 799 7 483

avg time (solved) 3.69 1.62 5.82 4.91 1.98
bound on avg time 33.33 19.44 64.05 18.85 12.27

1 Number of instances for which a solver is the fastest
; Ranking = RI, Glasgow, LAD’23, PathLAD+, LAD

2 Number of instances whose solving time is lower than 1, 000s
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

3 Number of instances whose solving time is lower than 1s
; Ranking = LAD’23, Glasgow, RI, PathLAD+, LAD

4 Number of instances whose solving time is lower than or equal to 0.01s
; Ranking = RI, LAD’23, Glasgow, PathLAD+, LAD

5 Time to solve an instance (average on instances solved within 1000s)
; Ranking = Glasgow, LAD’23, LAD, PathLAD+, RI

6 Lower bound of the average solving time on the 15, 128 instances
(the time of unsolved instances is lower bounded by the time limit)
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

q

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433
solved in 1 000s 14 678 14 858 14 242 14 916 14 972
solved in 1s 11 878 14 493 13 632 12 273 14 594
solved in 0.01s 4 918 5 831 12 438 5 799 7 483
avg time (solved) 3.69 1.62 5.82 4.91 1.98

bound on avg time 33.33 19.44 64.05 18.85 12.27

1 Number of instances for which a solver is the fastest
; Ranking = RI, Glasgow, LAD’23, PathLAD+, LAD

2 Number of instances whose solving time is lower than 1, 000s
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

3 Number of instances whose solving time is lower than 1s
; Ranking = LAD’23, Glasgow, RI, PathLAD+, LAD

4 Number of instances whose solving time is lower than or equal to 0.01s
; Ranking = RI, LAD’23, Glasgow, PathLAD+, LAD

5 Time to solve an instance (average on instances solved within 1000s)
; Ranking = Glasgow, LAD’23, LAD, PathLAD+, RI

6 Lower bound of the average solving time on the 15, 128 instances
(the time of unsolved instances is lower bounded by the time limit)
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

q

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433
solved in 1 000s 14 678 14 858 14 242 14 916 14 972
solved in 1s 11 878 14 493 13 632 12 273 14 594
solved in 0.01s 4 918 5 831 12 438 5 799 7 483
avg time (solved) 3.69 1.62 5.82 4.91 1.98
bound on avg time 33.33 19.44 64.05 18.85 12.27

1 Number of instances for which a solver is the fastest
; Ranking = RI, Glasgow, LAD’23, PathLAD+, LAD

2 Number of instances whose solving time is lower than 1, 000s
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

3 Number of instances whose solving time is lower than 1s
; Ranking = LAD’23, Glasgow, RI, PathLAD+, LAD

4 Number of instances whose solving time is lower than or equal to 0.01s
; Ranking = RI, LAD’23, Glasgow, PathLAD+, LAD

5 Time to solve an instance (average on instances solved within 1000s)
; Ranking = Glasgow, LAD’23, LAD, PathLAD+, RI

6 Lower bound of the average solving time on the 15, 128 instances
(the time of unsolved instances is lower bounded by the time limit)
; Ranking = LAD’23, PathLAD+, Glasgow, LAD, RI

q

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What statistic can we compute to find the best solver?
LAD Glasgow RI PathLAD+ LAD’23

fastest 4 4 224 11 169 2 458 3 433
solved in 1 000s 14 678 14 858 14 242 14 916 14 972
solved in 1s 11 878 14 493 13 632 12 273 14 594
solved in 0.01s 4 918 5 831 12 438 5 799 7 483
avg time (solved) 3.69 1.62 5.82 4.91 1.98
bound on avg time 33.33 19.44 64.05 18.85 12.27

First conclusions:
LAD’23 is able to solve more instances when time limit = 1000s or 1s
But RI is able to solve more instances when time limit = 0.01s
Glasgow has the smallest average solving time on solved instances
But the subset of solved instances is different from a solver to another
LAD’23 has the smallest lower bound on the average solving time
But RI is the fastest for a wide majority of instances
The ranking strongly depends on the considered statistic...

There is no clear winner ; We need to analyse results more carefully

80/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Cactus Plot: Number of solved instances wrt time

How to produce a cactus plot for a solver s?

