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Computer science is a science...

...but not the science of computers!

(...) The topic became prematurely known as ‘computer science’ – which,
actually, is like referring to surgery as ‘knife science’ – and it was firmly
implanted in people’s minds that computing science is about machines and
their peripheral equipment. Quod non. Dijkstra (1986)

What does it mean to be a science (according to Wikipedia)?

Science is a systematic enterprise that builds and organizes knowledge in the
form of testable explanations and predictions about the universe.
A scientific process is usually composed of the following steps:

Formulate a question
Make conjectures/hypothesis that may answer the question
Use these hypothesis to predict consequences that can be tested
Test hypothesis by conducting experiments
Analyse results to support or falsify hypothesis... and publish!?
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Theory versus Experimentation

In theory, theory and practice are the same.
In practice, they are not.

(A. Einstein)

Experience without theory is blind,
but theory without experience is mere intellectual play.

(I. Kant)

If you find that you’re spending almost all your time on theory,
start turning some attention to practical things; it will improve
your theories. If you find that you’re spending almost all your
time on practice, start turning some attention to theoretical
things; it will improve your practice.

(D. Knuth)
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A young science with old foundations

Aristote
(384–322 BC)

Euclide
(∼ 300 BC)

Blaise Pascal
(1623-1662) Ada Lovelace

(1815-1852)

George Boole
(1815-1864)

Kurt Gödel
(1906-1978)

Alan Turing
(1912-1954)

J. von Neumann
(1903-1957)

Grace Hopper
(1906-1992)

Donald Knuth
(1938-?)
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Plan

1 Theoretical Analysis of Algorithms
Preliminary Definitions (recalls)
Complexity Classes
Illustration: Graph Matching Problems
Decidability and (in)completeness
Proof of Program Properties
Illustration: Lecture of P. Cousot on abstract interpretation

2 Experimental Analysis of Algorithms

3 Algorithm Engineering

4 Conclusion
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Problems, Instances and Algorithms (Recalls)

Specification of a problem:

Input parameters

Output parameters

Optionally: Preconditions on input parameters

Postrelation between input and output parameter values

Instance of a problem:

Values of input parameters which satisfy preconditions

Algorithm for a problem:

Sequence of elementary instructions to compute output parameter values
from input parameter values, for any instance of the problem
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Example 1: Searching for a value in a sorted array

Specification of the problem:

Input: an array a of n integers (indexed from 0 to n − 1) and an integer e

Output: an integer i

Precondition: ∀j ∈ [0,n − 2],a[j] ≤ a[j + 1]

Postrelation:

if ∀j ∈ [0,n − 1],a[j] 6= e then i = n
else i ∈ [0,n − 1] and a[i] = e

Examples of instances:

Input: e = 8 and a = 4 4 7 8 10 11 12
; Output: i = 3

Input: e = 9 and a = 4 4 7 8 10 11 12
; Output: i = 7
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Example 2: Sorting an array

Specification of the problem:

Input: an array a− of n integers

Output: an array a+ of n integers

Postrelation:

a+ is a permutation of a−

∀i ∈ [0,n − 2],a+[i] ≤ a+[i + 1]

Examples of instances:

Input: a− = 4 2 9 4 0 7 1

; Output: a+ = 0 1 2 4 4 7 9

Input: a− = 4 7 7 4

; Output: a+ = 4 4 7 7
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Example 3: Satisfiability of a Boolean Formula (SAT)

Specification of the problem:

Input: a Boolean formula F defined on a set X of n variables

Output: a Boolean value V

Precondition: F is in Conjunctive Normal Form (CNF)

Postrelation: V = true iff F can be satisfied

Examples of instances:

X = {a,b, c} and F = (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) ∧ (a ∨ b ∨ c)

; V = true

X = {a,b, c} and F = (a∨ b)∧ (b ∨ c)∧ (a∨ c)∧ (a∨ b ∨ c)∧ (a∨ b ∨ c)

; V = false

Reference:
Knuth: The Art of Computer Programming, Vol. 4B, 2022
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Complexity of an algorithm

Estimation of resources required by an algorithm:

Time ; Number of elementary instructions

Space ; Memory consumption

The estimation depends on the size of input param. and is a growth rate:
How do time or space requirements grow as the input size grows?

Growth of a function f (n):

O(g(n)): ∃c,n0 ∈ R+ such that ∀n > n0, |f (n)| ≤ c.|g(n)|

Ω(g(n)): ∃c,n0 ∈ R+ such that ∀n > n0, |f (n)| ≥ c.|g(n)|

Θ(g(n)): ∃c1, c2,n0 ∈ R+ such that ∀n > n0, c1.|g(n)| ≤ |f (n)| ≤ c2.|g(n)|
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Quiz: Complexity of some sorting algorithms

Specification of the problem (recall):

Input: an array a− of n integers
Output: an array a+ of n integers
Postrelation: a+ is a permutation of a− and a+ is sorted

Complexity of Selection Sort?

1 begin
2 for i ranging from 0 to n − 2 do

/* Invariant: ∀j ∈ [0, i − 2], a[j] ≤ a[j + 1] */
/* ∀j ∈ [i, n − 1], a[i − 1] ≤ a[j] */

3 search for the index s of the smallest value in a[i..n − 1]
4 exchange a[s] and a[i]
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Quiz: Complexity of some sorting algorithms

Specification of the problem (recall):

Input: an array a− of n integers
Output: an array a+ of n integers
Postrelation: a+ is a permutation of a− and a+ is sorted

Complexity of Insertion Sort?

1 begin
2 for i ranging from 1 to n − 1 do

/* Invariant: ∀j ∈ [0, i − 2], a[j] ≤ a[j + 1] */
3 insert a[i] in a[0..i − 1]
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Quiz: Complexity of some sorting algorithms

Specification of the problem (recall):

Input: an array a− of n integers
Output: an array a+ of n integers
Postrelation: a+ is a permutation of a− and a+ is sorted

Complexity of Quick Sort?
1 begin
2 if n > 1 then
3 Choose a pivot value in a[0..n − 1]
4 Find i and permut values of a[0..n − 1] so that:
5 → ∀j ∈ [0, i − 1], a[j] ≤ pivot
6 → a[i] = pivot
7 → ∀j ∈ [i + 1, n − 1], a[j] > pivot
8 Recursively sort a[0..i − 1]
9 Recursively sort a[i + 1..n − 1]
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Quiz: Complexity of some sorting algorithms

Specification of the problem (recall):

Input: an array a− of n integers
Output: an array a+ of n integers
Postrelation: a+ is a permutation of a− and a+ is sorted

Complexity of Counting Sort?
1 begin
2 Let min and max be the smallest and largest values of a−, respectively
3 Initialise to 0 an array nbOcc indexed from min to max
4 for i ranging from 0 to n − 1 do
5 nbOcc[a[i]]← nbOcc[a[i]] + 1

6 i ← 0
7 for v ranging from min to max do
8 for k ranging from 1 to nbOcc[v ] do
9 a[i]← v

10 i ← i + 1
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Theoretical Analysis of Algorithms Preliminary Definitions (recalls)

Some Pitfalls of Algorithm Complexity

When complexity depends on the considered instance

Examples: Insertion sort, Simplex

Worst-case/Best-case complexity
; Identify the worst/best possible instance

Average-case complexity
; Depends on a probability distribution of input values

When complexity depends on input values

Examples: Counting sort, Dynamic programming for the knapsack problem

Pseudo-polynomial complexity

When the output has an exponential size wrt the input
Example: Frequent itemset mining in a database

Complexity of the step between two consecutive outputs
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Theoretical Analysis of Algorithms Complexity Classes

Plan

1 Theoretical Analysis of Algorithms
Preliminary Definitions (recalls)
Complexity Classes
Illustration: Graph Matching Problems
Decidability and (in)completeness
Proof of Program Properties
Illustration: Lecture of P. Cousot on abstract interpretation

2 Experimental Analysis of Algorithms

3 Algorithm Engineering

4 Conclusion
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Theoretical Analysis of Algorithms Complexity Classes

Complexity of Problems

Complexity of a problem = Complexity of its best algorithm

But this best algorithm may not (yet) be known!

How can we compute the complexity of a problem X?

Each algorithm for X gives an upper bound

Lower bounds may be found by analysing the problem

The complexity of X is known if largest lower bound = smallest upper bound
Otherwise the complexity is open. . .
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Theoretical Analysis of Algorithms Complexity Classes

Examples of complexity lower bounds

Output size

Give a trivial lower bound for:
Generating all permutations of n values
Multiplying two n × n matrices

Compare with the complexity of the best known algorithm

Can we use the input size as a lower bound?

Bounds computed by reasoning on decision trees

Ex: Sort of an array of n values (for binary comparison-based sorts)
There exist n! different permutations of the array
and the algorithm must be able to compute each of them
If the sort is based on the comparison of couples of values,
then each comparison can eliminate at most half of the permutations
Hence, we need at least log2(n!) comparisons ; Ω(n log n)
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Theoretical Analysis of Algorithms Complexity Classes
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Theoretical Analysis of Algorithms Complexity Classes

Decision Problems

What is a Decision Problem?

Output of the problem = yes or no

Postrelation = Binary question on input parameters

Example: Description of the Search Decision Problem

Input = an array a of n values and a value e

Question = Does a contain e?

Many complexity classes are defined for decision problems only
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Theoretical Analysis of Algorithms Complexity Classes

Class P

P is the class of decision problems with polynomial complexities

; P is the class of tractable problems

Examples of decision problems in P
Decide if a value belongs to an array
Decide if there exists a path between two vertices in a graph
Decide if there exists a path of bounded cost between two vertices
Decide if there exists a spanning tree of bounded cost in a graph

. . .
Decide if a given value is a prime number
; Prime is in P [Agrawal - Kayal - Saxena 2002]!
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Theoretical Analysis of Algorithms Complexity Classes

Class NP

Condition for a decision problem X to belong to class NP:

X ∈ NP ⇒ ∃ Polynomial algo. for a Non deterministic Turing machine

In other words: X ∈ NP if, for every instance I of X such that answer(I)
= yes, there exists a certificate c(I) which allows one to check in
polynomial time that answer(I) = yes
; The problem of deciding if a certificate is solution belongs to P

Example: SAT ∈ NP

Description of SAT (recall):

Input = a Boolean formula F over a set X of n Boolean variables
Question = Does there exist a valuation of X which satisfies F?

Certificate = an assignment A : X → {true, false}
; Deciding whether A satisfies F or not is a polynomial problem
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Theoretical Analysis of Algorithms Complexity Classes

Relation between P and NP:
P ⊆ NP

Conjecture: P 6= NP
1 million dollar prize to win!
See [Millenium Problems of the Clay Mathematics Institute]

NP-complete Problems:

Hardest problems of NP:
; X is NP-complete if (X ∈ NP) and (X ∈ P ⇒ P = NP)

Theorem of [Cook 1971]: SAT is NP-complete

Since 1971, hundreds of problems have been shown NP-complete
See [Karp 1972], [Garey and Johnson 1979], [Wikipedia dynamic list]

For more information on P vs. NP:
Fortnow: Fifty Years of P vs. NP and the Possibility of the Impossible, 2022
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Theoretical Analysis of Algorithms Complexity Classes

How to prove that a problem P is NP-complete?