For each instance i , let ti be the time spent by s to solve i
Initialise a counter c to 0
For each solving time ti , taken by increasing order:
Increase c and plot the point (ti , c)

With a linear scale: With a logarithmic scale:

81/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Cactus Plot: Number of solved instances wrt time

How to produce a cactus plot for a solver s?

For each instance i , let ti be the time spent by s to solve i
Initialise a counter c to 0
For each solving time ti , taken by increasing order:
Increase c and plot the point (ti , c)

With a logarithmic scale + zoom: With a logarithmic scale:

81/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Figure from the paper that introduced PathLAD+

82/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Table from the paper that introduced PathLAD+

Quote from the paper:

Overall, the performance of PathLAD+ totally dominates Glasgow+Clq,
PathLAD, RI, and VF2.

Any reaction?

83/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

CDF: Probability of success wrt time

How to obtain a CDF from a cactus plot?

Divide the number of solved instances by the total number of instances

With a logarithmic scale: With a logarithmic scale + Zoom:

84/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Virtual Best Solver (VBS)

VBS associated with a set S of solvers and a set I of instances:
∀s ∈ S,∀i ∈ I, let ts

i be the runtime of s on i
∀i ∈ I, runtime of VBS on i : tVBS

i = mins∈S ts
i

With a logarithmic scale: With a logarithmic scale + Zoom:

85/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

What have we learned so far?

For very small runtime limits (<0.04s), RI has the highest success
probability

For larger runtime limits (>0.04s), LAD’23 has the highest success
probability

PathLAD+ has a higher success probability than Glasgow only when the
runtime limit is larger than 200s

Warning:

This is a global picture for an unbalanced benchmark that contains a lot of
easy instances and a few very hard instances
; Analyse results for each class separately

86/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Results on the 6302 instances of Class Images

RI = VBS for all instances of this class
; It never needs more than 0.02s to solve an instance
Other approaches also solve all instances but they need more time
Ranking on this benchmark: RI, LAD’23, Glasgow, PathLAD+

87/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Results on the 3018 instances of Class Meshes
Big picture: With a zoom:

Conclusions:

RI is the most successful when time < 0.007s

LAD’23 is the most successful when time > 0.007s
; It is the only one able to solve all instances

88/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Results on the 4338 instances of Class LV
Big picture: With a zoom:

Conclusions:

LAD’23 is the most successful, except for very short time limits (< 0.003)

80% of the instances are solved within 0.01s by LAD’23
But some instances are really hard (75 unsolved instances)

89/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Results on the 1000 instances of Rand
Big picture: With a zoom:

Conclusions:
RI is the most successful when time < 0.15s
Glasgow is the most successful when time > 0.15s
Glasgow, LAD’23 and PathLAD+ solve all instances within 10s
whereas RI fails on 20 instances within 1000s

90/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Results on the 470 instances of Class RandER
Big picture: With a zoom:

Conclusions:
RI is the most successful when time < 0.03s
But it is the less successful when time > 200s
Glasgow is the most successful when time ∈ [0.03s,150s]
Glasgow and LAD’23 have similar performance when time > 150s

91/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Per instance comparison of Glasgow and PathLAD+
Scatter plot: plot a point (x , y) for each instance with x = tGlasgow and y = tPathLAD+

Can we really say that “PathLAD+ totally dominates Glasgow”?
92/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Scatter plot of RI and LAD’23

93/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Let’s combine RI and LAD’23 sequentially
; Run RI for 0.01s and if the instance isn’t solved, run LAD’23

Big picture: With a zoom:

94/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Using Scatter plots to evaluate sensibility to randomness

95/122

Experimental Analysis of Algorithms Illustration: Large scale evaluation

Conclusion of this experiment

Modern solvers are able to quickly solve large instances...

...But there are small instances that are still very challenging
; Don’t forget to evaluate your favorite solver on these instances too!