Step 1: Show that P belongs to NP

Define a polynomial-size certificate

Define a polynomial-time procedure to decide whether a certificate is a
solution or not

Step 2: Reduce a known NP-complete problem P ′ to P

Find a polynomial-time algorithm Ar to reduce P ′ to P:
Given an instance I′ of P ′, Ar returns an instance I of P such that the
answer of I′ for P ′ is equal to the answer of I for P

Use Ar to define a lower bound on the complexity of P ′:
Complexity of P ′ ≤ Complexity of Ar + Complexity of P

If P belongs to P, then P ′ also belongs to P...
... and you have shown that P = NP
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Theoretical Analysis of Algorithms Complexity Classes

Exercise 1

Description of the Clique Problem:

Input: a graph G = (V ,E) and a positive integer k

Question: Does there exist S ⊆ V such that #S = k and
∀i , j ∈ S, i 6= j ⇒ (i , j) ∈ E?

Show that Clique ∈ NP:

; Certificate?

Show that Clique is NP-complete:

; Reduction from SAT to Clique:

Give a polynomial algorithm to solve the reduction problem:

Input: an instance of SAT = a CNF formula F
Output: an instance of Clique = a graph G and an integer k
Postrelation: F is satisfiable⇔ G contains a clique of order k
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Theoretical Analysis of Algorithms Complexity Classes

Solution to Exercise 1

Reduction from SAT to Clique:

Define the graph GF = (V ,E) associated with a formula F :
V associates a vertex with every literal of every clause of F
; c(u) and l(u) = clause and literal associated with vertex u
E = {{u, v} ⊆ V | c(u) 6= c(v) and l(u) 6= ¬l(v)}

Define k = Number of clauses in F

Example:

Formula F :
(a ∨ ¬c ∨ d) ∧
(¬a ∨ b ∨ c) ∧
(¬b ∨ ¬c ∨ ¬d)

a

c

b

d

¬c

¬a

¬d¬c¬b

c1 c2

c3

Homework: Demonstrate that

If F is satisfiable, then GF contains a clique of k vertices

If GF contains a clique of k vertices, then F is satisfiable

Conclusion:

Clique is at least as hard as SAT because if Clique can be solved in
polynomial time, then SAT can also be solved in polynomial time

As Clique belongs to NP, Clique is NP-complete
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Theoretical Analysis of Algorithms Complexity Classes

Exercise 2

Description of the Subset Sum Problem (SSP):

Input: a set S of n integers

Question: Does there exist X ⊆ S such that X 6= ∅ and
∑

i∈X i = 0?

Show that SSP ∈ NP:
; Certificate?

Show that SSP is NP-complete:

; Reduction from 3-SAT to SSP:

Give a polynomial algorithm for the reduction problem:

Input: a 3-SAT instance (each clause contains 3 literals)
Output: an SSP instance = a set S of integers
Postrelation: F is satisfiable⇔ ∃X ⊆ S,

∑
i∈X i = 0
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Theoretical Analysis of Algorithms Complexity Classes

Ex.: F = (¬a∨ c ∨¬d)∧ (¬b ∨¬c ∨¬d)∧ (a∨¬b ∨ d)

a b c d c1 c2 c3

ia 1 0 0 0 0 0 1
i¬a 1 0 0 0 1 0 0
ib 1 0 0 0 0 0
i¬b 1 0 0 0 1 1
ic 1 0 1 0 0
i¬c 1 0 0 1 0
id 1 0 0 1
i¬d 1 1 1 0
i1c1

1 0 0
i2c1

2 0 0
i1c2

1 0
i2c2

2 0
i1c3

1
i2c3

2
t -1 1 1 1 4 4 4

{¬a,¬b, c,¬d}

⇔

1000100
+ 100011
+ 10100
+ 1110
+ 100
+ 20
+ 1
+ 2
− 1111444
= 0
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Theoretical Analysis of Algorithms Complexity Classes

Algorithm to solve SSP

Input: n integers x1, x2, . . . , xn
Output: true if there exists X ⊆ {x1, . . . , xn} s.t. X 6= ∅ and (

∑
k∈X k) = 0

/* Let min be the sum of all negative values in {x1, . . . , xn} */
/* Let max be the sum of all positive values in {x1, . . . , xn} */
/* Let a[1..n][min..max ] be a Boolean array: */
/* a[i][v ]=true iff ∃X ⊆ {x1, . . . , xi} such that X 6= ∅ and (

∑
k∈X k) = v */

1 begin
2 Initialise all elements of a to false
3 a[1][x1]← true
4 for i ranging from 2 to n do
5 for v ranging from min to max do
6 a[i][v ]← a[i − 1][v ] || (xi == v) || a[i − 1][v − xi ]

7 return a[n][0]

Compute the complexity of this algorithm:

Have we shown that P = NP?

No: The algorithm is Pseudo-polynomial!
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Theoretical Analysis of Algorithms Complexity Classes
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Theoretical Analysis of Algorithms Complexity Classes

Parameterized Complexity

Strongly NP-complete Problems:

Problems which are still NP-complete even when all numerical input values
are bounded by a polynome with respect to the input size

Parameterized Problems:
Problems for which an input parameter k has a fixed value

Example: Parameterized SSP

Input: a set S of n integers
Parameter: k = max −min with min =

∑
i∈S,i<0 i and max =

∑
i∈S,i>0 i

Question: Does there exist X ⊆ S such that X 6= ∅ and (
∑

i∈X i) = 0?

Fixed Parameter Tractable (FPT) Problems:

Problems for which there exists an algorithm in O(f (k) · nc) where n = input
size, k = fixed parameter and c = constant independent from input values
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Theoretical Analysis of Algorithms Complexity Classes

Example of FPT Problem: Vertex Cover

Definition of Vertex Cover
Input: a non directed graph G = (V ,E) and an integer k
Question: does there exist S ⊆ V such that #S ≤ k and
∀(i , j) ∈ E , i ∈ S ∨ j ∈ S?

Kernelisation of Vertex Cover
Transform G by iteratively applying the following rules:

If k > 0 and ∃v ∈ V ,d◦(v) > k : remove v from G and decrement k
If ∃v ∈ V ,d◦(v) = 0: remove v from G

Let G′ = (V ′,E ′) be the resulting graph (s.t. ∀v ∈ V ′,1 ≤ d◦(v) ≤ k )
If #E ′ > k2, then answer no
(each vertex covers at most k edges⇒ S covers at most k2 edges)
Else, G′ is a kernel: answer(G) = answer(G′), #E ′ ≤ k2 and #V ′ ≤ 2k2

; Brute force algorithm in O(22k2
) + transformation in O(#V + #E)

Conclusion: Vertex Cover is FPT for the parameter k 27/72



Theoretical Analysis of Algorithms Complexity Classes

NP-intermediate Problems

Ladner Theorem:
If P 6= NP then there exist problems of NP which are NP-intermediate
; neither in P nor NP-complete

Problems of NP not known to be NP-complete nor to belong to P:

Graph isomorphism
but quasi-polynomial algorithm proposed in [Babai 2016]

Factoring of integers

Rotation distance between binary trees

. . .
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Theoretical Analysis of Algorithms Complexity Classes

NP-hard Problems (1/2)

Problems at least as hard as those in NP:
X is NP-hard if: X ∈ P ⇒ P = NP
; Checking that a certificate is a solution of X may not belong to P
NP-complete ⊂ NP-hard

Example: k th Subset Problem

Input: a set S of n integers and 2 integers k and l
Question: Does there exist k distinct subsets of S such that, for each
subset, the sum of its elements is greater than l?

Does this problem belong to NP?

Example 2: Exact Clique Problem

Input: a graph G = (V ,E) and a positive integer k
Question: Is the largest clique of G of order k?

Does this problem belong to NP ?
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Theoretical Analysis of Algorithms Complexity Classes

NP-hard Problems (2/2)

Classification of NP-hard Problems
P-SPACE: There exists a polynomial-space complexity algorithm
EXP-TIME: There exists an exponential-time complexity algorithm
EXP-SPACE: There exists an exponential-space complexity algorithm

EXPSPACE

EXPTIME

NP

P

PSPACE

=?

=?

=?

=?

NL
=?
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Theoretical Analysis of Algorithms Complexity Classes

The co-NP Class

Complementary problem X of a decision problem X

Input of X = Input of X
Question of X = Negation of the question of X

Example 1: SAT = Complementary of SAT

Input: A set of variables X and a Boolean formula F
Question: Is F inconsistent?

Example 2: Clique = Complementary of Clique

Input: A graph G = (V ,E) and a positive integer k
Question: Is the order of every clique of G smaller than k?

Co-NP Class:

P ∈ co-NP iff P ∈ NP
Examples: SAT ∈ co-NP and Clique ∈ co-NP
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Theoretical Analysis of Algorithms Complexity Classes

Relations between NP and co-NP

Theorems:

If A ∈ P then A ∈ P
If there exists A st A is NP-complete and A ∈ NP then NP = co-NP
If A is NP-complete then A is co-NP-complete
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Why Matching Graphs?

Graphs are used to model:

Images
3D Objects
Molecules
Interaction networks
Social networks
Ontologies
Documents (XML)
Resources on the Web (RDF)
...

To compare graphs, we may match their vertices and edges
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Graph Matching Problems
Isomorphism ; Equivalence
Sub-isomorphism ; Inclusion
Maximum common subgraph ; Intersection
Edit distance ; Transformation cost

G1 = (V1,E1)

G’=(N’,E’)G=(N,E)

G2 = (V2,E2))
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Graph Matching Problems
Isomorphism ; Equivalence
Sub-isomorphism ; Inclusion
Maximum common subgraph ; Intersection
Edit distance ; Transformation cost

G1 = (V1,E1)

G’=(N’,E’)G=(N,E)

G2 = (V2,E2)

; Bijection f : V1 → V2 such that ∀i, j ∈ V1 : (i, j) ∈ E1 ⇔ (f (i), f (j)) ∈ E2

; Complexity in the general case: Conjectured NP-intermediary
[Babai 2016]: Quasi-polynomial algorithm . . . to be continued!?

; Particular cases:
Polynomial algorithm: Planar graphs, Ordered graphs, . . .
FPT algorithm: Bounded degree, Bounded treewidth, . . .
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Graph Matching Problems
Isomorphism ; Equivalence
Sub-isomorphism ; Inclusion
Maximum common subgraph ; Intersection
Edit distance ; Transformation cost

Gp = (Vp,Ep)

G’=(N’,E’)G=(N,E)

Gt = (Vt ,Et)
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Graph Matching Problems
Isomorphism ; Equivalence
Sub-isomorphism ; Inclusion
Maximum common subgraph ; Intersection
Edit distance ; Transformation cost

Gp = (Vp,Ep)

G’=(N’,E’)G=(N,E)

Gt = (Vt ,Et)

; Injection f : Vp → Vt such that
Induced case: ∀i, j ∈ Vp : (i, j) ∈ Ep ⇔ (f (i), f (j)) ∈ Et

Non-induced case: ∀i, j ∈ Vp : (i, j) ∈ Ep ⇒ (f (i), f (j)) ∈ Et

; Complexity in the general case: NP-complete (Demonstration?)