Plotting the evolution of time wrt size is not very meaningful

Better pictures are given by plotting CDF, and scatter plots

Advertisement: Have a look at Metrics Studio (http://crillab-metrics.cloud/dash/)

Conclusions are different from a benchmark to another

Consider as many benchmarks as possible

Analyse results for each benchmark separately, especially in case of
unbalanced benchmarks

Use automatic selection tools to improve performance

96/122

http://crillab-metrics.cloud/dash/

Experimental Analysis of Algorithms Illustration: Classifiers

Plan

1 Theoretical Analysis of Algorithms

2 Experimental Analysis of Algorithms
Experimental Process
Choice of a Benchmark
Choice of Factors, Design Points and Performance Measures
Analysis of the Results
Illustration: Non Deterministic Algorithms
Illustration: Anytime Algorithms
Illustration: Large scale evaluation
Illustration: Classifiers

3 Algorithm Engineering

4 Conclusion

97/122

Experimental Analysis of Algorithms Illustration: Classifiers

Supervised Classification (recalls)

Input data:

A set O of objects
; For ex: O = set of images of dogs, cats, and birds

A set C of classes
; For ex: C = {dog, cat, bird}

A training set St ⊂ O and a ground truth function c : St → C that returns
the class c(o) of every objet o ∈ St

Dogs Cats Birds

Output model:

A classifier κ : O → C such that, ∀o ∈ O, κ(o) = predicted class for o

; For ex: κ() =?
98/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 1: k Nearest Neighbours (kNN)

Model = St + distance d : O ×O → R+

In general: Definition of d in a vector space Rn

; Each object is described by a numerical vector
Ideally: Choose d st c(oi) = c(oj) 6= c(ok)⇒ d(oi ,oj) < d(oi ,ok)
; d may be learned (metric learning)

Classification of an object o ∈ St :

Compute the set A of the k objects of St which are the nearest to o
κ(o) = most frequent class in A (possibility to weight with d)

(image: Wikipedia)

99/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 2: SVM (Support Vector Machine)

Model in the case of 2 classes:
Search for the hyperplan that maximises the gap between the classes
; Quadratic optimisation problem
Projection φ of the objects in a space of larger dimension
; Use a kernel κ : O ×O → R+ such that κ(xi , xj) = φ(xi)

T · φ(xj)

Classification of an object o ∈ O:

Compute class by looking at the position of φ(o) wrt the hyperplan

100/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 2: SVM (Support Vector Machine)

Model in the case of 2 classes:
Search for the hyperplan that maximises the gap between the classes
; Quadratic optimisation problem
Projection φ of the objects in a space of larger dimension
; Use a kernel κ : O ×O → R+ such that κ(xi , xj) = φ(xi)

T · φ(xj)

Classification of an object o ∈ O:

Compute class by looking at the position of φ(o) wrt the hyperplan

100/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 2: SVM (Support Vector Machine)

Model in the case of 2 classes:
Search for the hyperplan that maximises the gap between the classes
; Quadratic optimisation problem
Projection φ of the objects in a space of larger dimension
; Use a kernel κ : O ×O → R+ such that κ(xi , xj) = φ(xi)

T · φ(xj)

Classification of an object o ∈ O:

Compute class by looking at the position of φ(o) wrt the hyperplan

100/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 3: Neural Networks

Model:
Network structure (number of layers, connections between the layers)
; First layer = 1 neuron per feature of the objects of O
; Last layer = 1 neuron per class
Connection weights are learned on St by using backpropagation

Classification of an object o ∈ O
Activation of input neurons / features of o

101/122

Experimental Analysis of Algorithms Illustration: Classifiers

Training and Test Sets

Training set:

Data used to learn a model (i.e., search for parameter values)

Test set:
Data used to evaluate the learned model

Why testing on data different from those used to train the model?

; To check that the learned model is not overfitted

Models learned on a training set: Evaluation on a test set:

102/122

Experimental Analysis of Algorithms Illustration: Classifiers

Hyper-parameter Tuning and Validation Set

What is an hyper-parameter?

Parameter that must be assigned before learning a model
; Number of layers in a neural network, SVM kernel, etc
Each hyper-parameter has a (possibly infinite) set of possible values

Which combinations of values should be tested?
Grid search: Choose a subset of values for each parameter, and
consider all possible combinations of these subsets
Random search: Consider k randomly chosen combinations
; k controls the proba. of choosing at least 1 among the x% best ones

Use a validation set to choose the best combination
For each combination, learn a model
; Use a training set to learn these models
Compare the learned models on the validation set
; Select the best one
Evaluate the selected model on the test set

103/122

Experimental Analysis of Algorithms Illustration: Classifiers

Training and Hyper-parameter tuning costs:

Training time of AI models: But that’s just the tip of the
iceberg!