; Particular cases:
Polynomial algorithm: Trees, Outerplanar 2-connected graphs, . . .
FPT algorithm: (#Vp, treeWidth(Gt)) bounded

35/72



Theoretical Analysis of Algorithms Illustration: Graph Matching Problems
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Graph Matching Problems
Isomorphism ; Equivalence
Sub-isomorphism ; Inclusion
Maximum common subgraph ; Intersection
Edit distance ; Transformation cost

G1 = (V1,E1) G2 = (V2,E2)

; Partial injection f : V1 → V2 ∪ {ε} such that
Induced case: Maximise #{i ∈ V1, f (i) 6= ε} so that
∀i, j ∈ V1, f (i) 6= ε, f (j) 6= ε : (i, j) ∈ E1 ⇔ (f (i), f (j)) ∈ E2

Non-induced case: Maximise #{(i, j) ∈ E1, (f (i), f (j)) ∈ E2}
; Complexity in the general case: NP-hard (Demonstration?)

; Particular cases
Polynomial algorithm: Trees
FPT algorithm: Outerplanar graphs with bounded degree
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Graph Matching Problems
Isomorphism ; Equivalence
Sub-isomorphism ; Inclusion
Maximum common subgraph ; Intersection
Edit distance ; Transformation cost

; Matching that minimises edit costs
; Complexity in the general case: NP-hard (Demonstration?)
; Polynomial cases: Strings and ordered trees
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Zoom on plane graphs and image matching
; SATTIC (ANR blanc 2007-2011) and Solstice (ANR blanc 2013-2018) projects

Is the left-side graph sub-isomorphic to the right-side one?

Yes, but are they similar?
Graphs that model images are embedded in planes
Let’s compare these embeddings ; Combinatorial maps

References:

G. Damiand, C. Solnon, C. de la Higuera, J.-C. Janodet, and E. Samuel: Polynomial Algorithms for Subisomorphism of
nD Open Combinatorial Maps. Computer Vision and Image Understanding (CVIU), 115(7):996-1010, Elsevier, 2011

C. Solnon, G. Damiand, C. de la Higuera, J.-C. Janodet: On the complexity of Submap Isomorphism and Maximum
Common Submap Problems. Pattern Recognition, 48(2):302-316, Elsevier, 2015
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; SATTIC (ANR blanc 2007-2011) and Solstice (ANR blanc 2013-2018) projects

Is the left-side graph sub-isomorphic to the right-side one?
Yes, but are they similar?

Graphs that model images are embedded in planes
Let’s compare these embeddings ; Combinatorial maps

2 isomorphic graphs
2 non-isomorphic maps
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Algorithm for Submap Isomorphism

Basic idea:
Choose a dart d in the pattern map M
For each dart d ′ in the target map M ′:

Traverse M and M ′ in parallel and build a dart matching
If the dart matching is a subisomorphism then answer Yes

Answer No

Complexity: O(|darts(M)| · |darts(M ′)|)

Precondition: The pattern map M must be connected

M M ′

Not connected
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Submap isomorphism is NP-complete
; Proof by reduction of Separable Planar 3-SAT

Definition of the NP-complete pb Separable Planar 3-SAT [Lichtenstein 82]

Input: A CNF formula F over a set X of variables and a plane embedding of the
formula graph G(X ,F ) such that

Every clause of F contains 2 or 3 literals
For every variable xi : d◦pos(xi) ≥ 1, d◦neg(xi) ≥ 1, d◦(xi) ≤ 3
The cycle (x1, x2, . . . , xn, x1) separates the plane in two parts in and out
such that for every variable xi : {pos(xi), neg(xi)} = {in(xi), out(xi)}

Question: Does there exist a truth assignment for X which satisfies F?

Example of instance:

X = {x1, x2, x3, x4, x5}
F = (¬x1 ∨ x2 ∨ ¬x4)
∧ (x1 ∨ ¬x2 ∨ x3)
∧ (x2 ∨ ¬x3 ∨ ¬x4)
∧ (x3 ∨ x4 ∨ ¬x5)
∧ (¬x1 ∨ x5)

neg

x2 x3 x4 x5

C2 C4

C3

C5

C1

pos

pos

posnegnegneg neg pos

negpos pos

neg

pos

x1
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Reduction of Sep. Planar 3-SAT to Submap Isomorphism

Goal of the reduction:
Let F be a boolean formula with v variables and c clauses
Give a polynomial time algorithm for building two maps M and M ′

such that F is satisfiable iff M is a submap of M ′

Basic idea: Associate gadgets with variables and clauses

The pattern map M is composed of

c clause gadgets and v variable gadgets
The target map M ′ is derived from the plane graph associated with F :

Replace vertices by gadgets:

clause gadgets or and variable gadgets

xi xi

not xi not xi

2-sew patterns associated with adjacent vertices

Submap isomorphism⇔ Selection of 1 satisfied literal for each clause
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Example

X = {x1, x2, x3, x4, x5}
F = (¬x1 ∨ x2 ∨ ¬x4)
∧ (x1 ∨ ¬x2 ∨ x3)
∧ (x2 ∨ ¬x3 ∨ ¬x4)
∧ (x3 ∨ x4 ∨ ¬x5)
∧ (¬x1 ∨ x5)

neg

x2 x3 x4 x5

C2 C4

C3

C5

C1

pos

pos

posnegnegneg neg pos

negpos pos

neg

pos

x1

Pattern map M: Target map M ′:

x4

x5

x5x4x3x2x2

x2 x2

x2x2

x3 x3

x3x3

x4 x4

x4x4 x5 x5

x5x5

x2 x3 x3 x4

x1

x1

x1

x1

x1

x1

x1
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x1

x1
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

FPT algorithm for Submap isomorphism

Parameterized submap isomorphism:

Input: Two maps M and M ′

Question: Does there exist a submap of M ′ which is isomorphic to M?
Parameter: The number k of connected components in M

FPT Algorithm:
1 Decompose M into its k connected components denoted M1, . . . , Mk

2 Let V and E be two empty sets
3 for each connected component Mi of M do
4 for each partial submap M ′x of M ′ which is isomorphic to Mi do
5 add (M ′x , i) to V

6 for each (M ′x , i) ∈ V do
7 for each (M ′y , j) ∈ V such that i 6= j do
8 if Darts(M ′x) ∩ (Darts′y ) = ∅ then add ((M ′x , i), (M ′y , j)) to E ;

9 if the graph G = (V ,E) has a clique of size k then return True else return False
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Theoretical Analysis of Algorithms Illustration: Graph Matching Problems

Complexity of the FPT algorithm:

Let d = |Darts(M)|, di = |Darts(Mi )| and d ′ = |Darts(M ′)|:

Decomposition in connected components by a traversal of M in O(d)

Construction of V in O(dd ′)

Construction of E in O(dd ′2)

Search for a clique of size k in O(d ′k )

; Overall time complexity in O(d ′k + dd ′2).

Conclusion:
The tractability of submap isomorphism depends on the number of connected
components in the pattern map
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Plan

1 Theoretical Analysis of Algorithms
Preliminary Definitions (recalls)
Complexity Classes
Illustration: Graph Matching Problems
Decidability and (in)completeness
Proof of Program Properties
Illustration: Lecture of P. Cousot on abstract interpretation

2 Experimental Analysis of Algorithms

3 Algorithm Engineering

4 Conclusion
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Parenthesis on Formal Systems

What is a formal system?

Set of axioms and inference rules
Theorems are proven by applying rules to axioms
; The set of all theorems is recursively enumerable

Example (inspired from Presburger arithmetic):

Let N be the set recursively defined by:
0 ∈ N
∀x ∈ N, s(x) ∈ N

Axiom: ∀x ∈ N,p(0, x , x)

Rule: ∀x , y , z ∈ N,p(x , y , z)⇒ p(s(x), y , s(z))

Theorems: p(0,0,0), p(0, s(0), s(0)), p(s(0), s(s(0)), s(s(s(0))), ...

In other words, in Prolog:

p(0,X,X).
p(s(X),Y,s(Z)):- p(X,Y,Z).
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Properties of a formal system

Consistency:

The negation of a theorem cannot be a theorem
; The system cannot prove contradictory theorems

Decidability:

An assertion A is decidable if the system can prove A or ¬A
; There exists an algorithm to prove or refute A

Completeness:

Every assertion (expressed with the system language) is decidable
; The system can prove or refute any assertion

Example of formal system which is consistent and complete:
Presburger arithmetic [Presburger 1929]

45/72

https://cs.fit.edu/~ryan/papers/presburger.pdf


Theoretical Analysis of Algorithms Decidability and (in)completeness

From Hilbert to Gödel

Hilbert’s programme (1920):

Find a formal system which is both consistent and
complete for mathematics ; Meta-mathematics

We are not speaking here of arbitrariness in any sense.
Mathematics is not like a game whose tasks are
determined by arbitrarily stipulated rules. Rather, it is a
conceptual system possessing internal necessity that
can only be so and by no means otherwise.

Gödel’s incompleteness theorems (1931):

A consistent formal system cannot be complete
for natural number arithmetic (Peano arithmetic)

A formal system cannot demonstrate its own
consistency
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Incompleteness of Formal Systems for Arithmetic

Can we complete an incomplete formal system?

An incomplete formal system contains undecidable assertions

Idea: Add a new axiom for each undecidable assertion

Problem: There will still be undecidable assertions

Are there many undecidable assertions?

The probability that a randomly generated assertion of length n is
undecidable tends to 1 when n tends to∞
; When n→∞, all assertions are undecidable!

Reference:
Jean-Paul Delahaye: Presque tout est indécidable
Pour la Science - n◦ 375 - Janvier 2009 - pages 88 à 93
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Theoretical Analysis of Algorithms Decidability and (in)completeness

From Formal Sytems to Computability

It is possible to invent a single machine which can be used to
compute any computable sequence. Alan Turing, 1936

Computability of a function f :

There exist formal rules to compute f (x) from x in a finite number of steps

Two different formalisms introduced in 1936:
λ-calculus (Church) and Turing’s machine

Church’s Thesis: Turing-complete formalisms

Same power of expression as a Turing machine

Examples of Turing-complete formalisms:

Game of life (Conway, 1970)
. . .
Biochemical reaction networks (F. Fages, G. Le Guludec 2017)
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Computing with marbles: 5 + 6 = 11
; See https://www.turingtumble.com/
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Lambda Calculus [Church 1936]

Definition of λ-terms:
A variable x is a λ-term
Abstraction: λx .t is a λ-term if t is a λ-term and x a variable
Application: ts is a λ-term if t and s are λ-terms

β-reduction: (λx .t)s → t [x := s]

In other words: Replace x with s in t
; For example, (λx .xy)a→ (xy)[x := a] = ay

Exercise: Reduce the following λ-terms

(λx .x)((λy .y)z)

(λx .xx)(λx .xx)

(λx .xxx)(λx .xxx)
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Theoretical Analysis of Algorithms Decidability and (in)completeness

Definition of the addition on N with λ-calculus

Definition of natural numbers:
0 is defined by λf .λx .x
1 is defined by λf .λx .fx

2 is defined by λf .λx .ffx
...