Reference:
Strubell, Ganesh, & McCallum (2019): Energy and Policy Considerations for
Deep Learning in NLP

104/122

https://arxiv.org/pdf/1906.02243.pdf
https://arxiv.org/pdf/1906.02243.pdf

Experimental Analysis of Algorithms Illustration: Classifiers

Evolution of Performance wrt Training Cost

Reference:
J. Dodge, S. Gururangan, D. Card, R. Schwartz, N. A. Smith. Show Your Work (2019): Improved
Reporting of Experimental Results

105/122

https://arxiv.org/abs/1909.03004
https://arxiv.org/abs/1909.03004

Experimental Analysis of Algorithms Illustration: Classifiers

Choice of Training, Validation and Test sets

In theory:
Training, validation and test sets should:

be independent
follow a same distribution and not be biased
contain enough examples to avoid overfitting

In practice:

We usually do not know the probability distribution of data on which the
model will be used
; Domain adaptation
Classes may not be balanced (e.g., anomaly detection)
Data may contain bias
...

106/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 1: ImageNet (1/2)

2009 : ImageNet

107/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 1: ImageNet (2/2)

Which of these two photos
represents a bride?

Learned models reproduce biases of training data!
Zou and Schiebinger: AI can be sexist and racist — it’s time to make it fair, in Nature 559,
324-326 (2018)

108/122

https://doi.org/10.1038/d41586-018-05707-8
https://doi.org/10.1038/d41586-018-05707-8

Experimental Analysis of Algorithms Illustration: Classifiers

Example 2: Word Embedding (e.g., Word2vec)

Basic principle of word embedding:

Embed words in a vectorial space
; Distance between words in this space reflects context similarity
Used for inferring analogies
; king - man + woman = ?

queen

Results obtained when training on news.google.com:

doctor - man + woman =

nurse

computer programmer - man + woman =

homemaker

; The learned embedding reproduces biases
Bolukbasi et al: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, in NIPS 2016

109/122

https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html

Experimental Analysis of Algorithms Illustration: Classifiers

Example 2: Word Embedding (e.g., Word2vec)

Basic principle of word embedding:

Embed words in a vectorial space
; Distance between words in this space reflects context similarity
Used for inferring analogies
; king - man + woman = queen

Results obtained when training on news.google.com:

doctor - man + woman = ?

nurse

computer programmer - man + woman = ?

homemaker

; The learned embedding reproduces biases
Bolukbasi et al: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, in NIPS 2016

109/122

https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html

Experimental Analysis of Algorithms Illustration: Classifiers

Example 2: Word Embedding (e.g., Word2vec)

Basic principle of word embedding:

Embed words in a vectorial space
; Distance between words in this space reflects context similarity
Used for inferring analogies
; king - man + woman = queen

Results obtained when training on news.google.com:

doctor - man + woman = nurse
computer programmer - man + woman = homemaker

; The learned embedding reproduces biases
Bolukbasi et al: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, in NIPS 2016

109/122

https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html

Experimental Analysis of Algorithms Illustration: Classifiers

Example 3: ChatGPT

Peux tu traduire en français le paragraphe suivant : The surgeon is
assisted by a nurse. The nurse has a beautiful beard. The surgeon has
a dress.
Bien sûr, voici la traduction en français du paragraphe : Le chirurgien est
assisté par une infirmière. L’infirmière a une belle barbe. Le chirurgien porte
une robe.

Notez cependant que ce paragraphe ne semble pas très cohérent, car il est
inhabituel pour une infirmière d’avoir une barbe et pour un chirurgien de
porter une robe.

Question :
Should training sets be representative of the world as it is, or the world we’d
like to live in?

110/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 3: ChatGPT

Peux tu traduire en français le paragraphe suivant : The surgeon is
assisted by a nurse. The nurse has a beautiful beard. The surgeon has
a dress.
Bien sûr, voici la traduction en français du paragraphe : Le chirurgien est
assisté par une infirmière. L’infirmière a une belle barbe. Le chirurgien porte
une robe.