Definition of a function that returns n + 1: λn.λf .λx .fnfx

Exercise: Compute n + 1 when n = 1
(λn.λf .λx .f nfx)λg.λy .gy

→ λf .λx .f (λg.λy .gy)f x

→ λf .λx .f (λy .f y)x

→ λf .λx .ffx

Definition of a function that returns m + n: λm.λn.λf .λx .mfnfx

Exercise: Compute m + n when m = 1 and n = 2
(λm.λn.λf .λx .mfnfx)(λg.λy .gy)(λh.λz.hhz)

→ (λn.λf .λx .λg.λy .gyfnfx)(λh.λz.hhz)

→ λf .λx .λg.λy .gyf (λh.λz.hhz)f x

→ λf .λx .λg.λy .gyf (λz.ff z)x

→ λf .λx .(λg.λy .gy)f ffx

→ λf .λx .(λy .f y)f fx

→ λf .λx .fffx
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Finite-state and Pushdown Automata (recalls from 4IF)

Finite-state Automaton (Q,Σ, δ, I,F )

Q = Finite set of states
Σ = Input alphabet
; Finite set of symbols
δ : Q × Σ→ Q = transition function
I ⊆ Q = Initial states
F ⊆ Q = Final states

; Regular languages (anbm, floating point numbers, variable names, etc)

Pushdown Automaton

Finite-state automaton with a stack (LIFO)
; Each transition may read/write a symbol on top of the stack

; Context-free languages (anbn, properly matched parenthesis, Java, etc)
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Turing Machine [Turing 1936]

Definition: M = (Q, Γ,b,Σ, δ,q0,F )

Q = Finite set of states with q0 ∈ Q (initial state) and F ⊆ Q (final states)
Γ = alphabet with b ∈ Γ (blank) and Σ ⊆ Γ\{b} (input alphabet)
δ : Q \ F × Γ→ Q × Γ× {L,R} = (partial) transition function

; Finite-state automaton with an infinite tape (infinite sequence of cells)

Execution:
Initially, the machine is in state q0, the tape contains an input word, and
the head is positioned on the first symbol of this word
While not Halt:

Let qi be the current state and a be the symbol in the current cell
If δ(qi ,a) is not defined, then Halt
Else if δ(qi ,a) = (qj ,b, x), then:

Go to state qj

Replace a with b in the current cell
Move the head for one cell left (if x = L) or right (if x = R)

If the current state ∈ F , then the input word is accepted by M
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Example: Increment a base-2 number

Algorithm:

While symbol 6= b,
Move the head right

δ(q0,0) = (q0,0,R)
δ(q0,1) = (q0,1,R)

Move the head left
δ(q0,b) = (q1,b,L)

While symbol = 1, write 0
and move the head left

δ(q1,1) = (q1,0,L)

Write 1 and stop...
δ(q1,0) = (qh,1,L)
δ(q1,b) = (qh,1,L)

Example when input = 10011:

State Tape (Head in blue)

q0 .. b 1 0 0 1 1 b ..
q0 .. b 1 0 0 1 1 b ..
q0 .. b 1 0 0 1 1 b ..
q0 .. b 1 0 0 1 1 b ..
q0 .. b 1 0 0 1 1 b ..
q0 .. b 1 0 0 1 1 b ..
q1 .. b 1 0 0 1 1 b ..
q1 .. b 1 0 0 1 0 b ..
q1 .. b 1 0 0 0 0 b ..
qh .. b 1 0 1 0 0 b ..

Exercise:
Turing machine for adding two base-2 numbers?
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The Game of Life [Conway’s game "life" by M. Gardner, 1970]

Definition:
2 dimensional grid composed of cells: Each cell is alive or dead
For each iteration:

A dead cell with 3 living neighbours becomes alive
A living cell with 2 or 3 living neighbours stays alive
A living cell with less than 2 or more than 3 living neighbours dies

; Particular case of cellular automaton

The game of life is a complex system!

There does not exist an algorithm for deciding if a pattern will appear in a
future state given the initial state (if the grid is infinite)
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The game of life is Turing-complete

References:
Rendell: A universal Turing machine in Conway’s Game of Life, 2011
Zucconi: Let’s build a computer in Conway’s game of life (Video), 2020
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Decidability of a Decision Problem

Decidable problems

There exists an algorithm which answers the question within a finite number
of instructions

Undecidable problems

There cannot exist an algorithm which answers the question for all instances
(but we may find algorithms which are able to answer for some instances)

Semi-decidable problems

There exists an algorithm which always answers when the answer is YES,
but may not terminate when the answer is NO
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Halting Problem of the Turing Machine

Definition of the halting problem:

Input:
A program P with one input parameter X
A value V for the parameter X

Question: Does the execution of P on V (denoted P(V )) ends?

The halting problem is undecidable [Turing 1936]:

Suppose there exists a program halt(P,V) specified as follows:
Input: a program P and a value V
Postrelation: Return true if P(V ) ends, and false otherwise

Let us define the program diag with an input parameter X :
diag(X ) = if halt(X ,X ) then infinite loop else return true

diag(diag) ends⇒ halt(diag,diag) = true⇒ diag(diag) does not end
; Contradiction

Is the halting problem semi-decidable?
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Other Examples of Undecidable Problems

Tenth Hilbert’s problem [Matiyasevic, 1970]:
Input: a diophantine equation (polynomial equation)
Question: Does there exist an integer solution?

Post problem:
Input: 2 lists α1, α2, . . . , αn and β1, β2, . . . , βn of n words
Question: Does there exist i1, i2, . . . , ik s.t. αi1αi2 . . . αik = βi1βi2 . . . βik ?
Example of instance: Input =

Tilling problem:
Input: A finite set S of squares with colored edges
Question: Can we till any n × n surface with copies of S so that 2
adjacent edges have a same colour?
Example of instance: Input =
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First Program Proofs?

In order that the man who checks may not have too difficult a task the
programmer should make a number of definite assertions which can be
checked individually, and from which the correctness of the whole program
easily follows.

Alan Turing, 1949

But algorithms appeared long before computers...

... and it is most probable that they were proven correct!?
See the course of Gilles Dowek "Preuve et calcul, des rapports intimes"
(http://www.college-de-france.fr/site/gerard-berry/seminar-2008-02-22-12h00.htm)
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Proof of Program Properties

Examples of properties we may want to prove:

Termination: The program always ends

Completeness: The program computes output values for every input
values that satisfy preconditions

Correction: The postrelation between input and output values is always
satisfied

Correction of an invariant: The assertion is true for each iteration

Equivalence of 2 programs P1 and P2: P1 outputs the same values as P2
given the same input values

Overflow: No overflow at run time

etc...
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Proof vs Test

Tests may demonstrate the absence of a property:

Failure of a test⇒ Counter-example of a property:
; Incorrect invariant, Output that does not satisfy the postrelation, etc

Tests cannot prove correction nor termination!

Unless there is a finite number of possible input values, and testing each of
them... but in this case we have made a proof!

Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.

Edsger W. Dijkstra, 1972
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Parenthesis 1: Some algorithms are deliberately incomplete

Incomplete approaches to solve NP-hard problems

Incomplete exploration of the search space
; No guarantee on the result

Example of incomplete algorithm for SAT:

Input: A boolean formula F defined on a set X of n variables
1 begin
2 Initialise all variables of X to true in V
3 while Time limit not reached do
4 if V satisfies all clauses of F then return V ;
5 Choose a variable xi ∈ X
6 Flip the value of xi in V

7 return ?

Local search algorithms are usually incomplete!
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Parenthesis 2: Some algorithms are deliberately incorrect

Incorrect approaches for NP-hard optimisation problems

Approximation of the optimal solution computed in polynomial time
In some cases we have guarantees on the error (ρ-approximation)

Example of 2-approximation algorithm for the TSP

Compute a Minimum Spanning Tree (MST) of the graph
Perform a Depth First Search (DFS) of the MST
Return the cycle C corresponding to the order vertices are discovered
during search

Exercise: Prove that length of C ≤ 2 × Length of shortest hamiltonian cycle if
distances between vertices satisfy the triangle inequality property

Heuristic algorithms are usually incorrect!

The postrelation must state that the returned solution may not be optimal
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A proof may be “handmade” (1/2)

Example: Compute distances in a graph

Let v0 and vi be two vertices in a directed graph

If there exists a path from v0 to vi :

δ(v0, vi ) = length of the shortest path from v0 to vi
(where the length of a path is equal to its number of edges)

Otherwise: δ(v0, vi ) =∞

Algorithm for computing δ(v0, vi )?

Recalls (3IF): Breadth First Search (BFS) starting from v0
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A proof may be “handmade” (2/2)
Input: A directed graph G = (V ,A) and a vertex v0 ∈ S
Output: An array d such that d [vi ] = δ(v0, vi )

1 begin
2 for each vertex vi ∈ S do
3 Colour vi in white; d [vi ]←∞

4 Add v0 to f and colour v0 in gray ; d [v0]← 0
5 while f not empty do
6 Let vk be the oldest vertex in f
7 while ∃vi ∈ succ(vk ) such that vi is white do
8 Add vi to f and colour vi in gray
9 d [vi ]← d [vk ] + 1

10 Remove vk from f and colour vk in black

Exercise 1: Prove that this algorithm terminates

x
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A proof may be “handmade” (2/2)
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10 Remove vk from f and colour vk in black

Exercise 2: Prove that this algorithm is correct

Help: invariant properties at line 6
1 Every successor of a black vertex is either gray or black

2 For every gray or black vertex vi , d [vi ] = δ(v0, vi )

3 Let < v1, v2, . . . , vk > be the vertices in f , from the most recent to the oldest:
d [v1] ≥ d [v2] ≥ . . . ≥ d [vk ] and d [v1] ≤ d [vk ] + 1
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Limitations of “handmade” demonstrations

Often hard to design

Sometimes hard to check

Usually done on the algorithm, not on the code!

“Beware of bugs in the above code; I have only proved
it correct, not tried it.”

D. Knuth
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Can we use computers to prove properties?

Interactive checking:

The user finds a proof, the computer checks the proof
; The proof must be written in a formal and decidable language

Static analysis:

The user finds an abstraction, the computer builds a proof and checks it
; Find the right level of abstraction

Automatic checking:

The computer finds an abstraction, builds a proof and checks it

Limitations:

Undecidable problem in the general case ; Possibility of false alarms
In general, checking the correctness of a proof is NP-complete

; Hot research topic
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