Notez cependant que ce paragraphe ne semble pas très cohérent, car il est
inhabituel pour une infirmière d’avoir une barbe et pour un chirurgien de
porter une robe.

Question :
Should training sets be representative of the world as it is, or the world we’d
like to live in?

110/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example 3: ChatGPT

Peux tu traduire en français le paragraphe suivant : The surgeon is
assisted by a nurse. The nurse has a beautiful beard. The surgeon has
a dress.
Bien sûr, voici la traduction en français du paragraphe : Le chirurgien est
assisté par une infirmière. L’infirmière a une belle barbe. Le chirurgien porte
une robe.

Notez cependant que ce paragraphe ne semble pas très cohérent, car il est
inhabituel pour une infirmière d’avoir une barbe et pour un chirurgien de
porter une robe.

Question :
Should training sets be representative of the world as it is, or the world we’d
like to live in?

110/122

Experimental Analysis of Algorithms Illustration: Classifiers

Experimental Protocol

k -fold cross-validation:
Given a set S ⊆ O of objects that have known classes

Partition S in k folds S1, . . . ,Sk

(or randomly select k folds)

For each fold Si ∈ {S1, . . . ,Sk}:
Learn a model on the training set ST = S \ Si
Evaluate the model on the testing set Si

Statistical analysis of performance measures for the k folds

Leave-one-out:
Cross-validation with k = |S|
; Used when there are very few objects in S

111/122

Experimental Analysis of Algorithms Illustration: Classifiers

Evaluation of the Quality of a Binary Classifier

Confusion matrix:

Actual Class
+ -

Predicted Class + TP FP
Predicted Class - FN TN
Total per column P N

TP = True Positive
TN = True Negative
FP = False Positive ; False alarm
FN = False Negative ; Missed
P = total Positive = TP+FN
N = total Negative = FP+TN

Some measures:

Accuracy = TP+TN
P+N

Precision = TP
TP+FP

True Positive Rate (Recall) = TP
P ; Detection probability

False Positive Rate = FP
N ; False alarm probability

F-measure = 2TP
2TP+FP+FN ; Harmonic mean of Precision and Recall

112/122

Experimental Analysis of Algorithms Illustration: Classifiers

Example of Results for Unbalanced Classes
; Fraud or anomaly detection, etc

Results of A:

Actual Class
+ -

Predict + 44 150
Predict - 156 2850
Total 200 3000

Acc. = 2894
3200 = 90.44%

Prec. = 44
194 = 22.68%

TPR = 44
200 = 22%

FPR = 150
3000 = 5%

F = 88
394 = 22.34%

Results of B:

Actual Class
+ -

Predict + 83 375
Predict - 117 2625
Total 200 3000

Acc. = 2708
3200 = 84.62%

Prec. = 83
458 = 18.12%

TPR = 83
200 = 41.5%

FPR = 375
3000 = 12.5%

F = 166
658 = 25.23%

Results of C:

Actual Class
+ -

Predict + 60 185
Predict - 140 2815
Total 200 3000

Acc. = 2875
3200 = 89.84%

Prec. = 60
245 = 24.49%

TPR = 60
200 = 30%

FPR = 185
3000 = 6.17%

F = 120
445 = 26.97%

Measures may be weighted (see IF-4-FD)
; Associate a weight with every case ∈ {TP,TN,FP,FN}

113/122

Experimental Analysis of Algorithms Illustration: Classifiers

ROC (Receiver Operating Characteristic) Space

Compromise between income (y=TPR) and cost (x=FPR):

(0,0) ; Classifier always answering -
(1,1) ; Classifier always answering +
(0,1) ; Perfect classifier
x = y ; Random classifier (p(+) = x ; p(−) = 1− x)

Bi-criteria optimisation:

(x1, y1) dominate (x2, y2) if x1 ≤ x2 and y1 ≥ y2
; Strict domination if (x1, y1) 6= (x2, y2)

Reference:
T. Fawcett: An introduction to ROC analysis. PRL 2006

114/122

https://doi.org/10.1016/j.patrec.2005.10.010

Experimental Analysis of Algorithms Illustration: Classifiers

ROC Curve

Some classifiers may return a numerical value (probability, score, ...)
instead of a class ; Class determined wrt a threshold
ROC curve = Points obtained when considering different thresholds
; Cumulative distribution function of TPR wrt FPR

Example from [Fawcett 2006]:

115/122

https://doi.org/10.1016/j.patrec.2005.10.010

Experimental Analysis of Algorithms Illustration: Classifiers

Area under the ROC curve (AUC)

Between 0 and 1
; AUC of a random classifier = 0.5
P(score of a positive instance > score of a negative instance)

Example from [Fawcett 2006]:

116/122

https://doi.org/10.1016/j.patrec.2005.10.010

Experimental Analysis of Algorithms Illustration: Classifiers

Evaluation of the Quality of a non Binary Classifier

Confusion Matrix and Accuracy:

Actual Class
A B C D

Predicted Class A 12 4 2 0
Predicted Class B 3 8 3 1
Predicted Class C 0 1 9 0
Predicted Class D 0 2 1 14

Accuracy = 12+8+9+14
60

Measures associated with n binary classifiers:

A vs NonA: TPR= 12
15 ; FPR= 6

45 ; ...

B vs NonB: TPR= 8
15 ; FPR= 7

45 ; ...

C vs NonC: TPR= 9
15 ; FPR= 1

45 ; ...

D vs NonD: TPR= 14
15 ; FPR= 3

45 ; ...

117/122

Experimental Analysis of Algorithms Illustration: Classifiers

Other Performance Criteria

Size of the training set and number of tested configurations to tune
hyper-parameters:

Criteria that impact the classifier quality
Plot the evolution of quality measures wrt these criteria

Duration / Cost:
Offline: Cost to train the model
; Usually dependent from the size of the training set...
Online: Cost to make a forecast

... and many other properties:

Equity and Fairness
Robustness, Security, and Confidentiality
...
Explainability

118/122

Experimental Analysis of Algorithms Illustration: Classifiers

Why should we explain?

Europe, 2018: Article 22 of General Data Protection Regulation

The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal
effects concerning him or her or similarly significantly affects him or her. (...)
The data controller shall implement suitable measures to safeguard the data
subject’s rights and freedoms and legitimate interests, at least the right to
obtain human intervention on the part of the controller, to express his
or her point of view and to contest the decision.

France, 2016: Loi pour une République Numérique
Algorithms used by French administration:

Explicitly mention that the decision is based on an algorithmic treatment
Communication of the source code and the main features of the
algorithm
Right to appeal against an individual administrative decision based on
algorithmic processing

119/122

Experimental Analysis of Algorithms Illustration: Classifiers

What is a (good) explanation?
It depends on the goal of the user!

Understand a system before using it

Describe the algorithm and/or open source code, training data, ...
; Transparency

Check that a decision is fair, or contest a decision
Identify the features that most influenced the decision
; Counterfactuals

Assist the decision making process in case of recommandations

Justify the decision

Understand the causes of an error to correct it
Identify the causes of the decision

120/122

Experimental Analysis of Algorithms Illustration: Classifiers

Why is it difficult to explain?

Code may not be open

; Competition issues

Data may not be open

; Competition and privacy issues

Explanations must be understandable

Some machine learning approaches are easy to interpret (e.g. decision trees)
But most of them are not (e.g. CNN)

We may learn explanations during the training process
But can we trust these explanations?
See Andreou et al, 2018: Investigating ad transparency mechanisms in
social media: A case study of Facebook’s explanations

Is it possible to explain an algorithm by observing it as a black box?

See REGALIA on the regulation of algorithms

121/122

https://www.eurecom.fr/fr/publication/5414
https://www.eurecom.fr/fr/publication/5414
https://www.inria.fr/en/regalia-pilot-project-regulation-algorithms

Conclusion

122/122

	Theoretical Analysis of Algorithms
	Experimental Analysis of Algorithms
	Experimental Process
	Choice of a Benchmark
	Choice of Factors, Design Points and Performance Measures
	Analysis of the Results
	Illustration: Non Deterministic Algorithms
	Illustration: Anytime Algorithms
	Illustration: Large scale evaluation
	Illustration: Classifiers

	Algorithm Engineering
	Conclusion

